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Abstract

In the previous signature-based approaches to retrieve symbolic pictures from a large iconic
image database, they only consider pictures of type-2 similarity, where a picture A is of
type-2 similarity with picture B when both pictures have the same spatial relationship
between any two objects in the pictures. When queries of objects, type-0 similarity and
type-1 similarity are asked, signatures for objects, type-0 similarity and type-1 similarity
are required. Note that a picture is of type-0 similarity when all the spatial category
relationships of each object pairs are the same to the query picture, and a picture is of type-
1 similarity when the picture is of type-0 similarity and all the orthogonal relationships of
each object pairs are the same to the query picture. Although these 4 kinds of signatures
can be constructed and stored in advance to speed up answering such kinds of queries as in
Lee et al.’s approach [33], such a large signature file containing those 4 kinds of signatures
really wastes space. In this paper, we first present the revised version of Y. I. Chang and
Yang’s bit-string-based access strategy [16], which constructs type-2 signatures. Based
on the revised version, we then propose algorithms to dynamically convert those type-2
signatures into object signatures, type-0 signatures and type-1 signatures at run time so
that we can answer queries of object similarity, type-0 similarity, type-1 similarity and
type-2 similarity by storing only one type of signatures, i.e., the type-2 signatures. While
in Lee et al.’s signature file strategy based on the 2D B-string representation [33], they
have to construct and store 4 types of signatures in the database to achieve the same goal.
From our simulation, we show that our approach can provide a higher rate of a correct
match and needs a smaller storage requirement than Lee et al.’s approach.

(Keywords: access methods, content-based retrieval, 2D strings, iconic indexing, image
databases, signatures, similarity retrieval)
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1 Introduction

An image database system is concerned with the problem of storage, retrieval, and ma-
nipulation of pictorial data in an efficient manner [1, 5]. Applications which use image
databases include office automation, computer aided design, robotics, and medical picto-
rial archiving. Current approaches [22, 24, 23, 35, 37, 40, 41, 42] to content-based image
retrieval differ in terms of image features extracted, the level of abstraction manifested in
the features, and the desired degree of domain independence. There are two major cate-
gories of features: primitive and logical [19, 26]. Primitive image features such as object
color, texture and shape, which are usually visual features, can be extracted automatically
by image processing or semi-automatically. Logical features are abstract representations
(or derived attributes) of images at various levels of detail, which contains the spatial
relationship features [35]. For example, the QBIC system [22] focused on the primitive
image features; while the Intelligent Image Database System (IIDS) [8] covered the logical
features. (Note that logical features such as spatial relationship [40] may be synthesized
from primitive features, whereas others can only be obtained through considerable human
involvement. )

To answer a query ”find images containing a yellow ball on the top of a green table,”
we may first retrieve those images which contain a ball on the top of a table. Next, from
those results, we then check the colors (the primitive feature) of the ball and the table.
Therefore, the perception of spatial relationships among objects, like the IIDS approach
which provides a high level object-oriented search (rather than search based on the low level
image primitives of objects), is one of the important criteria to discriminate the images.
Consequently, a new data structure, called iconic indexing, which preserves the objects’
spatial knowledge embedded in iconic images, is required.

Recently, many iconic indexing strategies for iconic image databases have been pro-
posed. (Note that to simplify the design of an efficient storage and retrieval of the ex-
tended structure objects, almost all the proposed strategies assume that each object of
a picture is abstracted as a minimum bounded rectangle (MBR).) S. K. Chang et al. [4]
proposed a pictorial data structure, 2D string, using symbolic projections to represent
symbolic pictures preserving spatial relationships among objects. The basic idea is to
project the objects of a picture along the x-axis and y-axis to form two strings repre-
senting the relative positions of objects in the z-axis and y-axis, respectively. A picture
query can also be specified as a 2D string. Therefore, the problem of pictorial information
retrieval then becomes a problem of 2D subsequence matching. However, the represen-
tation of 2D strings is not sufficient enough to describe pictures of arbitrary complexity
completely, for example, completely or partially overlapping (MBRs of) objects. For this
reason, Jungert [29] and S. K. Chang et al. [6] proposed the 2D G-string representation
which introduces more spatial operators and a cutting mechanism to handle more types of
spatial relationships among objects in image databases. But a 2D G-string representation
scheme is not ideally economic for complex images in terms of storage space efficiency and
navigation complexity in spatial reasoning, since each overlapping object is partitioned at
the begin-bound or end-bound of the other objects. Therefore, Lee and Hsu [31] proposed



a 2D C-string representation scheme. Since the number of subparts generated by this new
cutting mechanism is reduced significantly due to that the cutting lines are performed only
at the end-bound points of dominating objects, the lengths of the strings representing pic-
tures are also reduced. However, answering a pictorial query still needs some complicated
procedures (which takes O(N?) time complexity for N nodes) based on the 2D C-string
representation. Therefore, Hsu and Lee [26, 27] proposed a 2D C-tree representation, which
can provide a more efficient procedure (which takes O(N) time complexity) for answering
a pictorial query.

In the above various 2D string representations, objects may be partitioned into subparts
in order to obtain the spatial relations among objects, especially for a complex image with
overlapping objects. If there are a large number of subparts, the storage space requirement
is high and processing time is long. Therefore, Lee et al. [34] proposed the 2D B-string
representation which preserves all the essential spatial information while at the same time
provides indexes for the images without the need of partitioning of any objects.

On the other way, C. C. Chang et al. [11] proposed a new approach of iconic indexing
by a nine direction lower-triangular (9DLT) matriz. In this strategy, a pictorial query can
be processed by using the matrix minus operations; however, only 9 spatial relationships
can be handled between any two objects. Later, Y. I. Chang and Yang [15] proposed a
prime-number-based (PN) matriz strategy, which combines the advantages of the 2D C-
string and the 9DLT matrix. In this approach, each spatial operator is represented by a
product of some prime numbers, and simple matrix operations and module operations are
used to answer a pictorial query. Next, Y. I. Chang et al. [18] proposed a unique-number-
based strategy in which each spatial operator is represented as a unique number and a range
checking operation is applied to answer a pictorial query.

Based upon the variations of 2D strings or the 9DLT matrix, another data structure
(for indexing 2D-strings/9DLT matrix), a set of triples, to represent the spatial relationship
between each pair of objects in a picture, was proposed [12]. For each triple, a hashing
value is found and stored. Hence, the problem of image matching becomes a problem of
matching hashing value sequences. [2, 12, 14]. Hash oriented algorithms for the similar
match retrieval of symbolic images with O(K') search time were also proposed, where K is
the number of symbolic images in the database. However, the database grows unwieldy as
the space requirement for the index structure is O(N?) where N is the number of objects
in the database.

Additionally, 2D-H strings [7] and adaptive 2D-H strings [13, 17] combined the advan-
tages of quad trees and 2D strings. However, 2D strings and 2D-H strings can only represent
directional relationships. There are some other methods such as the o-tree [30], the spa-
tial orientation graph [24], the SK-set [28], the 2D-PIR graph [38], the geometry-based
OR-string [25], the db-tree [36], and the fuzzy set-based approach [3].

When there are a large number of images in the image database and each image contains
many objects, the processing time for image retrievals is tremendous. Actually, the objects
or spatial relationships among objects in a symbolic picture can be treated as attributes or
keywords of a document. Thus, a signature file can speed up spatial match retrieval [21],
since the comparison of each signature (for a picture) is a O(1) bitwise ANDed operation,



as compared to the sub-string matching (or matrix comparison) operations for an exactly
match. That is, the signature can act as a searching filter to prune (i.e., filter out) most
of the unsatisfactory images. Only the records which match the signature need to be
examined further to test for exact query matches. Since a signature is a binary codeword
associated with each record of the image database, the retrieval of images based on the
simple bit conjunction operations can be speeded up tremendously at a very small cost
of space overhead. Therefore, to handle large amounts of image databases, several access
strategies [9, 10, 16, 20, 32, 33] have been proposed for and two-level signature files [39].

For example, Lee et al. [32] proposed an access strategy for retrieval by subpictures that
are represented in 2D strings. Lee et al.’s strategy considers only three spatial operators
along the z-axis or the y-axis; it is too rough. To reduce the rate of a false match and
to reduce the number of needed record signatures, where a false match is that a record
signature matches a query signature but the corresponding record does not satisfy the query,
C. C. Chang et al. [9] proposed a strategy with pictures represented in 9DLT matrices. In
C. C. Chang et al.’s strategy, each record signature is represented by 9 bits and 9 bit strings
of size N, where N > 0. Then, C. C. Chang et al. [10] proposed a module-oriented signature
extraction strategy, in which prime numbers are used to compose the signatures, and the
module operation will be applied when the query happens which further reduces the rate
of a false match.

The above access strategies consider only 9 spatial relationships. Later, Y. I. Chang
and Yang [16] proposed two efficient access strategies with pictures represented in a spatial
matriz that was described in the PN matrix strategy [15] for image databases, which can
handle 169 spatial relationships. In Y. I. Chang and Yang’s strategy, each record signature
is represented by 26 bits and 26 bit strings of size N, where N > 0. In Y. I. Chang and
Yang’s second strategy, each record signature is represented by 26 bits and 26 products of
prime numbers. Given the same image databases, the same query picture and the same
hash functions, the rate of a false match in Y. I. Chang and Yang’s both strategies can be
smaller than that of the previous approaches. On the other way, Lee et al. [33] proposed an
integrated signature file structure based on 2D B-strings to handle the retrieval by objects
and retrieval by binary spatial relationship to different extent of similarity (type-i, i =0, 1,
2). Figure 1 shows some examples of different extent of similarity. As compared to Figure
1-(a), Figure 1-(b) only contains the same objects, Figure 1-(c) contains the same objects
and have the same spatial category (the disjoin category) between objects, which is referred
as type-0 similarity. Moreover, as compared to Figure 1-(a), Figure 1-(d) satisfies type-0
similarity and has the same orthogonal relations, which is referred as type-1 similarity;
while Figure 1-(e) satisfies type-1 similarity and has the same spatial relationships in x-axis
and y-axis, which is referred as type-2 similarity [33]. (Note that the difference between
Figure 1-(d) and Figure 1-(e) is that the turtle immediately follows, or meets, the ostrich
in z-axis in Figure 1-(e); while it is not in Figure 1-(d).) Hence, there are in total four
kinds of signature files of 2D B-strings to be generated.

Although Lee et al.’s signature file approach [33] can answer queries of objects and
type-i similarity efficiently in terms of speed, their signature files containing 4 kinds of
signatures occupy a large storage space. On the other hand, as shown in [16], Y. I. Chang
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Figure 1: Types of Similarity: (a) the original picture; (b) object similarity; (¢) type-0
similarity; (d) type-1 similarity; (e) type-2 similarity.



and Yang’s two access strategies are efficient enough and have a low false match rate
as compared to the previous approaches [9, 32]. However, the signatures constructed from
Y. I. Chang and Yang’s two strategies can only answer whether there exist pictures of type-2
similarity with the query picture. Let’s call these signatures, the type-2 signatures. In this
paper, we first present the revised version of Y. I. Chang and Yang’s bit-string-based access
strategy [16], which constructs type-2 signatures. Based on the revised version, we then
propose algorithms to dynamically convert those type-2 signatures into object signatures,
type-0 signatures and type-1 signatures at run time so that we can answer queries of object
similarity, type-0 similarity, type-1 similarity and type-2 similarity by storing only one type
of signatures, i.e., the type-2 signatures. While in [33], Lee et al. have to construct 4 types
of signatures in the database to achieve the same goal. From our simulation, we show that
our approach can provide a higher rate of a correct match (= 1 - the rate of a false match)
and needs a smaller storage requirement than Lee et al.’s approach.

The rest of this paper is organized as follows. In Section 2, we give some definitions
used in our paper. In Section 3, we will present a revised version of the bit-string-signature-
based access strategy, and the corresponding type-2 signatures. In Sections 4, 5 and 6, we
show how to convert such type-2 signatures into object signatures, type-0 signatures and
type-1 signatures, respectively. In Section 7, we give a comparison between our approach
and the signature file approach based on 2D B-strings. Finally, Section 8 gives a conclusion.

2 Background

In this Section, we describe the definitions of type-i similarity for 2D strings (which work
well for non-overlapping objects) and 2D B-strings (which work well for overlapping ob-
jects).

2.1 Type-i Similarity for 2D Strings

The 2D string representation was proposed by S. K. Chang et al. [4]. In this approach, let
V be a set of symbols, where each symbol could represent a pictorial object or a pixel. Let
A be the set {=, <,:}, where =, < and : are three special symbols not in V. For example,
consider the picture shown in Figure 2, V' = {a,b,¢,d,e, f}. The 2D string representing
the above picture f is as follows:

(a=d<e:f=b<ca=e:f<b=c<d),

where the symbol < denotes the left-right or below-above spatial relationship. The
symbol = denotes the “at the same spatial location as” relationship and the symbol :
denotes the “in the same set as” relation. The corresponding reduced 2D string is as
follows:

(ad < efb < c,aef < be < d).

The rank of each symbol in a string x, which is defined to be one plus the number 7 <”
preceding this symbol in z, plays an important role in 2D string matching. Let the rank
of symbol b be denoted by r(b). The ranks for each symbol in the string "ad < efb < ¢”
are 1, 1, 2, 2, 2 and 3, respectively.
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Figure 2: A picture f
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Figure 3: Picture matching examples for 2D strings

A string z is a type-i 1D subsequence of string y if

1) z is contained in a string y,

2) if ajw by is a substring of x, a; matches ay in y and b; matches by in y, then

(
(
(type-0) r(be) — r(ag) > r(by) — r(ay) or r(by) — r(a;) = 0.
(
(

\/

type-1) r(be) — r(az) > r(by) —r(ay) > 0 or r(bs) — r(ag) = r(b1) — r(ay) = 0.
type-2) r(bs) — r(az) = r(by) — r(ay).

Let (z, y) and (', y') be the 2D string representation of f and f’, respectively. (2, y)

is a type-i subsequence of (z, y) if
(1) 2’ is type-i 1D subsequence of x, and
(2) y' is type-i 1D subsequence of y.

In this case, we say f' is a type-i sub-picture of f. Therefore, the picture matching
problem thus becomes a 2D string matching problem. In Figure 3, The 2D string represen-
tations for f, fi, fo and f;3 are all type-0 sub-pictures of f; f; and f, are type-1 sub-pictures
of f; only f; is type-2 sub-picture of f.

2.2 Type-i Similarity for 2D B-Strings

The 2D C-string is proposed by Lee and Hsu [31], which can represent overlapping objects.
Table 1 shows the formal definition of the set of spatial operators defined in the 2D C-string
representation, where the notation ”begin(A)” denotes the value of begin-bound of object
A and "end(A)” denotes the value of end-bound of object A. According to the begin-bound
and end-bound of the picture objects, spatial relationships between two enclosing rectangles

6



Notation Condition Meaning

A<B end(A) < begin (B) A digoinsB

A=B begin(A) = begin(B) A isthe sameasB
end(A) = end(B)

A|B end(A) = begin(B) A is edgeto edge with B

A%B begin(A) < begin(B) A contains B and they
end(A) > end(B) have not the same bound

AlB begin(A) = begin(B) A contains B and they
end(A) > end(B) have the same begin bound

AlB begin(A) < begin(B) A contains B and they
end(A) = end(B) have the same end bound

A/B begin(A) < begin(B) A is partly overlapping
< end(A) < end(B) with B

Table 1: Definitions of Lee et al.’s spatial operators

can be categorized into 13 types ignoring their length along the z-(or y-) axis. Therefore,
there are 169 types of spatial relationships between two rectangles in 2D space as shown in
Figure 4, where operator® means the inverse operator of the related operator. They can be
categorized in five types, disjoin, join, contain, belong and partial overlap. The five types
of the spatial relations between objects are defined in Figure 5. The measure criteria for
categorization is the area of the intersection of A and B. For the picture f; shown in Figure
6, the corresponding 2D C-string representation is as follows:

z-string: A|B%C,

y-string: B]A]C|A[C,

where a cutting occurs at the end bound of symbol B along the y-axis.

For those 169 spatial relationships organized by the 2D C-string representation, Lee et
al. proposed another iconic indexing, 2D B-string [34]. For the picture f; shown in Figure
6, the corresponding 2D B-string representation is as follows:

x-string: AA=BCCB,
y-string: BACBCA.

The spatial relationships are derived by using the ranks of symbols in the 2D B-string.
The rank of each symbol in a string x, which is defined as the position of this symbol
minus the number of '=’ preceding this symbol in x string. For example, the ranks for
each symbol in the string ”AA=BCCB” are 1 (denoted as rank-begin(A)), 2 (denoted as
rank-end(A)), 2, 3, 4, and 5, respectively. In the 2D B-string representation, three types
of similarity measures are defined as follows: (1) Cap denotes the category type between
A and B; (2) Oap denotes the orthogonal relation between A and B, including north,
south, west and east as defined formally in Figure 7; (3) Rap denotes one of the 169 spatial
relationships in two dimensional space between A and B. Note that the above C4p, Oxp
and R,p relationships can be derived from the ranks of symbols A and B. Based on the
three types of similarity measures, the type-i subpicture matching can be defined as shown
in Figure 8 [34]. For example, in Figure 6, fi, f> and f3 are all type-0 sub-pictures of f; f;
and fy are type-1 sub-pictures of f; only f; is type-2 sub-picture of f.



L__m_”]-w =

Tain | ang
[1E} ] ¢ 18D
= B

Con | Bal

~f5m= nm H_.%

R BIERTER

AN = nuﬂ_“r_.w,mr

ParT_awdp (50

o 2| = | A= WS-

_“_T. [ed]z| =

Join (400

=]
[l

=

3 I g by

Disjain (48]

| B
1

Ll

J.’l

- l.'l' I'I- I."'I'

o

L~

:.—_;lr%‘E'E

the area of partial A and partial B.

B
A

0
A N B = single point or line segment

ANB
ANB

e ) 1

=

ANB

3%
0=(8:|Px |55 PoPE B =]~ 0
Do P e 0o o O PER 3,
_”_u%_”__uh_”__”_m_uum_unmn__”_m_m_uwnﬂm._m_m i

o [ e R okt S ek A S 0

] | "t [faf] =

c—j=|

Figure 4: The 169 spatial relationship (R) types of two objects
Figure 5: The category (C) rules defined by intersection

Partial overlap: A N B

Disjoin:
Join:
Contain:
Belong:
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Figure 6: Picture matching examples for 2D B-strings

Rule 1. A is in the east of B iff z-axis: rank-end(A) > rank-end(B).
Rule 2. A is in the west of B iff x-axis: rank-begin(A) < rank-begin(B).
Rule 3. A is in the north of B iff y-axis: rank-end(A) > rank-end(B).
Rule 4. A is in the south of B iff y-axis: rank-begin(A) < rank-begin(B).

Figure 7: The orthogonal relation (O) rules

Picture f' is a type-i subpicture of f if:
(1) all objects in f' are also in f;
(2) for any two objects, A and B:
(type-0) Cyp = Cas
(type-1) C'yy = Cap and O’y = Oup
(type-2) Cyz = Cyp and O'yz = Oap and Rz = Rap

Figure 8: Three types of similarity (for 169 spatial relationships)



3 A Revised Version of the Bit-String-Signature-Based
Access Method

In this section, we present a revised version of Y. I. Chang and Yang’s bit-string-signature-
based access strategy [16]. The main difference between the revised version and the original
one [16] is the assignment of a unique value to each of spatial operators. Based on the new
assignments of values to spatial operators, we can construct object, type-0 and type-1
signatures from a given type-2 signature efficiently. (Note that the revised version of the
prime-number-based access strategy and related algorithms are shown in Appendix A.)

3.1 A Spatial Matrix

Suppose a picture f contains m objects and let V' = {vy, v, ..., v, }. Let W be the set of 13
spatial operators { <, <* |, |*,[,[,],]*, %, %*, /, /*,= } defined in 2D C-string [31], where
operator* means the inverse operator of the related operator. A m x m spatial matriz S of
picture f is defined as follows:

U1 Vg Um—1 Um,
r y y
’Ul 0 7"1’2 ) ) T‘l,m
Vs TfQ 0
S =
0

: .. y
Um—1 . : 0 Tm—l,m

xT xT
'Um i Tl,m ) .« s e Tmflym O

where the lower triangular matrix stores the spatial information along the x-axis, and
the upper triangular matrix stores the spatial information along the y-axis. That is,
Slvi,v] = 13, if @ > j; S, vl = rf; it i < j; Sloy,vy] = 0if i = j, Yo, v € V,
Vr;{i,rf’j € W, 1 <4,57 < m, where 7, is the spatial operator between objects v; and v,
along the z-axis and r%’,j is the spatial operator between objects v; and v; along the y-axis.
Note that in this representation, we always record the relationships between two objects v;
and v; from the view point of object v; no matter along the z-axis or the y-axis, where 7 <
j. That is why Slvi, v;] = r}; when i > j.

For the picture shown in Figure 9, the corresponding spatial matrix S is shown as
follows:

A B C D FE

Ao | % % /¢

g Bl< 0 < %N* <
S Cl< | 0 % )
D|l<* < < 0 |
E|%* [* < < 0

Following the idea similar to [18], we let 1,2, 3,4, 8,12, 7,11, 9, 13, 5, 6 and 10 denote
the unique identifier (uid) of spatial operators <, <* |, |*, [, [*, |, |*, %, %*, /, /* and =,

10



DO BO
AD
==

(b)

Figure 9: An image and its symbolic representation

operator <|<*11I1"r1/1/°0] Nl =11 11|%"
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Figure 10: Uids of 13 spatial operators

respectively. Figure 10 shows the relationship between our wids and Y. I. Chang and Yang’s
assignments [16] for spatial operators. (Note that in [16], they use 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12 and 13 to denote the spatial operators <, <*, |, |*, [, [, ], |*, %, %*, /,/* and =,
respectively.) Based on the new assignment of a unique identifier(uid) to each of 13 spatial
operators as shown in Figure 10, we can rearrange the total 169 spatial relationships defined
in the 2D C-string strategy [31], in Table 2. Under this new assignment, a Category table is
formed such that relationships of the same category are grouped together as shown in Table
3. In this way, the processing of category classification becomes a range checking operation,
which can simplify the processing of the decision of the spatial category relationships (as

described in Section 5).

Next, the corresponding reduced spatial matriz

RSM =

oo QW
Iaw»—tl—toltu

Moreover, a spatial z-string set 77 is defined as {vjuirf|l < j < i < m,r
{1,2,---,12,13}}, and a spatial y-string set T% is defined as {v;v;r{;[]1 <i < j<m
{1,2,---,12,13}}. Therefore, the corresponding spatial z-string set for the above RSM is

T® = { AB1, AC1, AD2, AE13, BC3, BD2, BE6, CD2, CE2, DE1 },
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Table 3: The category table

and the corresponding spatial y-string set for the above RSM is
TY = { AB3, AC9, AD13, AE6, BC2, BD13, BE2, CD13, CE6, DES }.

3.2 Type-2 Record Signatures

Based on the 13 spatial operators, we now define a Record Signature (RS). A RS consists
of two parts, RS' and RS? as shown in Figure 11. RS! contains 2 segments RS and
RS, which represent the record signature flags from the view point of z-axis and y-axis,
respectively, and each segment is a 13-bit string. These two 13-bit strings are used to
indicate the existence or absence of those 13 spatial operators along the x-axis and y-axis,
respectively. RS? consists of two segments, RS?* and RS?Y. Each of these two segments
contains 13 bit strings. The i-th bit string (or signature) among those 13 bit strings is used
to record the union of the signatures of those pairs of objects which have the same i-th
spatial operator. We use RS??(7) to represent the i-th segment of RS?®. That is, RS**(7)
=U0,(XY9), X, YeV,ie{l,2 ---, 12, 13 }, where 0, is the hash function of the
record signature. The algorithm for efficient data access of image databases is described as
follows.

Algorithm (Record Signature)

(Step 1) According to the reduced spatial matriz, list all the spatial x-string sets T* and
spatial y-string sets TY.

(Step 2) Design the function 0, according to the given k, and b,, which maps each pair of

13



RS RS

—— ——

13-bit string 1 13-bit string 13 bitstrings 1 13 bit strings
I I

RS* RS RS* RS

Figure 11: The components of a Record Signature

A

B

Figure 12: An example

symbols into a unique bit string, where k, denotes the number of 1’s in a record
signature and b, denotes the number of bits in a record signature.

(Step 3) Set all bits in RS to 0.

(Step 4) For each spatial z-string ABi in T, we let the i-th bit of RS'® be 1, and then
perform RS*(i) = RS*(i) U 0,.(AB).

(Step 5) Repeat Step 4 by replacing T with TY.

(Step 6) Compress RS? by removing useless bit strings, resulting in a reduced form of a
record signature. If the i-th bit of RS (or RS'Y) is 0, then remove RS?*(i)

(or RS*(i)).
To illustrate the algorithm, let’s see the following example. For the figure shown in

Figure 12, first, we construct the spatial matrix and the reduced spatial matrix (RSM).

A B C ABC
A0 % ~Af0 6 9
S= Bl o | RSM = pl3 ¢ 3

Cl< % 0 cCl1 9 0

Applying the algorithm, we can construct the Record Signature of the picture as follows.

(1) Generate the spatial z-string set T and spatial y-string set TY.
T* = { AB3, AC1, BC9 }.
TY = { AB6, AC9, BC3 }.

(2) Design the function 6, (where b, = 5, k, = 2) which maps each pair of symbols to a
unique bit string.

14



spatial string 0,
AB 10001
AC 10100
BC 01100

(3) Set all bits in RS to 0.
RS = RS' + RS?
= 0000000000000 0000000000000 00000 00000 00000 OOO00 00000 00000
00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 BO000
00000 00000 00000 00000 00000 00000 00000 00000 00000.

(4) If ABi € T*, we let the i-th bit of RS'® be 1, and then perform RS?* (i) = RS?*(i)
U 0.(AB).
RS™ = 1010000010000.
RS?**(1) = RS*(1) U 0,(AC) = 10100.
RS?*(3) = RS**(3) U 6,(AB) = 10001.
RS?*(9) = RS**(9) U 0,(BC) = 01100.

(5) Repeat Step 4 by replacing T by T%. We have
RS?(3) = RS*(3) U 6,(BC) = 01100.
RS?(6) = RS*(6) U 0,(AB) = 10001.
RS%(9) = RS*(9) U 0,(AC) = 10100.

(6) Compress RS? by removing useless bit strings. The resulting reduced from the record
signature is as follows:
RS = 1010000010000 001001001000 10100 10001 01100 01100 10001 10100.

4 Object Signatures Based on Bit-Strings

To simplify the presentation of our algorithm, we convert each signature back to its complete
form, instead of the reduced form, when a query involving objects, type-0 and type-1 occurs.
For example, the signature

0000000000001 1000000000000 10001 10001
means that only the 13-th spatial relationship in z-axis and first spatial relationship in

y-axis occur. While the complete form for the same picture is

0000000000001 1000000000000
00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 10001
10001 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000.

Given a type-2 record signature in a complete form, we now present the algorithm to
convert such a type-2 record signature into the related object record signature (ORS) as
follows.
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Algorithm Object
(Convert a Type-2 Record Signature into an Object Record Signature)

(Step 1) Let the numbers of bits which are set to 1 in RS'™ and RSY to C* and CY,
respectively. If C* < CY, let TRS' = RS and TRS? = RS?®; otherwise, let
TRS' = RS'Y and TRS? = RS.

(Step 2) Set every bit in ORS to 0.

(Step 3) For i =1 to 13 do
If TRS'(i) = 1 then ORS = ORS UTRS?(i), where TRS' (i) means the i-th
bit of TRS* and TRS?(i) means the i-th bit string of T RS?.

(Note that the purpose of Step 1 is to reduce the burden in Step 3; that is, we try to
choose the one (z-axis or y-axis) which has a small number of non-zero bit-strings.)

To illustrate the algorithm, let’s see the following example. Suppose there are four
pictures in the database, P;, P», P; and P, as shown in Figure 13, and the hash function
0, (where b, =5, k, = 2) is defined as follows.

spatial string 0,
AB 10001
AC 10100
BC 01100
AD 10010
BD 01010
CD 00110

The corresponding reduced spatial matrices are as follows.

A B D A B C

A0 6 8 A0 6 9
RSMl_B305 RSM?_B309
D1 9 0 Cl5 6 0

A B C A B C

A0 3 1 Al0 4 6
RSM3_B505 RSM4_B505
Cl6 6 0 cCl1 9 0

Based on the revised version of Y. [. Chang and Yang’s algorithm, the corresponding
complete form of type-2 signatures for those pictures are as follows:

RS; = 1010000010000 0000110100000

10010 00000 10001 00000 00000 00000 00000 00000 01010 00000 00000 00000 00000
00000 00000 00000 00000 01010 10001 00000 10010 00000 00000 00000 00000 00000,
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B C
A B

P Py Py Py

Figure 13: A 4-picture image database

A C
ﬁ

Figure 14: A query picture ¢

RS> = 0010110000000 0000010010000
00000 00000 10001 00000 10100 01100 00000 00000 00000 00000 00000 00000 00000
00000 00000 00000 00000 00000 10001 00000 00000 11100 00000 00000 00000 00000,
RS3 = 0000110000000 1010100000000
00000 00000 00000 00000 10001 11100 00000 00000 00000 00000 00000 00000 00000
10100 00000 10001 00000 01100 00000 00000 00000 00000 00000 00000 00000 00000,
RS, = 1000100010000 0001110000000
10100 00000 00000 00000 10001 00000 00000 00000 01100 00000 00000 00000 00000
00000 00000 00000 10001 01100 10100 00000 00000 00000 OO000 00000 O0000 00000.

Then, let’s see how to convert the type-2 signatures into the object signatures. Take
picture P, as an example.

ORS; = 10010 U 10001 U 01010 = 11011.

(Note that in this example, we choose bit-strings in x-axis.)
In the same way, the resulting object signatures for P,, P; and P, are as follows:

ORS, = 10001 U 11100 = 11101,
ORS3; = 10001 U 11100 = 11101,
ORS, = 10100 U 10001 U 01100 = 11101.

Given a query picture ¢; as shown in Figure 14, the corresponding complete form of
the type-2 query signature is as follows:

QRS = 1010000010000 0000110100000
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CLASS! CLASS?

DEJECEBEF’ D J C B P
' ' ' '

T T
5 bits 5 bit strings

D: Disjoin; J: Join; C: Contain; B: Belong;
P: Partial Overlap

Figure 15: Type-0 signature CLASS

10100 00000 10001 00000 00000 00000 00000 00000 01100 00000 00000 00000 00000
00000 00000 00000 00000 01100 10001 00000 10100 00000 00000 00000 O0000 00000.

The corresponding query object record signature (QORS) is as follows,
QORS = 10100 U 10001 U 01100 = 11101. Next, since QORS N ORS; # QORS,

QORS NORS; = QORS, QORS N ORS; = QORS and QORS N ORS; = QORS, we
conclude that pictures P, P; and P, may have the same objects with the query picture ¢,
while picture P; has some objects different from the query picture ¢;.

5 Type-0 Signatures Based on Bit-Strings

Figure 15 shows the structure of the type-0 signature, CLASS. Given a type-2 record
signature in a complete from, we now present the algorithm to convert such a type-2 record
signature into the related type-0 record signature (C'LASS) based on the observation from
Table 3 as follows.

Algorithm Type-0
(Convert a Type-2 Record Signature into a Type-0 Record Signature)

(Step 1) Set every bit in CLASS to 0.

Step 2) CLASS'(1) =%, RS™(i) U U>, RSY™(i * Disjoin *
=1 =1

if CLASS'(1) = 1 then
CLASS?*(1) = U2, RS (i) U UL, RS%(i)

(Step 3) CLASS'(2) = (Uis RS™(i) n U2, RSY(i)) U /* Join */
(UiZs RS™(i) N Ui RS™(i))
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if CLASS'(2) =1 then
CLASS%(2) = (Uis RS?(i) N U, RS¥(i)) U
(UiZs RS**(i) N Ujzs RS™(i))

(Step 4) CLASSY(3) = U2, RS™*(i) n U2, RSY(4) /* Contain */
if CLASS'(3) = 1 then
CLASS*(3) = U2 RS* (i) N U2, RS™ (i)

(Step 5) CLASS'(4) = U;2,, RS™(i) N U2, RS™ (i) /* Belong */
if CLASS'(4) = 1 then
CLASS%(4) = U2, RS* (i) N U2,, RS%(i)

(Step 6) CLASS'(5) = (UL RS'™(i) N UZ135R51”(2)) U /* Partial overlap */
(U2, RS*(i) N s RSY(i)) U
(Up—7 RS™ (i) N Uzl?)ll RS™(i)) U
(Uzlgll RS'™(i) N Ui, RS™(i))

if CLASS'(5) =1 then

CLASS*(5) = (UL; RS™(i) N UB RS?(i)) U
(U;2; RS** () N RS?(i)) U
(U7 RSQ"’"(@) N U1311 RS*(i)) U
(Uit RS* (i) N Ui, RS™(4))

Take picture P, shown in Figure 13 as an example, we now show how to convert the
type-2 signature into the corresponding type-0 signature.

CLASS!(1) =RS!#(1)=1
CLASS?(1) = RS?(1) = 10010

CLASS!H(2) = RS(3)n (RS{Y(5)URS¥(6) URS¥(8)) =1
CLASS?(2) = RS?*(3)N (RS (5) U RS (6) U RS(8))
= 10001 N (01010 U 10001 U 10010) = 10001

CLASSL(3) =0
CLASS?(3) = 00000

CLASS!(4) =0
CLASS?(4) = 00000

CLASSI(5) = RSI(9)N (RS}Y(5)URSY(6)) =1
CLASS?(5) = RS¥(9)N (RS (5) U RS (6))
= 01010 N (01010 U 10001) = 01010

Therefore, CLASS; = 11001 10010 10001 00000 00000 01010.
In the same way, the resulting type-0 signatures for P, P; and P, are as follows:

19



NSWE' NSWE?

z
w
=
m
z
7
=
m

I I
4 bits 4 bit strings

N: North; S: South; W: West; E: East

Figure 16: Type-1 signature NSWE

CLASS, = 01001 00000 10001 00000 00000 11100,
CLASS; = 11001 10100 10001 00000 00000 01100,
CLASS, = 11001 10100 10001 00000 00000 01100.

Given a query picture ¢; as shown in Figure 14, the corresponding type-0 query signa-
ture (QC'LASS) is as follows:

QCLASS = 11001 10100 10001 00000 00000 01100.

Next, since QCLASS N CLASS, # QCLASS, QCLASS N CLASS; # QCLASS,
QCLASS N CLASS; = QCLASS and QCLASS NCLASS, = QCLASS, we conclude
that pictures P; and P, are of type-0 similarity with the query picture ¢;, while pictures
P, and P, are not of type-0 similarity with the query picture ¢;.

6 Type-1 Signatures Based on Bit-Strings

Figure 16 shows the structure of the type-1 signature, NSWE. Given a type-2 record
signature in a complete from, we now present the algorithm to convert such a type-2 record
signature into the related type-1 record signature (NSWE) as follows.

Algorithm Type-1
(Convert a Type-2 Record Signature into a Type-1 Record Signature)

(Step 1) Set every bit in NSWE to 0.

(Step 2) For i € {2,4,6,8,9} do /* North */
if RS (i) is 1, set NSWE!(1) to 1, and let NSW E?(1) = NSW E?(1)URS?Y (i)
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(Step 3) For i€ {1,3,5,7,9} do /* South */
if RS (i) is 1, set NSW E(2) to 1, and let NSW E?(2) = NSW E?(2)URS?Y (i)

(Step /) For i€ {1,3,5,7,9} do /* West */
if RSY™ (i) is 1, set NSWE(3) to 1, and let NSWE?*(3) = NSWE?*(3) U
RS?* (i)

(Step 5) For i € {2,4,6,8,9} do /* East */
if RSY™ (i) is 1, set NSWE'(4) to 1, and let NSWE?*(4) = NSWE?*(4) U
RS?% (i)

For those four pictures P, P,, P3 and P, as shown in Figure 13, only pictures P; and
Py are of the type-0 similarity; therefore, we only have to check whether pictures P; and
Py are of type-1 similarity with a query picture ¢;. We now convert the type-2 signatures
of P3 and P, into the type-1 signatures. Take picture P; as an example.

NSWEN1) =0
NSWE2(1) = 00000

NSWE!2) =RSY(1)URSY(3)URSY(5) =1
NSWE?(2) = RSY(1)URSY(3) U RS (5)
= 10100 U 10001 U 01100 = 11101

NSWELN3) = RS#(5) =1
NSWE2(3) = RS?(5) = 10001

NSWE!(4) = RSI(6) =1
NSWE?(4) = RS?(6) = 11100

Therefore, NSW E3 = 0111 00000 11101 10001 11100.
In the same way, the resulting type-1 signature for P, are as follows:

NSWE, = 1111 10101 01100 11101 01100.

Given a query picture ¢; as shown in Figure 14, the corresponding type-1 query signa-
ture (QNSWE) is as follows:

QNSWE = 1111 10101 01100 11101 01100.
Next, since QNSWENNSWE; # QNSWE and QNSWENNSWEy = QNSWE,

we conclude that pictures Py is of type-1 similarity with the query picture ¢, while pictures
P; is not of type-1 similarity with the query picture ¢.
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7 A Comparison

The performance of an access strategy is measured by the rate of a false match (or the rate
of a correct match which equals to 1 - the rate of a false match). Obviously, as the size
of a signature is increased, the rate of a false match is decreased. However, the larger the
size of a signature is, the more the space needs. Moreover, the design of perfect function 6,
helps to reduce the false match rate, too. Therefore, the performance of an access strategy
depends on the size of a signature and the hash function 6,, which has been studied in [10].
In general, the rate of a false match in prime-number-based algorithms will be smaller than
that in bit-string-based algorithms. The reason is that the union of two bit strings may be
the same as another bit string, while the product of two prime numbers will never be the
same as another prime number.

As stated in [16], Y. I. Chang and Yang’s access strategies can record 169 spatial
relationships between objects, as compared to only 9 spatial relationships represented in
other access strategies [9, 10, 32]. Due to the same reason, Y. I. Chang and Yang’s access
strategies can distinguish some similar pictorial pictures, while them seem to be the same
in other access strategies. Given the same image databases, the same query picture and the
same hash functions, the rate of a false match in Y. I. Chang and Yang’s both strategies
will never be greater than that of Lee et al.’s strategy [32] or C. C. Chang et al.’s strategies
[9, 10]. Since our strategies are the revised versions of Y. I. Chang and Yang’s access
strategies [16], our strategies also provide the advantages of Y. I. Chang and Yang’s access
strategies as described above. Moreover, based on our revised version of Y. I. Chang
and Yang’s access strategies, we can efficiently construct the object, type-0 and type-1
signatures from a given type-2 signature. While in Lee et al.’s signature file strategy based
on the 2D B-string representation [33], to answer queries of objects and type-i similarity,
they have construct individual object, type-0, type-1 and type-2 signatures, which may
result in a large storage cost.

Basically, in Lee et al.’s approach [33], disjoint coding and superimposed coding are
combined to generate the signature for type-¢ similarity retrieval. Each type-¢ similarity
can be classified into five types of category relationships. Naturally, disjoint coding can
divide bit pattern width (1) into five disjoint fields. FEach field might have many key
values, therefore the disjunction of possible key values via superimposed coding is suitable
in each field. For the picture shown in Figure 17, Figure 18 shows a comparison of our
approach and Lee et al.’s approach. From Figure 18, we show that only 46 bits are needed
in our first access strategy, while 56 bits are always needed in Lee et al.’s strategy, where
the bit pattern width for objects = 8 and the bit pattern width for type-i = 16 in Lee et
al.’s strategy. (Note that here, in our strategy, we use the hash function shown in Figure
19.)

Furthermore, we will use some examples to show that our approach can provide a lower
rate of a false match than Lee et al.’s approach. First, for answering queries of retrieval
by objects, let’s take Figure 20 as an example. Based on Lee et al.’s strategy [33], pictures
p1 and py have the same objects signature as follows: 00001011. The reason is that when
W = 8, they apply the hash function which maps all bits in W to zero except the bit (‘X -

22



Figure 17: An example for comparing the number of bits in a signature

(object) (type-0) (type-1) (type-2)
Lee et al.[33] | 55001111 | 0001111001000000 | 0001111001000000 | 0000111100001000
Proposed 1010000000000 1000100000000 11111 00110 10010 11111

Figure 18: A comparison

spatial string

O,

AB
AC
BC
AD
BD
CD

10001
10100
01100
10010
01010
00110

Figure 19: The hash function used in Figure 17 (and Figure 22)
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b1 P2

(a) (b)

Figure 20: An example for retrieval by objects: (a) picture py; (b) picture ps.

spatial string 0,
AB 10001
Al 10100
AJ 11000
BI 10010
BJ 00101
1J 01010

Figure 21: The hash function used in Figure 20

‘A’) mod 8 + 1 being set to 1, where X is the object name, for example, B. However, based
on our approach, the corresponding objects signatures of pictures p; and ps constructed
from the type-2 signature using the hash function shown in Figure 21 are as follows:

p1: 11000,
po: 10010.

That is, Lee et al.’s signatures will cause a false match. For the example shown in Figure 20,
our approach creates two different objects signatures, while Lee et al.’s approach creates
the same signature for two different pictures. Consequently, for objects signatures, our
approach can provide a lower rate of false match than Lee et al.’s approach.

Second, for answering queries of type-0 similarity, let’s take Figure 22 as an example.
Based on Lee et al.’s strategy [33], pictures p; and p, have the same type-0 signature as
follows: 0000000 000 11 01 00. The reason is that when W = 16, they use the following
function H to create the key value (as the input to the hash function):

H — (CXI_ :Al) % 13_|_ (cyl_ cXI)
and the hash function (called the transformation function):

T; = H mod w; + 1,
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b1 P2

(a) (b)
Figure 22: An example for type-0 similarity: (a) picture p;; (b) picture ps.

where X and Y are object names, 1 < j <5, w; =7, wy =3, wz3 =2, wy = 2 and ws = 2.
Note that wy, we, ws, wy, and ws denote the bit pattern width of the disjoin, join, partly
overlap, contain and belong categories, respectively. However, based on our approach, the
corresponding type-0 signatures of pictures p; and py constructed from the type-2 signature
are as follows:

p1: 00101 00000 00000 10100 00000 11101,
p2: 00101 00000 00000 01100 00000 10101.

That is, Lee et al.’s signatures will cause a false match. For the example shown in Figure
22, our approach creates two different type-0 signatures, while Lee et al.’s approach creates
the same signature for two different pictures. Consequently, for type-0 signatures, our
approach can provide a lower rate of a false match than Lee et al.’s approach, so can be
the cases for type-1 and type-2 signatures.

To clearly compare the performance of our proposed strategy and Lee et al.’s [33]
strategy, we do a simulation study for both strategies. In this simulation, we consider 20
(= N) different objects and 2000 pictures in the database. For each object, it can appear in
a picture with 100000 * 100000 points. For each picture, M different objects are randomly
generated to appear in the picture. There are 100 query pictures, where each query picture
contains 2 different objects. For Lee et al.’s strategy, we let the bit pattern width for an
object record signature be 15, and the total bit pattern width for a type-0 record signature
be 50 * 5 (with 50 bits for each category), for a type-1 record signature be 250 * 5 and for
a type-2 record signature be 250 * 2, resulting in a total 2015 bits as a record signature
for a picture. For our proposed strategy, we let the number of bits in a record signature
be 100, and the the number of 1’s appearing in each record signature be 2, resulting in a
total 2626 bits as a record signature for a picture. Note that the size of 2626 bits is the
upper bound of a type-2 record signature of our strategy, but actually, the average size
of the reduced form of our type-2 record signatures for a picture is far smaller than 2626.
When M = 10 and 5, the average size of the reduced form of our type-2 record signatures
is 1489 and 942 bits, respectively, from this simulation result. The maximum size of the
reduced from of our type-2 record signatures for a picture is 2026 and 1426, when M= 10
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Object | Type-0 | Type-1 | Type-2
2D-B based | 25% 63% 9.6% 1.2%
Proposed 67% 78% 43% 30%
(a)
Object | Type-0 | Type-1 | Type-2
2D-B based | 49% 49% 5% 0.4%
Proposed 49% 54% 23% 6%

Table 4: A comparison of the correct match rate: (a) M=5; (b) M= 10.

and 5, respectively. The minimum size of the reduced from of our type-2 record signatures
for a picture is 1026 and 526, when M= 10 and 5, respectively. Tables 4-(a) and 4-(b)
show the simulation result, the correct match rate, of these two strategies when M =5
and 10, respectively. From this table, we show that our approach can provide a higher rate
of a correct match and needs a smaller storage requirement than Lee et al.’s approach. To
further reduce the number of comparison with each record signature in the image database,
a block signature (BS) can be used in the proposed strategy as in other strategies [9, 16].
The algorithm to find BS is almost the same as RS. The only one difference between
them is that we use another function 6, according to the given k;, and b, to get the block
signatures of object blocks.

8 Conclusions

In the previous approaches to retrieve symbolic pictures from a large iconic image database,
they only consider pictures of type-2 similarity. When queries of objects, type-0 similarity
and type-1 similarity are asked, signatures for objects, type-0 similarity and type-1 simi-
larity are required. In this paper, first, we have presented revised version of Y. I. Chang
and Yang’s bit-string-based access strategy [16], which construct type-2 signatures. Based
on the revised version, we have proposed algorithms to convert those type-2 signatures into
object signatures, type-0 signatures and type-1 signatures so that we can answer queries of
object similarity, type-0 similarity, type-1 similarity and type-2 similarity by storing only
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one type of signatures, i.e., the type-2 signatures. While in [33], Lee et al. have to construct
4 types of signatures in the database to achieve the same goal. From our simulation, we
have shown that our approach can provide a higher rate of a correct match and needs a
smaller storage requirement than Lee et al.’s approach.
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Appendix A

A Revised Version of the Prime-Number-Based Access Strategy

Since in C. C. Chang et al.’s fast spatial match access strategy [9], bit-patterns are
used as signatures and a bit-wise-or operation is used to union the signatures of the set
of object pairs, a false match may occur. Note that the result of a bit-wise-or operation
for some signatures may form another signature which is already defined. Therefore, to
further reduce the rate of false match, in [10], C. C. Chang proposed a module-oriented
signature extraction that uses the module operation to filter out the impossible images [10].
In this strategy, the bit strings used in C. C. Chang’s fast spatial match access strategy
[9] are replaced with prime numbers, the bit-wise-or operation is replaced with a multiply
operation, and the bit-wise-and operation in the query processing is replaced with a module
operation.

Following the similar idea, Y. I. Chang and Yang presented a prime-number-based
access strategy [16]. In Y. I. Chang and Yang’s second strategy, the data structure of a
record signature is almost the same as their first strategy. The only one difference is that
RS? consists of 26 products of prime numbers instead of 26 bit strings. And RS?*(z) = II
0(ABi), ABi € T*, 1 <1 < 13, RS%(i) = 1 §(ABi), ABi € T¥, 1 < i < 13. Similarly,
to efficiently construct object, type-0 and type-1 signatures from a given type-2 signature
based on the prime number approach, we now present a revised version of Y. I. Chang
and Yang’s prime-number-based access strategy. The main difference between the revised
version and the original one [16] is the assignment of a unique value to each of spatial

operators. Take Figure 12 as an example, we can have
RS = 1010000010000 001001001000 3 2 55 2 3,

where the hash function @ is shown as follows.

spatial string | 6
AB 2
AC 3
BC bt

The main differences between the algorithms for the prime-number-based version and

the bit-pattern-based version are as follows:
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1. Replace OSR = 0 (CLASS? = 0, NSWE? = 0) in the bit-pattern-based version
with OSR =1 (CLASS? = 1, NSWE? = 1) in the prime-number-based version.

2. Replace the U operator in the bit-pattern-based version with the X operator in the

prime-number-based version in some places.

3. Replace the N operator in the bit-pattern-based version with the GC'D operator in

the prime-number-based version in some places.

4. Replace the U{ operator in the bit-pattern-based version with the Hg operator in the

prime-number-based version in some places.

Given a type-2 prime-number-based record signature, the algorithms to convert such a
type-2 record signature into the related object record signature, the related type-0 record
signature, and the related type-1 record signature, are shown as follows.

Algorithm Object*
(Convert a Type-2 Record Signature into an Object Record Signature)

(Step 1) Let the numbers of bits which are set to 1 in RS and RSY™ to C* and CY,
respectively. If C* < CY, let TRS' = RS and TRS? = RS?®; otherwise, let
TRS' = RSY and TRS? = RS?.

(Step 2) Set ORS = 1.

(Step 3) For i = 1to 13 do
If TRS'(i) = 1 then ORS = ORS x TRS*(i), where TRS'(i) means the i-th
bit of TRS' and TRS?(i) means the i-th prime number of T RS?.

Algorithm Type-0*
(Convert a Type-2 Record Signature into a Type-0 Record Signature)

(Step 1) Set every bit in CLASS! to 0, and set every number in CLASS? to 1.

(Step 2) CLASSY(1) = UL, RS™®(i) x U, RSY(i) /* Disjoin */

if CLASS'(1) = 1 then
CLASS*(1) = [12., RS**(i) x I, RS*(i)
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(Step 3) CLASS'(2) = (Ui RS™(i) N UXE,; RSY(i)) U /* Join */
(U5 RS™(i) N Uj—s RS™(i))

if CLASS'(2) = 1 then
CLASS?(2) = GCD([Tj—s RS**(i), [I23 RS*(i)) x
GOD(IT, RS (i), TIL, RS™(1)
(Step 4) CLASSY(3) = U2, RS™(i) n U2, RSY (i) /* Contain */
if CLASS'(3) =1 then
CLASS?(3) = GCD(I RS™(i), TI1% RS™(i))

(Step 5) CLASSY(4) = U2, RS (i) N U2, RSY (i) /* Belong */
if CLASS'(4) = 1 then
CLASS?(4) = GOD(I1;2y, RS** (i), T1;2, RS™ (7))

(Step 6) CLASSY(5) = (UL RS™(i) N 1135R5’1y(z)) U /¥ Partial overlap */
( 53735”(2) N Ui BS™(i) U
(Ui RS'2(i) N }311 RS™(i)) U
(Un RSM(Z) 7 RS (i)
if CLASS'(5) =1 then
CLASS?(5) = GCD([I%5 RS?*(i), H2135R52y(2))
GCD(II; RSQ’”(Z) RSQZ’(Z))
GCD(TI)_, RS? (i), " RSQ?/(Z))
GCD(HZI?’H RS (i), ITj=r RS* (i)

Algorithm Type-1*
(Convert a Type-2 Record Signature into a Type-1 Record Signature)

(Step 1) Set every bit in NSWE?! to 0, and set every number in NSW E? to 1.

(Step 2) For i€ {2,4,6,8,9} do /* North */
if RSY(i) is 1, set NSWE(1) to 1, and let NSWE?*(1) = NSWE?(1) x
RS(3)

(Step 3) For i€ {1,3,5,7,9} do /* South */
if RS'Y(i) is 1, set NSWE'(2) to 1, and let NSWE?*(2) = NSWE?(2) x
RS(3)

(Step 4) For i€ {1,3,5,7,9} do /* West */
if RS'(i) is 1, set NSWE'(3) to 1, and let NSWE?*(3) = NSWE?(3) x
RS (1)
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(Step 5) For i € {2,4,6,8,9} do /* East */
if RS'(i) is 1, set NSWE'(4) to 1, and let NSWE?*(4) = NSWE?(4) x
RS?%(i)
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