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Abstract

In non-standard database applications, such as geographic information processing or CAD/CAM,
methods of access are required that support efficient manipulation of multidimensional ge-
ometric objects on secondary storage. Spatial data consists of spatial objects made up
of points, lines, regions, rectangles, surfaces, volumes, and even data of higher dimension.
Being able to respond to spatial queries in a flexible manner places a premium on the
appropriate representation of the spatial data. In order to be able to deal with proximity
queries, an efficient spatial indexing strategy is needed. In this paper, we consider the
problem of retrieving spatial data via exact match queries and range queries from a large,
dynamic index, where an exact match query means finding the specific data object in a
spatial database and a range query means reporting all data objects which are located in
a specific range. By large, we means that most of the index must be stored in secondary
memory. By dynamic, we means that insertions and deletions are intermixed with queries,
so that the index cannot be built beforehand. A new data structure, a Nine-Areas tree
(denoted NA-tree), is shown to be a solution to this problem. An NA-tree is designed
for paged secondary memory to minimize the number of disk accesses during a tree search.
From our simulation, we show that our NA-tree has a lower search cost (in terms of number
of visited nodes) than the R-tree, R -tree, or R*-tree.

(Key Words: exact match queries, range queries, R-trees, R*-trees, R*-trees, spatial
index.)
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1 Introduction

Modern database systems are no longer limited to business applications. Non-standard
applications such as robotics, computer vision, computer-aided design, and geographic
data processing are becoming increasingly important, and geometric data plays a crucial
role in many of these new applications [14]. In non-standard database applications, such
as geographic information processing or CAD/CAM, methods of access are required that
support efficient manipulation of multidimensional geometric objects on secondary storage.
Spatial data consists of spatial objects made up of points, lines, regions, rectangles,
surfaces, volumes, and even data of higher dimension. Examples of spatial data include
cities, rivers, roads, counties, states, crop coverage, mountain ranges, parts in a CAD
system, etc. Examples of spatial properties include the extent of a given river, or the
boundary of a given county, etc. Often it is also desirable to attach non-spatial attribute
information such as elevation heights, city names, etc. to the spatial data. Such databases
are used in many applications, including environmental monitoring, space, urban planning,
resource management, and geographic information systems (GIS) [11, 31, 34, 35].
Consider an information retrieval system involving a file whose records are cities on a
map, say of the continental United States. The cities could be stored in a certain data
structure with latitude and longitude serving as the keys. Queries could take on many
forms. An ezact match query might be, “What is the city at 43°3’ N latitude and 88° W
longitude ?7” To find all cities in the Oklahoma Panhandle, one could pose a range query
defining a rectangle bounded by latitudes 36°30" and 37° and longitudes 100° and 103° [6].
An index based on objects’ spatial locations is desirable, but classical one-dimensional
database indexing structures are not appropriate to multi-dimensional spatial searching.
Structures based on exact matching of values, such as hash tables, are not useful because
a range search is required. Structures using one-dimensional ordering of key values, such
as B-tree and ISAM indexes, do not work because the search space is multi-dimensional
[16]. However, none of these solutions is efficient, and therefore specialized structures are
required to handle multi-dimensional queries [3, 5, 15, 23, 39]. Several hierarchical data
structures have been proposed for handling multi-dimensional data. The k-d tree [6], grid

method [7], K-D-B-tree [33], BD tree [9], grid file [8], hB-tree [26], MD tree [27], and G-
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tree [23] have been developed for handling point data. For region (non-zero size) data,
the R-tree [16], R*-tree [38], R*-tree [4], R-file [18], GBD tree [29] and X-tree [1] have
been developed. The quadtree [12] has been extended to manage points, lines, regions, and
volume data.

Among the access methods for region data, R-trees [10, 16, 19, 25, 28, 30, 41, 42], R*-
trees [38] and R*-trees [4] are R-tree-based strategies, which have been widely referenced
and compared in many new proposed spatial indexing strategies [2, 17, 21]. Moreover, they
have been used in many advanced database applications, including multimedia [44], image
databases [32, 40] and OLAP [36] which are based on R-trees, and Video Databases [24]
which are based on R*-trees.

An R-tree is a BT-tree-like structure which stores multidimensional rectangles as com-
plete objects without clipping them or transforming them to higher dimensional points
[16]. R-trees are balanced trees that correspond to a nesting of d-dimensional intervals. An
R-tree does not support exact match queries very well due to the unlimited growth and
overlap of cells. Figure 1 shows the structure of an R-tree. It is very hard to control the
overlap during the dynamic splits of R-trees. Moreover, an R-tree may lead to performance
losses during search operations; sometimes, one may have to traverse several search paths.
For example, for a search window surrounding rectangle H shown in Figure 1-(a), both
subtrees rooted at nodes A and B must be searched, although only the latter will return
the qualifying rectangle H.

The main advantage of R*-trees [38] compared to R-trees is the improved search per-
formance, especially in the case of exact match queries. An RT-tree avoids overlapping
rectangles in intermediate nodes of the tree. However, the insertion and deletion of data
objects may in turn be much more complicated. Figure 2-(a) indicates a different grouping
of the rectangles in Figure 1-(a), and Figure 2-(b) shows the corresponding R*-tree. (Note
that the number of nodes in the R*-tree is always greater than that of the R-tree because
of the duplicate entries (for example, object G in Figure 2).

Based on a careful study of the behavior of R-trees under different data distributions,
Beckmann et al. [4] confirmed that the insertion phase is critical for good search perfor-

mance. The design of the R*-tree [4] therefore introduces a policy called forced reinsert.
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Figure 2: An R*-tree example: (a) grouping in an R*-tree; (b) an RT-tree structure.
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Figure 3: An R*-tree example: (a) grouping in an R*-tree; (b) an R*-tree structure.

If a node overflows, it is not split right away. Rather, p entries are removed from the node
and reinserted into the tree. The parameter p may vary. The R*-tree strategy also takes
the following objectives into account [11]: (1) region perimeter should be minimized; (2)
overlap between bucket regions at the same tree level should be minimized; (3) storage
utilization should be maximized. Figure 3 shows an example of an R*-tree, in which the
sum of region perimeters is smaller than that of Figure 1-(a).

In this paper, we consider the problem of retrieving multikey records via exact match
queries, and range queries from a large, dynamic index. By large, we means that most of
the index must be stored in secondary memory. By dynamic, we means that insertions and
deletions are intermixed with queries, so that the index cannot be built beforehand [33].
A new data structure, a Nine-Areas tree (denoted NA-tree), is presented as a solution to
this problem. Basically, our strategy is motivated by Kumar’s ordering property [23]. In
Kumar’s ordering property, partitions are numbered in a way such that partitions which
are spatially close to one another in a multi-dimensional space are also close in terms of
their partition numbers. From our simulation, we show that our NA-tree has a lower search

cost (in terms of number of visited nodes) than the R-tree [16], R*-tree [38] or R*-tree [18].
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Figure 4: An object representation: O(L(X,,Y;),U(X,,Y}))

The rest of the paper is organized as follows. Section 2 presents our proposed NA-tree
and describes algorithms for exact match queries and range queries. A comparison of the
performance of NA-trees with R-trees, R*-trees, and R*-trees is reported in Section 3.

Finally, Section 4 gives conclusions.

2 NA-Trees (Nine-Areas Trees)

In this Section, we first describe the bucket numbering scheme. Next, we describe the the
details of our structure. Then, we give algorithms for performing insertions and deletions.
Finally, we present some difficult cases that some other tree structures are hard to handle,

but which the NA-tree can easily solve them.

2.1 The Bucket Numbering Scheme

A spatial object, e.g., a polygon, can take an arbitrary shape. A common way to charac-
terize an object is by specifying its bounding rectangle, which is oriented parallel to the
coordinate axes, say X and Y. Thus an object O is hereafter represented by its four bound-
ing coordinates, X;, X, (i.e., the leftmost and rightmost X coordinates, respectively), Y,
and Y; (i.e., the bottommost and topmost Y coordinates, respectively). For simplicity, we
assume that no two objects have identical X or Y bounding coordinates [43]. In our ap-
proach, we use two points, L(X;,Y;) and U(X,,Y}), to represent a spatial object, as shown
in Figure 4, where L is the lower left coordinate and U is the upper right coordinate of the
bounding rectangle.

A bucket is numbered as a binary string of 0’s and 1’s, the so-called DZ expression. The

relationship between the space decomposition process and the DZ expression is as follows.
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Figure 5: Space decomposition and DZ expression

1. Symbols ‘0’ and ‘1’ in a DZ expression correspond to lower and upper half regions,
respectively, for each binary division along the y-axis. When a space is divided on

the z-axis, ‘0’ indicates the left half, and ‘1’ indicates right half sub-area.

2. The leftmost bit corresponds to the first binary division, and the n’th bit corresponds
to the n’th binary division of the area made by the (n-1)’th division.

Figure 5 shows an example of these regions, and the DZ expression of the dark area is
‘0010*’, because the area corresponds to “the lower half of the right half of the lower half
of the left half” of the entire space [29]. We convert the bucket numbers from binary to
decimal form. The legend alongside Figure 5 shows the equivalent binary representations
of the bucket numbers appearing on the grid itself in a decimal form.

Based on this bucket-numbering scheme, we observe that the uptrend of bucket number
increases from southwest to northeast, as shown in Figure 6. Figure 6-(b) shows the
direction of the increasing order of bucket numbers in Figure 6-(a), which is called a N-
order Peano curve [22]. This observation has motivated us to design a new data structure
for spatial indexing. First, two points, L(X},Y;) and U(X,, Y;), are used to record the region
of a spatial object. Next, the corresponding bucket numbers of L(X},Y}) and U(X,,Y;) are
calculated. The resulting pair of bucket numbers is called the spatial number. The spatial
number can be used to record an object. For convenience, we use O(l,u) to denote the
spatial number, where [ is the bucket number of L(X;,Y};) and u is the bucket number of
U(X,,Y;). For example, in Figure 7, the spatial number of object O is (12, 26). A variable,
Mazx_bucket, is used to record the maximum bucket number (in decimal form) of this area.

In Figure 5, the maximum bucket number is 15 (1111), i.e., Mazx_bucket = 15.
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Figure 6: The bucket-numbering scheme: (a) bucket numbering; (b) N-order Peano Curve.

21 23 29 31 53 55 61 63

17 19 25 27 49 51 57 59

16 18 24 48 50 56 58

Figure 7: An example of the bucket numbering scheme, O(l, u) = (12, 26)
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2.2 Data Structure

Generally, tree structures handling multi-dimensional data are constructed with two types
of nodes: internal nodes and leaf nodes. In our method, an internal node can have nine,
four, three, or two children. Since a leaf has no children, leaves are terminal nodes. Data
can only be stored in a leaf, not in an internal node.

An NA-tree is a structure based on data location and organized by the spatial numbers.
First, the whole spatial region is decomposed into four regions. Let region I be the bucket
numbers between 0 and §(Maz_bucket + 1) — 1, region II be the bucket numbers between
T(Maz_bucket+1) and 3(Maz_bucket+1) —1, region I1I be the bucket numbers between
s(Maz_bucket + 1) and 2(Maz_bucket + 1) — 1, and region IV be the bucket numbers
between 3 (Maz_bucket + 1) and Max_bucket, as shown in Figure 8-(a).

Based on this decomposition, we find that when an object is lying on the space, only
nine cases are possible (as shown in Figure 8-(b)). Thus, for an object O(l,u), an index
(internal) node p in an NA-tree may have the following nine children:

(1) If both I and u € region I, O is the first child of node p.

(2) If both I and u € region II, O is the second child of node p.

(3) If both [ and u € region III, O is the third child of node p.

(4) If both [ and u € region IV, O is the fourth child of node p.

(5) If I € region I and u € region II, O is the fifth child of node p.

(6) If [ € region I and u € region III, O is the sixth child of node p.

(7) If [ € region III and u € region IV, O is the seventh child of node p.
(8) If I € region IT and u € region IV, O is the eighth child of node p.
(9) If I € region I and u € region IV, O is the ninth child of node p.

Each of the above nine children, the following data structure can be used:
struct nine_children
{ int parentid;
int uid;
struct nine_children *1st_child;
struct nine_children *2nd_child;
struct nine_children *3rd_child;
struct nine_children *4th_child;
struct nine_children *5th_child;
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Figure 8: The basic structure of a NA-tree: (a) four regions; (b) nine cases; (c) one of the
possible tree structures.
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struct nine_children *6th_child;
struct nine_children *7th_child;
struct nine_children *8th_child;
struct nine_children *9th_child;
struct one_list *chain;

struct nine_children *parent;}

struct one_list
{ data_object [1..bucket_capacity];
struct one_list *next_ptr;}

In this structure, fields parentid and uid are used to record the type ¢ of its parent and
itself, respectively, 1 < i <9, and field parent is a pointer pointing back to its parent’s node.
However, based on different types of children, some fields may not be used. For example,
when it is the 5th child or the 7th child, fields 1st_child, 2nd_child, 3rd_child, 4th_child,
6th_child and 8th_child are not used. When it is the 6th child or the 8th child, fields
1st_child, 2nd_child, 3rd_child, 4th_child, 5th_child and 7th_child are not used. When it
is the 9th child, as shown in Figure 8-(c¢), in addition to using fields parentid, uid, and
parent, depending on the type of its parent, it may use one of the following choices: (1)
1st_child, 2nd_child, 3rd_child and 4th_child fields; or (2) 5th_child and Tth_child fields;
or (3) 6th_child and 8th_child fields. Note that field chain is used to handle the spe-
cial case in which many objects cluster together in the same bucket number (which will
be discussed later). Leaf nodes in an NA-tree contain index objects entries of the form
(entry_number, data[l..bucket_capacity]), where entry_number refers to the number of
objects in this leaf node, data[l..bucket_capacity] is an array to store object data, and
bucket_capacity denotes the maximum number of entries which can be stored in the leaf
node. Figure 9 shows an example of an NA-tree structure. Note that we do not split the
spatial space; instead we spatially organize the data objects by some rule according to their

spatial number (decided by their locations).

2.3 The Insertion Algorithm

This section describes our algorithm for inserting spatial objects into the NA tree. The
Insertion procedure is shown in Figure 10. Function Assign, procedure Decision, and

procedure SplitY N which are used in the Insertion procedure are shown in Figures 11,

10
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Figure 9: An example: (a) the data; (b) the corresponding NA-tree structure
(bucket_capacity = 2).

12, and 13, respectively. Basically, inserting a new rectangle in an NA-tree is done by
searching the tree according to spatial number and adding the rectangle in the leaf node.
Finally, the overflowing node is split and the split may propagate to the child node, if it
occurs.

In the Insertion procedure, the first step in inserting an object, O(L, U), is to compute
its spatial number, i.e., the two bucket numbers of L and U. The function Assign is called
with the coordinates of the point (¢, x1) and the number of bits b, where b is the number of
bits in the binary form of bucket number. The function Assign returns the bucket numbers
[ and u of points L(X;,Y}) and U(X,,Y;), respectively. Therefore, the spatial number of
this object is (I,u). The Assign function (shown in Figure 11) is used to compute the
DZ expression and return a decimal bucket number. In function Assign, [, and hg denote
the lower and upper bounds of coordinates along the x-axis; while [; and h; denote the
lower and upper bounds of coordinates along the y-axis. The constant b (i.e., the required
number of binary bits to record the bucket number) in procedure Assign depends on the

expected number of data objects. The relationship between the number of objects and the

11
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procedure Insertion( O(X;, V;, X, ¥2) );
begin
1 := Assign(X;, V3, b);
u := Assign(X,, Y3, b);
/* Calculate L(Xj, Y3)’s and U(X,, Y;)’s bucket numbers, (1,u), respectively */
p := Root;
Decision(l, u, p);
if p is a leaf node then
begin
Add O to node p;
if node p overflows then SplitYN( O(X;, Y3, X, Y2), p );
end
else
begin
if p~ uid € {1, 2, 3, 4} then Insert1234(0(X;, V3, X, ¥3), |, u, p)
else if p” uid € {5, 7} then Insert57(0(X;, V3, X,, ¥3), |, u, p)
else if p~ uid € {6, 8} then Insert68(0O(X;, V3, X,, Y1), |, u, p)
else Insert9(0O(X;, Y3, X, Y2), |, u, p);
end;
end;

Figure 10: Procedure Insertion

function Assign(zg, x1, b): integer;
/* compute the bucket number */
/* lp and hy are the lower and upper bounds of coordinates along the x-axis. */
/* 1 and hy are the lower and upper bounds of coordinates along the y-axis. */
/* b is the need number of binary bits to record the bucket number. */
begin
w = “7; /* null string */
fork :=1tob
begin
i:=k mod 2;
if (CUZ < (ll + hl)/2) then
begin
concatenate “0” to w;
h; := (lz + hl)/2,
end
else
begin
concatenate “1” to w;
l; := (ll + hl)/Q,
end;
end;
change binary number (w) to decimal;
return(w);
end;

Figure 11: Function Assign

12
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procedure Decision(l, u, p);

begin
if (1 € I) and (u € I) then p := p~ 1st_child
else if (1 € IT) and (u € II) then p := p” 2nd_child
else if (1 € IIT) and (u € III) then p := p” 3rd_child
else if (1 € IV) and (u € IV) then p := p~ 4th_child
else if (1 € I) and (u € II) then p := p” 5th_child
else if (1 € I) and (u € III) then p := p~ 6th_child
else if (1 € IIT) and (u € IV) then p := p”~ 7th_child
else if (1 € IT) and (u € IV) then p := p”~ 8th_child
else if (1 € I) and (u € IV) then p := p” 9th_child;
end;

Figure 12: Procedure Decision
procedure SplitYN( O(Xy, Y, X, Y3), p );
begin
if (Split_Region(p) = False) then Add O to p” chain

else Split(p);
end;

Figure 13: Procedure SplitY N

required number of bits to record the bucket numbers is shown in Table 1. Note that given
the total number of buckets = 2°, we have the level of tree from 0 to L, where L = [log42°].
Let NL; be the maximum number of leaf nodes occurring in level . We have NLy, = 1,
NLi =9, NLy =4*NL1 +4*3+1*4=52 NLy=4* NLy, +4*(3+3+2)+1
*4* NL; =276, and NLy =4 * NL; +4* (3+3+2)+3+3+2) +(3+3) +1
*4 % NLy = 1400.

Next, according to the spatial number, we search the tree and find which leaf node this
object belongs to. For the first level, procedure Decision is called to decide which of the
nine children the spatial number belongs to. In procedure Decision, node p will also be
updated to go down the tree. After that, if p is a leaf node, this object is inserted into
this leaf node. Then, this leaf node is checked to see whether it overflows. If this leaf node
overflows, then procedure SplitY N is executed.

When an overflow occurs in a leaf node, the SplitY N procedure calls function Split_Region
(shown in Figure 14) to detect whether this region should be split into more children. In
the case that region p or some part of region p covers only one bucket number, function

Split_Region returns False which indicates that we should add the object to the linked

13



NA-Trees

B N L|b
0<B <256 |N<L1400 |4 |8
0<B<1024 | N<6116 |5 |10
0<B<8192 | N <26520 | 6 | 13

N: the number of objects
B: the number of buckets
L: the number of levels

b: the number of bits

Table 1: The relationship between the number of objects (N) and b

chain. On the other hand, if function Split_Region returns True, procedure Split (shown
in Figure 15) will be executed. Procedure Split will create a different number of children,
depending on different cases of uid and parentid. In particular, when uid = 9, the centroid
of each object in p is used to decide the new spatial number of the object. Then, each
object in p is re-inserted according to its new corresponding spatial number. The flowchart
of the checking conditions in procedure Split is shown in Figure 16.

Note that in procedure Split, when a split occurs in the 9th child, two possible solutions

can be applied:

1. Use a chain of buckets for all rectangles overlapping, such a cross point, which is the

strategy proposed in R-files [18].

2. Use the location of the centroid of the rectangle to decide which region it should
belong to, which is first applied in our strategy. However, for the worst case in which
there are many rectangles with the centroids located in the same bucket number, we

still have to use strategy 1, a chain of buckets, to handle it.

On the other hand, if p is not a leaf node, procedures I'nsert1234 (Figure 17), Insert57
(Figure 18), Insert68 (Figure 19), or Insert9 (Figure 20) will be called, depending on its
wid € {1, 2, 3, 4}, {5, 7}, {6, 8} or {9}, respectively. In each of these procedures, the tree
is traversed downward through different types of children decided by the spatial number as

shown in Figure 8-(c).

14
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function Split_-Region(p): boolean;
begin
Split_Region := True;
if (p” uid € {1, 2, 3, 4}) and (region p covers only one bucket number) then
Split_Region := False
else if (p~ uid € {5, 7}) and (the width of p covers only one bucket number) then
Split_Region := False
else if (p” uid € {6, 8}) and (the height of p covers only one bucket number) then
Split_Region := False
else /* uid =9 */
begin
if (p” parentid € {1, 2, 3, 4}) and (the region of p covers only one bucket number)
then Split_Region := False
else if (p” parentid € {5, 7}) and (the width of p covers only one bucket number)
then Split_Region := False
else if (p~ parentid € {6, 8}) and (the height of p covers only one bucket number)
then Split_Region := False;
end;
end;

Figure 14: Function Split_Region

procedure Split(p);
begin
if p~ uid € {1, 2, 3, 4} then
Create all 9 children of p
else if p” uid € {5, 7} then
Create 5th_child, 7th_child, and 9th_child of p;
else if p”~ uid € {6, 8} then
Create 6th_child, 8th_child, and 9th_child of p
else /* uid =9 */
begin
if p” parentid € {1,2,3,4} then
Create 1st_child, 2nd_child, 3rd_child, and 4th_child of p
else if p~ parentid € {5, 7} then
Create 5th_child, 7th_child of p
else if p” parentid € {6, 8} then
Create 6th_child, 8th_child of p;
Calculate the centroid of each object in p;
Replace the spatial number of each object in p
with the spatial number of its centroid ;
end;
Re-Insert each object in p according to its new corresponding spatial number;
/* Call Insertion again */
end;

Figure 15: Procedure Split

15
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Figure 16: Flowchart of the checking conditions in procedure Split

procedure Insert1234( O(X;, V;, X, ¥2), L, u, p );
begin

Decision(l, u, p);
if p is a leaf node then
begin

Add O to node p;

if node p overflows then SplitYN( O(X;, Y3, X, Y2), p );
end

else
begin

if p~ uid € {1, 2, 3, 4} then Insert1234(0(X;, V;, X, Y3), |, u, p)
else if p~ uid € {5, 7} then Insert57(0(X;, V3, X,, Y1), |, u, p)

else if p~ uid € {6, 8} then Insert68(0O(X;, V3, X, Y1), |, u, p)
else Insert9(0(X;, Y3, X, Y2), |, u, p);
end;

end;

Figure 17: Procedure Insert1234

16
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procedure Insert57( O(X;, V3, X, Y1), L, u, p );
begin
if (1 € the left part of p’s region) and (u € the left part of p’s region) then
p :=p~ 5Sth_child
else if (1 € the right part of p’s region) and (u € the right part of p’s region) then
p :=p~ 7th_child
else p := p~ 9th_child;
if p is a leaf node then
begin
Add O to node p;
if node p overflows then SplitYN( O(X;, Y3, X, Y2), p );
end
else
begin
if p~ uid € {5, 7} then Insert57(0(X;, Y3, X, ¥2), 1, u, p)
else if p” uid = 9 then Insert9(0O(X;, Yy, X, Y3), |, u, p);
end;
end;

Figure 18: Procedure Insert57

procedure Insert68( O(X;, V3, X, Y1), L, u, p );
begin
if (1 € the bottom part of p’s region) and (u € the bottom part of p’s region) then
p :=p~ 6th_child
else if (1 € the top part of p’s region) and (u € the top part of p’s region) then
p := p~ 8th_child
else p := p~ 9th_child;
if p is a leaf node then
begin
Add O to node p;
if node p overflows then SplitYN( O(X;, Y3, X\, Y2), p );
end
else
begin
if p~ uid € {6, 8} then Insert68(0O(X;, Y3, X, Y1), 1, u, p)
else if p” uid = 9 then Insert9(0(Xy, Yy, X, Y7), |, u, p);
end;
end;

Figure 19: Procedure Insert68
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procedure Insert9( O(X;, Y3, X, Y1), 1, u, p );

begin
I == Assign((X; + X;)/2, (Vs + Y3)/2, b);
u:=1
if p~ parentid € {1, 2, 3, 4} then
begin

if (1 € I) and (u € I) then p := p~ 1st_child
else if (1 € IT) and (u € II) then p := p” 2nd_child
else if (1 € IIT) and (u € III) then p := p” 3rd_child
else if (1 € IV) and (u € IV) then p := p” 4th_child;
if p is a leaf node then
begin
Add O to node p;
if node p overflows then SplitYN( O(X;, Y3, X, Y2), p);

end

else Insert1234(0(X;, V3, X, Y1), |, u, p);
end
else if p~ uid € {5, 7} then
begin

if (1 € the left part of p’s region) and (u € the left part of p’s region) then
p := p~ 5th_child
else if (1 € the right part of p’s region) and (u € the right part of p’s region) then
p :=p~ 7th_child;
if p is a leaf node then
begin
Add O to node p;
if node p overflows then SplitYN( O(X;, Y3, X, Y3), p);
end
else Insert57(0(X;, Vi, X, Y2), 1, u, p);
end
else if p” uid € {6, 8} then
begin
if (1 € the bottom part of p’s region) and (u € the bottom part of p’s region) then
p :=p~ 6th_child
else if (1 € the top part of p’s region) and (u € the top part of p’s region) then
p := p~ 8th_child;
if p is a leaf node then
begin
Add O to node p;
if node p overflows then SplitYN( O(X;, Y3, X, Y3), p);
end
else Insert68(0(X;, Yy, X\, Y2), 1, u, p);
end;
end;

Figure 20: Procedure Insert9
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procedure Deletion( O(X, Vs, X, Y3) );
begin
if Exact_match_query( O(Xj, Y3, X, Y;) ) = True then
delete O from p
else show an error message;
if p is empty then Merge(p);
end;

Figure 21: Procedure Deletion
function Exact_match_query( O(X;, Y3, X, Y}) ): boolean;
begin
1 := Assign(X;, V3, b);
u := Assign(X,, Y3, b);
p := Root;
Decision(l, u, p);
if p~ uid € {1, 2, 3, 4} then
Exact_match_query := Search1234( O(X;, V3, X,., }), L, u, p)
else if p” uid € {5, 7} then
Exact-match_query := Search57( O(X;, Y3, X, Y3),1, u, p)
else if p” uid € {6, 8} then
Exact_match_query := Search68( O(X;, Y3, X, ¥3),1,u,p)
else Exact_match_query := Search9( O(X;, Vs, X;, Y2), L, u, p );
end;

Figure 22: Function Exact_-match_query

2.4 The Deletion Algorithm

Figure 21 shows the Deletion procedure. Deletion of a rectangle from an NA-tree is done
by first locating the rectangle that must be deleted (by calling function Fzact_match_query
as shown in Figure 22), and then removing it from the leaf node. Next, this leaf node is
checked whether or not it is empty, where empty means that there are no other objects
in this leaf node. When an empty leaf node occurs, it may be merged with other sibling
leaves by calling procedure Merge (shown in Figure 23).

In function Exact-match_query (shown in Figure 22), after calculating the spatial num-
ber, the tree is searched from the root. Depending on the value of wid € {1, 2, 3, 4}, {5,
7}, {6, 8} or {9}, function Search1234 (shown in Figure 24), function Search57 (shown in
Figure 25), function Search68 (shown in Figure 26), or function Search9 (shown in Fig-
ure 27), is called, respectively. In each of those functions, the tree is traversed downward

through different types of children decided by the spatial number as shown in Figure 8-(c).
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procedure Merge(p);

begin
q := p_ parent;
release p;
while q is not a root
begin
calculate entries of q;
/*entries is the number of objects in all children of q */
if (entries < bucket_capacity) then
begin
create a new leaf node n;
move objects from q’s children to n;
release all of q’s children;
n” parent := q~ parent ;
n” uid := q" uid ;
n” parentid := " parentid ;
end;
q := q " parent;
end;
if (entries < bucket_capacity) then /* q = the root */
begin
create a new leaf node n;
move objects from q’s children to n;
release all of g’s children;
n” parent := null;
n” uid := 1;
n” parentid := 0;
end;
end;

Figure 23: Procedure Merge

20

NA-Trees



NA-Trees

function Search1234( O(X;, V3, X, Y1), |, u, p ): boolean;
begin
if p is a leaf node then
if O is not in p then
begin
show an error message;
Search1234 := False;
end
else
begin
output O from p;
Search1234 := True;
end
else
begin
Decision(l, u, p);
if p~ uid € {1, 2, 3, 4} then
Search1234 := Search1234( O(X;, V3, X;-, }), L, u, p)
else if p~ uid € {5, 7} then
Search1234 := Search57( O(X;, V3, X, Y3), L u, p)
else if p” uid € {6, 8} then
Search1234 := Search68( O(X;, V3, X, Y3), L, u, p)
else Search1234 := Search9( O(X;, Y,, X», ¥3), L, u, p );
end;
end;

Figure 24: Function Search1234

In procedure Merge as shown in Figure 23, node ¢ is merged with its children if the
number of objects in all children of ¢ is less than bucket_capacility. This process is repeated
upward to the root. If the same case occurs in the root, we have to do the same thing,

except that the fields parent, uid and parentid must be reset carefully.

2.5 Exact Match and Range Queries

The algorithm to process the exact match query is shown in Figure 22. For the algorithm
to process the range query, as shown in Figure 28, a recursive approach is applied, since it
is possible that more than one internal node will be covered by this search range R(l, u).
Now, we use one example to describe how the range query is processed by using the NA-
tree. Consider the state in Figure 29. We want to find all data objects which are included
in the search range R. Before procedure range_query is called, we have to calculate the

spatial number of the search region by using the Assign function, where Max_bucket = 63.
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function Search57( O(X;, V3, X, Y1), L, u, p ): boolean;
begin
if p is a leaf node then
if O is not in p then
begin
show an error message;
Search57 := False;
end
else
begin
output O from p;
Search57 := True;
end
else
begin
if (1 € the left part of p’s region) and (u € the left part of p’s region) then
p:= p~ 5th_child
else if (1 € the right part of p’s region) and (u € the right part of p’s region) then
p:=p~ Tth_child
else p:= p”~ 9th_child;
if p~ uid € {5, 7} then
Search57 := Search57( O(X;, Y3, X\, Y2), L, u, p)
else Search57 := Search9( O(X;, V3, X, Y1), L, u, p );
end;
end;

Figure 25: Function Searchb7
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function Search68( O(X;, Y3, X, Y1), L, u, p ): boolean;
begin
if p is a leaf node then
if O is not in p then
begin
show an error message;
Search68 := False;
end
else
begin
output O from p;
Search68 := True;
end
else
begin
if (1 € the bottom part of p’s region) and (u € the bottom part of p’s region) then
p:= p~ 6th_child
else if (1 € the top part of p’s region) and (u € the top part of p’s region) then
p:=p~ 8th_child
else p:= p”~ 9th_child;
if p~ uid € {6, 8} then
Search68 := Search68( O(X;, Y3, X\, Y7),1L, u, p)
else Search68 := Search9( O(X;, V3, X, Y1), L, u, p );
end;
end;

Figure 26: Function Search68
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function Search9( O(X;, V3, X, Y1), 1, u, p ): boolean;
begin
if p is a leaf node then
if O is not in p then
begin
show an error message;
Search9 := False;
end
else
begin
output O from p;
Search9 := True;
end
else
begin
1 := Assign((X; + X,)/2, (Vb + Y1)/2, b);
u:=1
if p~ parentid € {1, 2, 3, 4} then
begin
if (1 € I) and (u € I) then p := p~ 1st_child
else if (1 € II) and (u € II) then p := p~ 2nd_child
else if (1 € III) and (u € III) then p := p~ 3rd_child
else if (1 € IV) and (u € IV) then p := p~ 4th_child,;
Search9:= Search1234( O(X;, Yy, X\, Y2), L, u, p );
end
else if p” parentid € {5, 7} then
begin
if (1 € the left part of p’s region) and (u € the left part of p’s region) then
p := p~ 5th_child
else if (1 € the right part of p’s region) and (u € the right part of p’s region) then
p := p~ Tth_child;
Search9:= Search57( O(X;, Vs, Xr, Y2), L, u, p );
end
else if p~ parentid € {6, 8} then
begin
if (1 € the bottom part of p’s region) and (u € the bottom part of p’s region) then
p :=p~ 6th_child
else if (1 € the top part of p’s region) and (u € the top part of p’s region) then
p :=p~ 8th_child;
Search9 := Search68( O(X;, Y3, X\, Y2), 1, u, p );
end;
end;
end;

Figure 27: Function Search9

24



NA-Trees

procedure Range_query(p, R(1,u) );
begin
if p is a leaf then
for each object O € p do
begin
O; = Assign(X;, Y3, b);
0O, = Assign(X,, Yz, b);
if (I < Oy) and (O, < u) then
output O;
end
else
begin
f (1 €I) and (u € I) then Range_query(p~ 1st_child, R(lL,u) );
f (1 € II) and (u € II) then Range_query(p” 2nd_child, R(l,u) );
if (1 € IIT) and (u € III) then Range_query(p” 3rd_child, R(l,u) );
f (1 e€1IV)and (u € IV) then Range_query(p” 4th_child, R(l,u) );
f(l €I) and (u € II) then
begin
Range_query(p”~ 5th_child, R(L,u) );
Range_query(p” 1st_child, R(1,u) );
Range_query(p” 2nd_child, R(l,u) );
end;
if (1 € I) and (u € III) then
begin
Range_query(p” 6th_child, R(L,u) );
Range_query(p” 1st_child, R(1,u) );
Range_query(p” 3rd_child, R(L,u) );
end;
if (1 € III) and (u € IV) then
begin
Range_query(p” 7th_child, R(L,u) );
Range_query(p”~ 3rd_child, R(L,u) );
Range_query(p”~ 4th_child, R(l,u) );
end;
if (1 € IT) and (u € IV) then
begin
Range_query(p” 8th_child, R(L,u) );
Range_query(p” 2nd_child, R(l,u) );
Range_query(p”~ 4th_child, R(l,u) );
end;
if (1 €I) and (u € IV) then
begin
Range_query(p” 1st_child, R(1,u) );
Range_query(p~ 2nd_child, R(l,u) );
Range_query(p”~ 3rd_child, R(l,u) );
Range_query(p”~ 4th_child, R(l,u) );
Range_query(p”~ 5th_child, R(L,u) );
Range_query(p” 6th_child, R(L,u) );
Range_query(p”~ 7th_child, R(L,u) );
Range_query(p”~ 8th_child, R(l,u) );
Range_query(p”~ 9th_child, R(L,u) );
end;
end;
end;
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Figure 29: An example for the range query

The spatial number of the search range R is (30, 55). Then, the procedure Range_query
is called. The first recursive call will result in the search of the 2nd_child, 4th_child,
and 8th_child of the Root. Since the 2nd_child and 8th_child of the Root are leaf nodes,
rectangle J will be found first. When the 4th_child of the Root is searched, it will call
procedure Range_query again since it is not a leaf node. Let p be the 4th_child of the
Root, the search range in p is only covered by 2nd_child of p at this time. Then, we search
down the 2nd_child of p. Finally, rectangle Oy is found since the 2nd_child of p is a leaf

node.

2.6 Difficult Cases in R™-Trees

The R'-tree allows fast computation of search operators. However, the insertion and

deletion of data objects may be much more complicated [14]. First, the insertion of an object
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Figure 30: Case 1 in an R*-tree: the data interval I overlaps the sibling intervals I; and
I

O or its data interval Iy may require the enlargement of several sibling intervals (intervals
corresponding to sibling nodes). This is especially, but not exclusively, the case if I
overlaps several sibling intervals. In Figure 30, I has to be inserted into both corresponding
subtrees. I and I, have to be enlarged in such a way that I, C I} U I, without Iy
overlapping I,. Each of these enlargements may require a considerable effort because it
is always necessary to test for possible overlaps with sibling intervals. I is inserted into
all corresponding subtrees; the insertion may therefore cause the creation of several leaf
entries. For this case, the NA-tree approach will create a new leaf node (or perhaps this
leaf node already exists), and then insert the data interval Iy into the leaf node (shown in
Figure 31).

Second, there are situations where the enlargement step inevitably leads to overlaps
(shown in Figure 32). In this case, it is not possible to enlarge the sibling intervals I...I4
in such a way that Iy C I; U ... U I, without creating overlaps. It is therefore necessary to
split one of the intervals, say I; into two subintervals ;" and I;” before the enlargement
can take place [14]. For this case, the NA-tree approach can create a new leaf node (or
perhaps this leaf node already exists), and then insert the data interval I, into the leaf

node (shown in Figure 33).

3 Performance

In this Section, we compare the performance of R-trees [16], R*-trees [38], R*-trees [4], and
NA-trees. Our experiments were performed on a Pentium IIT 550 MHz, 128 MB RAM, and
running Windows 2000.
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Figure 31: Case 1 in an NA-tree

)

Figure 32: Case 2 in an R*-tree: It is not possible to enlarge the sibling intervals I;...
without creating overlaps.
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Figure 33: Case 2 in an NA-tree

3.1 Simulation Study

Here we define the search cost, storage utilization, insertion cost, deletion cost, storge cost

and height of a tree.
Definition 1. Search cost (C) of a tree T: the number of nodes visited.

Definition 2. Storage utilization (S) of a tree T':

The number of data stored in T

5= (The number of leaves in T) x P

x 100%.

Definition 3. Insertion cost: the number of internal nodes visited.
Definition 4. Deletion cost: the same as that used for insertion.
Definition 5. Storage cost: the number of internal and external nodes.

Definition 6. Level of a node and height of a tree: Let v be a node and Root be the top

node of a tree. We represent a child of a node, v, as v.child. Then d(v) is the level of node
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v. The level is defined as
1) d(Root) = 0;
2) d(v.child) = d(v) + 1.

The height of a tree is equal to the maximum number of levels.

There are two major parameters that characterize such a geometric database; the number
N of data objects (the database size) and their average size, avg_size, measured in percent

of the size of the data space, i.e.,

>N area;/N
the whole data space
Given that the data space is 1000 % 1000, we took 100 averages of 12 different databases

containing 5000, 6000, 7000, 8000, 9000, and 10000 rectangles with average sizes 0.0025%,
and 0.0001%. The data objects are uniformly distributed (without overlap) on the whole

avg_size = x 100%.

data space [2, 19, 21, 25, 30, 40, 41, 42]. (Note that when overlap occurs between objects, it
is possible that R*-trees will not work [13].) Bucket_capacity was assigned to be 10, where
the Bucket_capacity is the maximum number of objects containable in a leaf node. The
number of binary bits, b, was assigned to be 13, where b is used to record the bucket number.
(Note that since in this simulation, the maximum number of objects under consideration
is 10000, we let b = 13 as explained in Table 1.)

Now, we show some typical results of the search performance of R-trees, R -trees, R*-
trees, and NA-trees. Note that to compute the average search cost, for each spatial data
file, we create 100 random rectangles to do exact match queries, and then calculate the
average search cost. Comparisons in terms of search cost, tree height, storage cost, and
storage utilization based on the uniform distribution are shown in Figures 34, 35, 36 and
37, respectively. In this case, we observe that our NA-tree has the lowest search cost at the
expense of a little height of the tree, high storage cost, and low storage utilization. Since
based on the current technology, the capacity of secondary storage media (like hard disks
or optical disks) is huge and the price is not so expensive, we consider that the performance
measure in terms of search cost (which affects retrieval time) may be more important than
other performance measures in terms (like storage cost or storage utilization).

A comparison of storage utilization is summarized in Table 2. Obviously, NA trees

decrease the search cost at the expense of decreasing storage utilization.
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Figure 34: A comparison of search cost: (a) avg-size = 0.0025%; (b) avg_size = 0.0001%.

Tree structure R-tree | Rt-tree | R*-tree | NA-tree
Storage utilization (%) [ 60+5 | 554+5 | 70+5 | 4545

Table 2: A comparison of storage utilization
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Figure 35: A comparison of the height of a tree: (a) avg_size = 0.0025%; (b) avg-size =
0.0001%.
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Figure 36: A comparison of the storage cost: (a) avg-size = 0.0025%; (b) avg-size =
0.0001%.
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Figure 37: A comparison of the storage utilization (%): (a) avg_size = 0.0025%; (b) avg_size
= 0.0001%.
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For the insertion cost, consider average costs of inserting 5000, 6000, 7000, 8000, 9000,
and 10000 rectangles based on a uniform distribution. From the results shown in Figure
38, we observe that our NA-tree has the lowest insertion cost among these four strategies.

For the deletion cost, again consider the cases of average costs of deleting 100 rectangles
in 5000, 6000, 7000, 8000, 9000, and 10000 rectangles based on a uniform distribution.
From the results shown in Figure 39, we observe that our NA-tree has the lowest deletion

cost among these four strategies.

3.2 Comparisons

The main difference among these data structures lies in the method of spatial decompo-
sition. For example, in R-trees a minimum bounding rectangle is split to minimize the
areas. The main difference between R-trees (or R*-trees) and R*-trees is that MBRs can
overlap each other in R-trees (or R*-trees), but not in R*-trees. Although Guttman’s R-
tree algorithms tried only to minimize the area covered by the bucket regions, the R*-tree
algorithms also take other objectives into account, for example, region perimeters. While
our NA-tree does not actually split the spatial space, it just organizes the data objects
according to their spatial numbers.

R-trees, R -trees and R*-trees are multi-way balanced trees for very large databases, but
heavy-loaded in the data insertion and deletion processes [29]. Although NA-trees are not
guaranteed to always be multi-way balanced trees, the insertion and deletion algorithms
are easy to implement. Moreover, the search cost for NA-trees is the lowest among these
four strategies. The main reason is that a search in an NA-tree is accurately guided by the
spatial number (i.e., the pair of bucket numbers), while a search in R-tree-based strategies
may try several possible regions covering the object of interest. The above features of

R-trees, R*-trees, R*-trees and NA-trees are summarized in Table 3.

4 Conclusion

A retrieval query on a geometric database typically requires the fast execution of a geometric
search operation such as an exact match or a range search. In order to facilitate such search

operations on a large geometric database, the use of suitable index structures is a practical
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Figure 38: A comparison of insertion cost: (a) avg_size = 0.0025%; (b) avg_size = 0.0001%.
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Figure 39: A comparison of deletion cost: (a) avg_size = 0.0025%; (b) avg_size = 0.0001%.
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R-tree

RT -tree

R*-tree

NA-tree

(1)

(2)

(3)

(4)

(5)

Region split
method

Internal nodes

overlap (y/n)
Balance factor

Spatial search
performance

Storage

Circumscribed

rectangles split
to minimize the
areas

Yes
Completely
balanced
Slower than

others

60 £ 5

Circumscribed

rectangles split
to minimize the
areas

No
Completely
balanced
Faster than

R-tree

55+ 5

Circumscribed
rectangles split

to minimize the
overlap and region
perimeters

Yes

Completely balanced

Faster than R-tree

70+5

No split of the
spatial space;

only organize

data based on

the spatial number

No
According to the
data distribution,

may be unbalanced.

Faster than
others

45 5

utilization (%)

Table 3: A comparison

necessity. Indexes should be dynamic with respect to updates of the database, i.e., it should
be possible to perform insertions and deletions without having to completely reorganize
the index. Furthermore, an index should minimize the number of disk accesses during a
search operation. In this paper, we have proposed an efficient spatial index strategy, called
an NA-tree, which is designed for paged secondary memory, and is dynamic, i.e., it can
support arbitrary insertions and deletions of objects without any global re-organization.
It efficiently supports exact match queries and range queries. From our simulation, we
have shown that our NA-tree has a lower search cost than the R-tree, R*-tree and R*-tree.
Moreover, similar to the R-tree (or R*-tree) strategy, our NA-tree can handle point data
[11, 27]. How to process partial match queries and best match queries are future research
topics, where partial match query means to report all data objects which are located in a
specific line, and best match query means to find the nearest neighbor of a specific data

object.
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