Spatial Joins Based on NA-Trees '

Hue-Ling Chen *, Ye-In Chang

Dept. of Computer Science and Engineering, National Sun Yat-Sen University
Kaohsiung, Taiwan, ROC

Key words: design of algorithms, N A-Tree, R-tree, spatial index, spatial join

1 Introduction

Spatial join is one important spatial query in a spatial database system which
combines two spatial datasets to retrieve the matched pair of objects based
on the spatial predicate. The spatial predicate specifies the geometrical rela-
tionship between objects, and the most common one is the overlap of spatial
objects. In a GIS system, the spatial join may be used for an efficient imple-
mentation of the map overlay. The map overlay constructs a new map from
two or more given maps which is important for geographic analysis. Applica-
tion areas contain city planning, ecological, demographic studies, and so on
[1, 5, 6]. However, there is no total ordering of spatial objects that preserves
spatial proximity. It is complicated to represent the attributes and relations
of spatial objects, even to evaluate the complexity of spatial queries. Since
the spatial join constructs the large volume of spatial relations, to evaluate
the spatial predicate between objects is time-consuming. Since a spatial index
is an accelerator for the spatial query to search an object quickly [1, 5], we
expect to take advantage of the spatial index to perform the spatial join effi-
ciently. Recently, an Nine-Areas tree (denoted N A-tree) has been proposed to
minimize the number of disk accesses during a tree search for spatial queries
[3]. Tt solves the problem of overlaps between MBR’s of internal nodes in the
R-tree and accesses less number of nodes than the R-tree[2, 4]. Therefore, we
present an algorithm for the spatial join based on NN A-trees, i.e., the NA-
tree join. Although several studies have been made on solving the overlapping

* Corresponding author.

Email address: chenhl@db.cse.nsysu.edu.tw (Hue-Ling Chen).
I This research was supported in part by the National Science Council of Republic
of China under Grant No. NSC-93-2213-E-110-027.

Preprint submitted to Elsevier 30 October 2007

5|17 |13]15

416 120 14
1 3 |9t
021|810

Fig. 1. An example of the bucket numbering scheme, O(1, u) = (9, 14)

problem of the R-tree, e.g., R*-tree[5], the R*-tree join will not be better than
the R-tree join. Because the spatial join aims at examining overlaps of objects
quickly, the R*-tree join has to make a larger number of nodes comparisons
than the R-tree join. For the other techniques which are used to improve the
performance of the R-tree join in[5], they also can be helpful to our N A-tree
join. Therefore, we compare the performance of the original R-tree join with
our N A-tree join. We analyze all overlaps between regions of two nodes in two
N A-trees and obtain one correlation table which records the pair of overlapped
nodes. Our N A-tree join can execute efficiently by looking up this correlation
table, instead of nodes comparisons. Our N A-tree join can access a smaller
number of nodes directly based on the correlation table than the R-tree join.

2 An NA-Tree

In an N A-tree[3], a spatial object is specified by its bounding rectangle and
represented by two points, L(X;,Y;) and U(X,,Y;), where L is the lower left
coordinate and U is the upper right coordinate of the bounding rectangle.
Based on the bucket-numbering scheme[3], the spatial number O(l, u) is cal-
culated for the spatial object O, where [is the bucket number of L(X,Y})
and u is the bucket number of U(X,,Y}). For example, in Figure 1, the spa-
tial number of object O is (9, 14). A variable, Max_bucket, is used to record
the maximum bucket number (in decimal form) of this area. In Figure 1, the
maximum bucket number is 15 (0111), i.e., Mazx_bucket = 15.

An NA-tree is a structure based on data location and organized by the spa-
tial numbers. First, the whole spatial region is decomposed into four regions
with corresponding limitations of bucket numbers as shown in Figure 2-(a)[3].
Then, for an object O(l,u), it may be stored as one of the following children
of an internal node p in an N A-tree structure, as shown in Figure 2-(b). For
example, when [€ region [and u € region I1, O is the 5th_child of node p. How-
ever, based on different types of children, an internal node may have different
numbers of children. For example, when it is the 5th_child or the 7th_child, it
has only three children: 5th_child, 7th_child, and 9th_child. Finally, an object
can only be stored in a leaf node, instead of an internal node. Figure 3 shows
an example of an N A-tree structure. For example, object Dg in Figure 3-(a) is

Region II | Region IV

RegionI | Region III

(a)

Root

Ist_ th]d 2nd_child 3rd_child 4th_child 5th_child 6th_child 7th_child 8th_child 9th_child

—i

N
el

u.]:l_‘

e
=N
=3
©

I

(b)

Root

‘Dl ‘Dz ‘D3 ‘sz ‘Ds ‘Ds ‘D7 ‘Ds ‘Dg

Ist_child 2nd_child 3rd_child 4th_child 5th_child 6th_child 7th_child 8th_child 9th_child

(a) (b)

Fig. 3. An example: (a) the data; (b) the corresponding N A-tree structure
(bucket_capacity = 2).

stored in the 6th_child node in Figure 3-(b). In[3], an N A-tree can support ar-
bitrary insertions and deletions of objects without any global re-organization,
depending on the spatial numbers of objects. It also can efficiently support
exact match queries and range queries.

Procedure NASJoin(Pa, Pg);
/* N4 and Np are child nodes of nodes P4 and Pg, respectively. */
/* O4 and Op are objects under the leaf nodes P4 and Pg, respectively. */
begin
if (P4.leaf = false) and (Pp.leaf = false) then /* Case 1 */
for (all Ny of P4) do
for (all Ng of Pg) do
if (Correlation(N 4.uid, Np.uid)= true) then
begin ReadNode(N4); ReadNode(Ng); NASJoin(Na, Np); end
else continue
else if (P4.leaf = true) and (Pp.leaf = true) then /* Case 2 */
ObjectsJoin(Pa, Pp)
else if (P4.leaf # Pp.leaf) then /* Case 3 */
begin
if (P4.leaf = true) then for (all O4 of P4) do Range_Query(Pp,04)
else if (Ppg.leaf = true) then for (all Op of Pg) do Range_Query(P4,0p);
end;
end;

Fig. 4. Procedure NASJoin

3 The N A-tree Join

Let A and B be two N A-trees which index two datasets. The process of our
N A-tree join starts on two root nodes, continues on two internal nodes at
each level, and stops on leaf nodes in two N A-trees. An overlap means that
the intersection of regions of two nodes is non-empty. Basically, three cases of
the height of both input N A-trees will be considered during our N A-tree join
on pairs of nodes N4 and N in N A-trees A and B, respectively. These cases
are described as follows:

e Case 1: N A-trees are of the same height and nodes N, and Npg are internal
nodes.

e Case 2: NA-trees are of the same height and nodes N, and Np are leaf
nodes.

e Case 3: NA-trees are of different height; that is, one node is an internal
node, and another one is a leaf node.

Procedure N ASJoin in Figure 4 shows the process of our N A-tree join. In this
section, we first describe the definition of a correlation pair used in function
Correlation. Then, we describe the process of our N A-tree join on two N A-
trees of the same height, i.e., Case 1 and Case 2. Finally, we describe the
process of our N A-tree join on two N A-trees of different height, i.e., Case 3.

set
uid

region

subregions

Fig. 5. Three Sets of uid’s and Regions of nodes with uid’s

3.1 A Correlation Pair

Since the spatial join investigates overlaps, a correlation pair (N4.uid, Ng.uid)
is used to describe the overlap with wid’s of nodes N4 and Np, respectively.
An wid is used to represent the type of one node N, based on the N A-tree
structure in Figure 2. Let N,.uid =1, 2, 3, 4, 5, 6, 7, 8, and 9 represent each
of nine child nodes N, under one internal node at each level. (Note that the
wid for the root is 1.) Because the overlap is examined by relative regions
of two nodes, we observe the region of the node N, first. From Figure 5,
the region of the node N, can be in one of three shapes: Square, Rectangle,
and Large Square. Let set S = {1,2,3,4}, set R = {5,6,7,8}, LS = {9}
to record these uid’s whose corresponding shapes are square, rectangle, and
large square, respectively. From Figure 5, we can observe that the region of
Nz.uid € R or Ny.uid € LS contains subregions which are smaller than it.
For example, the region of N,.uid =5 € R contains two subregions of uid’s 1
and 2, respectively.

In our N A-tree join, we use function Correlation(N.uid, Np.uid) to examine
whether the overlap is non-empty or not. Based on correlation pairs in nine
cases of {S, R, LS} x {S, R, LS}, we analyze all overlaps in Table C' PairT ab,
as shown in Table 6. The correlation pairs (N4, Np) in table C' PairTab have
non-empty overlaps and function Correlation returns True. (Note that the
value under the correlation pair is the wid of the real region.) On the other
hand, the empty slots means empty overlaps and function Correlation returns
False. Therefore, table C' PairTab can help function Correlation to return
True or False value. The result of those non-empty overlaps recorded in table
CpairTab is determined by considering two conditions on N 4.uid and Ng.uid.

e Condition 1: If Ny.uid is equal to Np.uid, the resulting overlap is N4.uid
(or Np.uid). Otherwise, we have to consider Condition 2.

e Condition 2: Assume that Nj.uid is larger than Np.uid, and vice versa,
there are three subconditions.

(1) If 5 < Njwwid < 8 (Nyuid € R) and 1 < Np.uid < 4 (Ng.uid € S),
the resulting overlap is Np.uid. The correlation pairs in the light-shaded
portion satisfy Condition 2-(1).

(2) If 6 < Njyuid < 8 (Nguid € R) and 5 < Np.auid < 7 (Np.uid € R),

Nyuid S R LS

N uid 123|456 | 78109
1 (1,1) (1,5)|(1,6) (1,9)

1 1] 1 1
5 (2,2) (2,5) (2,8)(2,9)

2 2 2 | 2
S 3 (3,3) (3,6) | (3,7) 3.9
3 3 3 3
4 (4.4) (7,4)](4,8) | (4,9)

4 4 | 4| 4
(5,1)|(5,2) (5.5) (5,8) 1(5,9)

> 1 2 5 5.6 5 5
(6,1) (6.,3) (6,5) | (6,6) (6,9)

6 1 3 1 6 ©.7) 6
R 7 (7,3)| (7,4) (7,6) | (7,7) [(7,8) | (7.9)
3 4 3 7 4 7
3 (8,2) (8,4)(8,5) 8,7 (8,8)((8,9)

2 4 2 4 8 8
s| o (9,1)1(9,2)1(9,3)|(9,4)|(9,5)(9,6) | (9,7) | (9,8) | (9,9)
1 2 4 3 5 6 7 8 9

Fig. 6. Table C' PairTab: overlaps of correlation pairs (N 4.uid,Np.uid)

1 <= Nguid <=4 5<=Nguid<= 6
Spatial Join region 2 4
’ s 5 3 > g
Ny uid i

region o RN ; B i

of 71 overlap - — W”F S
N ,.uid N H SN R A I S n

73 (14 (7,6)

Fig. 7. Overlaps of the correlation pairs (Ng.uid, Np.uid) assuming
Nj.utd > Np.uid

the resulting overlap is the uid of the common subregion. The correlation
pairs in the dark-shaded portion satisfy Condition 2-(2).

(3) If Nywid =9 (Na.uid € LS) and 1 < Np.uid < 8, the resulting overlap
is NBUZd

Let us take Figure 7 as an example to illustrate Condition 2 in table C'PairT ab.
The correlation pair (7,3) satisfies Condition 2-(1) and the resulting overlap
is Np.uid(= 3). The correlation pair (7,6) satisfies Condition 2-(2). Since
two regions of Nj.uid(= 7) and Np.uid(= 6), respectively, have the non-
empty overlap in the common subregion, the resulting overlap is the wuid of
this subregion, i.e., 3. From what has been discussed above, we can examine
the overlap of the correlation pair (N4.uid,Ng.uid) easily by looking it up
from table C' PairTab.

level 0: root RA B level 0: root R,

level 1:| 1 8

B2

2

| B

(a) (b)

Fig. 8. An example: (a)the first dataset with NA-tree A; (b) the second dataset
with NV A-tree B.

3.2 NA-trees of the Same Height

Assume that two N A-trees for our N A-tree join are of the same height. Let’s
take Figure 8 as an example to illustrate Cases 1 and 2 of Procedure N AS.Join
in Figure 4. Figures 8 -(a) and (b) are input datasets with their N A-trees of
the same height. First, because roots R4 and Rp have child nodes (Case
1), correlation pairs (1,1), (5,1) and (5,8) are examined to have overlaps by
function Correlation. Then, objects are retrieved sequentially from the disk
referenced by leaf nodes with their uid’s in these correlation pairs (Case 2).
The coordinates of these spatial objects are compared. Finally, the last result
contains (A, Bs) and (A, By) which have non-empty overlaps between them.

3.8 NA-trees of Different Height

When one N A-tree is higher than another one, objects may be stored in
the leaf nodes at different height. Our N A-tree join may be executed syn-
chronously on one internal node and one internal node at the same level. It
is a condition of Case 3 in Figure 4. Let’s take Figure 9 as an example. Af-
ter the spatial join is executed at level 1, we can obtain all correlation pairs
which have overlaps. Let’s take the correlation pair (N.uid, Ng.uid) = (1,1)
as an example to illustrate procedure RangeQuery. The node N4 is a leaf
node, while the node Np is an internal node at level 1. The regions of N 4.uid
and Npg.uid, respectively, are shown as the thick dotted-lined regions in the
right side of Figure 9-(a) and (b), respectively. First, we retrieve object A
from node N, as a query rectangle and perform a range query on node Ng by
procedure RangeQuery. Next, object A, has overlaps with the region of the
existing two child nodes (uid = 5 and wid = 9) under node Np at the level
2. Then, we retrieve objects By and By from these two nodes, respectively.
We compare their positions with the query rectangle A,. Finally, the pair of
objects (As, By) is output as the result.

level O: root R, level O: root R,
N, Np
level 1:| 1 5 8 9 level 1: (L 8

//’/_ \\\\\\ ~\‘| A, | A, EZ
R {4y i

level 2: ==~
AN . B
Al b T

:-m——ﬁﬁ\ a query rectangle :““53"-: H

4 N
i u L:_‘ (O :aninternal node i N i ‘~\lB4 |B3 |B2
]] [}] e L. T
i pel] | [] :aleaf node L2 | a region of the range query

Fig. 9. An example of the correlation pair (N4.uid, Np.uid)=(1, 1) at the level 1:
(a)the first dataset with N A-tree A; (b) the second dataset with N A-tree B.

4 Performance

In our simulation, we compare the performance of the R-tree join [2] and
our N A-tree join[3]. We consider the overlap selectivity (0 < p < 1), which is
defined as the number of the data objects with overlap relationship in the total
number N of data objects. We assume that the buffers for join operations are
infinite large. We took 1000 averages of results after the spatial join on two
datasets with N=10000 and variable p. Since the spatial join combines two
datasets by their spatial relationship, we consider the CPU time (the number
of nodes comparisons) and the I/O time (the number of disk accesses) as
performance measures|2].

Figure 10-(a) shows the result for the measure of the CPU time. Our N A-tree
join requires a smaller number of nodes comparisons than the R-tree join.
The reason is that our N A-tree join examine overlaps only by looking up the
static number of correlation pairs in table C'pairTab. However, the number
of nodes comparisons of the R-tree join increases as the value of the overlap
selectivity p (i.e., the number of overlaps) increases. The reason is that the
R-tree join has to compare many related MBR’s of the internal nodes due
to overlaps between them. Figure 10-(b) shows the result for the measure of
the I/O time. Our NA-tree join requires a smaller number of disk accesses
than the R-tree join. Because our N A-tree join produces correlation pairs of
nodes which have non-empty overlaps, the objects can be directly accessed by
these candidate nodes. Since the objects are well ordered in the disk based on
the bucket numbering scheme [3], the pairs of objects which have non-empty
overlaps can be accessed once by their sequential spatial numbers. However,
there is a huge increase in the number of disk accesses of the R-tree join as the
value of p increases. Because of no sequential order of these objects in R-trees,
the R-tree join has to access objects from the disk more than once to obtain
the actual result.

Iy
o
@

2
5
-2 400000
5

8
£
8
E
S
z

3 600000

8
s

§ 300000 2 300000 F
5

S
& 200000

700000

700000

= 600000 |
Q

500000 2 500000

8
8
& 400000 |-

& 200000
£
5
z

100000 A A A A A A A

A A A A A A A

0 L L L L L L L 0 A yis yiy A A A 'y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Overlap selectivity (p) Overlap selectivity (p)

(a) (b)

Fig. 10. A comparison of the number of nodes comparisons (CPU): N = 10000; (b)
A comparison of the number of disk accesses (I/0O): N = 10000.

5

Conclusion

In this paper, we have presented our N A-tree join based on the correlation
table. Our N A-tree join simply uses the correlation table to directly obtain
candidate leaf nodes on two N A-trees which have non-empty overlaps. More-
over, our N A-tree join accesses objects once from those candidate leaf nodes
and returns pairs of objects which have non-empty overlaps.

References

1]

Arge, L., Procopiuc, O., Ramaswamy, S., Suel, T., Vahrenhold, J., Vitter,
J. S., A Unified Approach for Indexed and Non-Indexed Spatial Joins,
Proc. of the 7th Int. Conf. on Extending Database Technology: Advances
in Database Technology (2000) 413-429.

Brinkhoff T., Kriegel, H. P., Seeger, B., Efficient Processing of Spatial
Joins Using R-trees, Proc. of ACM SIGMOD Int. Conf. on Management
of Data (1993) 237-246.

Chang, Y. I., Liao, C. H., Chen H. L., NA-Trees: A Dynamic Index for
Spatial Data, Journal of Information Science and Eng. 19 (1) (2003) 103—
139.

Dittrich, J. P., Seeger, B., Data Redundancy and Duplicate Detection in
Spatial Join Processing, Proc. of the 16th Int. Conf. on Data Eng. (2000)
535-546.

Jacox, E. H., Samet, H., Spatial join techniques, ACM Trans. on Database
Systems 32 (1) (2007) 7-51.

Zhu, M., Papadias, D., Zhang, J., Lee D. L., Top-k Spatial Joins, IEEE
Trans. on Knowledge and Data Eng. 17 (4) (2005) 567-579.

