
An Efficient Algorithm for Mining Top-k High
On-shelf Utility Itemsets with Positive/Negative

Profits of the Local/Global Minimum Count
1st Ye-In Chang

dept. of Computer Science and Engineering
National Sun Yat-Sen University

Kaohsiung, Taiwan
changyi@mail.cse.nsysu.edu.tw

3rd Yu-Hao Liao
dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan

karta88821@gmail.com

5th Ting-Wei Chen
dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan

ChenTW@db.cse.nsysu.edu.tw

2nd Po-Chun Chuang
dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan

zhungboqun@gmail.com

4th Po-Yu Hu
dept. of Computer Science and Engineering

National Sun Yat-Sen University
Kaohsiung, Taiwan

HuPY@db.cse.nsysu.edu.tw

Abstract—High Utility Itemset Mining (HUIM) utilizes the
threshold value to extract the High Utility Itemset (HUI) from the
transactional database. However, it is hard to define a suitable
threshold value, since it depends on the domain knowledge of the
application. Therefore, Top-k High Utility Itemset Mining (Top-k
HUIM) solves the problem of setting a suitable threshold. The
user can define a k value, which represents the number of HUIs.
Moreover, there may exist some itemsets occurring at a specific
time interval, which have a chance to become HUI. Since the
traditional HUIM algorithm does not consider the transaction
with the time interval, we can not apply the HUIM algorithm
directly. Thus, High On-shelf Utility Itemset Mining (HOUIM)
addresses the above problem. The proportion of the utility value
of the item in all of the time intervals, when the itemset appears
is used for determining wether the itemset is a High On-shelf
Utility Itemset (HOUI) or not. In the Top-k High On-shelf Utility
Itemset Mining (Top-k HOUIM), the KOSHU algorithm utilizes
the utility list based data structure and ignores the item with the
negative profit in the process of overestimating the utility of the
itemset. Thus, the KOSHU algorithm needs the less processing
time. However, the KOSHU algorithm has to scan the database
two times and sort the database one time. Therefore, in this
paper, we propose an efficient algorithm based on the TIPN
Table to mines Top-k HOUIs. Our proposed data structures
include TIPN Table, MINC Table, IO Bitmap and TIUL. In the
TIPN Table, we record positive items, positive utilities, negative
items and negative counts. MINC Table is used for storing the
local/global counts of all of the items with negative profits. In

This research was supported in part by the Office of Research and
Development, National Sun Yat-sen University under Grant No. 14DS02

our algorithm, we only need to scan the database once. From our
performance study, we have shown that our proposed algorithm
is more efficient than the KOSHU algorithm.

Index Terms—Data Mining, High On-shelf Utility Itemset
Mining, Negative Unit Profits, Static Transactional Database,
Top-k High Utility Itemset Mining

I. INTRODUCTION

The Frequent Weighted Itemsets Mining (FWIM) [10] con-
siders the frequency and the weight of the item. The High
Utility Itemsets Mining (HUIM) [7], [8] has become highly
popular in the recent years. If the utility value of itemset X
is not less than the minimum threshold value, then itemset
X is a High Utility Itemsets (HUIs). However, it is hard to
define an appropriate threshold value. To address the above
issue, the Top-k High Utility Pattern Mining (Top-k HUIM)
[8] has been proposed. The default threshold value is set to 0,
and then applied several threshold raising strategies to increase
the threshold value, such as RIU [8], RUC [8], etc.

The traditional HUIM algorithm considers all of the trans-
actions in the database are on-shelf. The High On-shelf Utility
Itemset Mining (HOUIM) [3] has been proposed by consider-
ing the on-shelf time interval of the transaction, and it can find
itemsets having the high utility in the specific time interval. All
of the transactions are added with another field called the time
interval, which indicates the time interval that the transaction



is on-shelf as shown in Table I. The related profit of item a,
b, c, and d is 2, 4, 1 and 3, respectively.

TABLE I
THE EXAMPLE DATABASE D1 WITH ON-SHELF TIME INTERVALS

TID Transaction Time Interval
T1 (a, 1)(b, 2)(c, 1) 1
T2 (c, 3)(d, 2) 1
T3 (b, 2)(c, 4)(d, 3) 2
T4 (b, 6)(d, 2) 2

The total utility of time interval h is denoted as TIU(h),
which is calculated as the sum of the utility of transactions
that the time interval is equal to h. Note that the utility of
itemsets in a certain time interval is equal to the summation
of the utility of all of itemsets in that certain interval. The
result of the total utility of time interval 1 is 20 and that of
time interval 2 is 51. The Relative Utility of the given itemset
X is used for determining whether the itemset is a HOUI.

To achieve the above goal, Singh et al. have proposed the
TKEH algorithm [8] for mining the Top-k HUIs. Srikumar
Krishnamoorthy has proposed the THUI algorithm [6] to
mine the Top-k HUIs. Ashraf et al. have proposed the TKN
algorithm [2]. Later, High On-shelf Utility Itemsets Mining
(HOUIM) [4] considers the time interval. The Redefined trans-
action Weighted Utility (RTWU) [9] is an utility overestimated
value which ignores items with negative profits. The KOSHU
algorithm [4] is based on the utility list structure to mine Top-k
High On-shelf Utility Itemsets (Top-k HOUIs). The KOSHU
algorithm try to reduce the number of candidates during the
mining process. However, the KOSHU algorithm needs to scan
the database twice.

To reduce the number of database scans in the static
database, in this paper, we propose an efficient algorithm
called TIPN-Table-based to extract Top-k HOUIs. We apply
the local and the global concepts to deal with items with the
negative profit. We also propose the IO Bitmap to record the
occurrence status of all of the items according to different time
intervals. We propose two pruning strategies. From our perfor-
mance study, we show that our TIPN-Table-based algorithm
is more efficient than the KOSHU algorithm.

II. A SURVEY OF THE KOSH ALGORITHM

The KOSHU algorithm [4] has been proposed to mine the
Top-k High On-shelf Utility Itemsets (Top-k HOUIs). The
KOSHU algorithm calculates RTWU values for all of the items
and sorts them in the defending order. Then, they apply two
threshold increased strategies to increase the threshold value.
Moreover, they propose a pruning strategy to effectively di-
minishes the processing time. However, the KOSHU algorithm
requires to iterate the database twice to mine the Top-k HOUIs.
Moreover, the utility list for each item has been constructed
by the KOSHU algorithm.

III. THE TIPN-TABLE-BASED ALGORITHM

In this section, we use an example database to illustrate our
algorithm. Next, we describe some variables, four data struc-

tures, three pruning strategies, two strategies for increasing the
threshold value quickly, and our proposed algorithm in details.

A. An Example Database

We use an example database D2 as shown in Figure 1 to
illustrate our algorithm. Moreover, each item in the set I has its
own profit = [a:5, b:-2, c:3, d:-1, e:3, f :4]. Each transaction Tj

in database D2 contains an unique identifier TID. Moreover,
in each transaction Tj , we have a subset of items I with the
related count and a related time interval.

Fig. 1. An example database D2 with on-shelf time intervals

B. Variables

P V al(i) and Q V al(i) represents the Profit and the
Quantity value of item i, respectively. Moreover, UT (i, Tj)
is defined as the Utility of item i in Transaction Tj , which
can be calculated as the product of P V al(i) and Q V al(i).
UT (X,Tj) represents the utility of itemset X in transaction
Tj , which is calculated as the cumulative utility of all itemset
X within transaction Tj . TotalU(T ) represents the Total
Utility of transaction T , which is the sum of the utility of each
item in transaction T . The total utility of each transaction in
database D2 is 8, 23, 35, 22, 21, and 13, for transactions T1,
T2, T3, T4, T5, and T6, respectively. Moreover, each product
is on-shelf in different time intervals. We define TIList as
the List of whole Time Intervals in database D2. TotalTI(h)
represents the utility of time interval h. The total utilities of
all of the time intervals in database D2 are [a, 59], [b, 83], [c,
106], [d, 142], [e, 77], and [f, 14]. The utility of itemset X in
time interval h is denoted as UTI(X,h). The relative utility
of the itemset is used for determining whether the itemset is an
HOUI or not. RelativeU(X) represents the Relative Utility
of the itemset, which is computed by the utility of itemset X
divided by the total utility of each time interval that contains
itemset X in the database.

C. Data Structures

Here, we will introduce our proposed 6 data structures.
First, we store the information of each transaction in the
TIPN Table. Moreover, negative items are ignored in the
overestimated value of the itemset. Furthermore, we design
the NIMC Table to keep the local minimum count of each
negative item according to different time intervals. Obviously,



in the process of mining top-k high on-shelf utility itemset,
the threshold is initially set to 0 and it is increased during
the mining process. We propose the Bitmap to store the status
of the occurrence of each item according to different time
intervals. We propose the Time Interval Utility List to achieve
the goal.

TIPN Table has six columns as shown in Figure 2. Each
row in TIPN Table contains a set of transactions appeared
at that time time interval, and each transaction is classified
as positive items and negative items. Furthermore, the utility
of each positive item in the transaction is stored. Here, we
store the count of each negative item, which is helpful for
constructing NIMC Table described later.

Fig. 2. TIPN Table of database D2

We propose the data structure called NIMC Table to de-
crease the overestimated utility. Moveover, we propose two
counts called GNC, and LNC to record the minimum count of
each negative item (b and d). We record the Global Minimum
Count (GMC) of each negative item. For each negative item,
we calculate the minimum count of each time interval and
store it to the GMC column. If we have count = 0, we just
skip it. For example, for negative item b, we record 2, 0, 1
,for time intervals 1, 2, 3, respectively, and record its GMC =
1.

IO Bitmap is used for storing the occurrence of each item
in the database and it is constructed during the initial pass of
the database. For example, for item c in time interval 1, the
related bits are 01.

We propose the Time Interval Utility List for
discovering HOUIs efficiently. The Time Interval
Utility List is inspired by the Utility List. We
define such a list of itemset X as TIUL(X) =
{(TI, {(TID,P Util,N Util,NGC Util, R Util)})},
where TI is the time interval, P Util is the positive utility
of itemset X in transaction TTID. Moreover, N Util is
the negative utility of itemset X in transaction TTID

and NGC Util is the negative utility of itemset X that
considers the Global Minimum Count (denoted as GMC)
in transaction TTID. Note that we have UTGC(i, Tj) =
TU(i, Tj), if P V al(i) > 0. Moreover, UTGC(i, Tj) =
GC(i) × P Val(i), if P V al(i) < 0. Furthermore, R Util is
the Remaining Utility of itemset X in transaction TTID and
it is defined as follows:

R Util(X,Tj) =
∑

i∈Tj∧i≻x∀x∈X UTLC(i, Tj).

Here, the UTGC(i, Tj) (Utility of the item i in transaction
Tj with Global minimum Count) adopts the global minimum
count of each negative item according to the NIMC Table.
Then, the utility of item i is calculated as UTLC(b, T1) =
GC(b)× P Val(i) = 2× (-4) = −8.

The Time Interval Utility List of itemset X stores the
positive utility and negative utility of itemset X . Moreover,
such a List stores the Negative Utility by considering the
Global minimum Count of each time period. Figure 3 shows
the Time Interval Utility List of item e. In the mining process,
the algorithm constructs such a list for each single item in the
database. Then, these Lists can be used for extracting HOUIs
in the Mining procedure. To calculate the utility of the itemset
and the overestimated utility of the item, we define several
variables as follows. (1) sumP Util(X) means the sum of
Positive Utilities P Util(X) of TIUL of X . (2) sumN Util(X)
means the sum of Negative Utilities N Util(X) of TIUL of
X . (3) sumNLC Util(X) means the sum of Negative Utilities
with Local minimum Count NNGC Util of TIUL of X . (4)
sumR Util(X) means the sum of Remaining Utilities R Util
of TIUL of X . (5) sumN Util(X) means the accumulation of
Positive Utilities and Negative Utilities of TIUL of X .

Fig. 3. The Time Interval Utility List of item e

D. Pruning Strategies

Here, we will introduce our three pruning strategies. In the
first pruning strategy called TWUGC, which is motivated by
the RTWU [5], we define the TWUGC as follows:

TWUGC(X) =
∑

X∈Tj∧Tj∈D TotalU GC(Tj).

TotalU GC(Tj) =
∑

i∈Tj∧Tj∈D UTGC(i, Tj).

UTGC(i, Tj) =

{
TU(i, Tj), if P V al(i) > 0.

GC(i)× P V al(i), if P V al(i) < 0.

The TWUGC of itemset X is the sum of TotalU GC(Tj)
of transactions, where itemset X appears. TotalU GC(Tj)
is the total utility of transaction Tj by considering the
global minimum count of each negative item. Moreover,
TotalU GC(Tj) is calculated as the sum of utilities of items
in transaction Tj . If the item is negative, the utility of the item
is calculated as the product of global minimum count of the
item and the profit of the item. For the second pruning strategy,
the RLC pruning strategy prunes some of hopeless candidates.
We utilize the utility list to calculate the overestimated utility
value of the relative utility of the itemset. For the third pruning



strategy, the TIO pruning strategy prunes subtrees of the set-
enumeration tree which do not appear in the database during
the mining process. We have introduced the IO Bitmap which
records occurrence statuses of all of the items.

E. Threshold Increased Strategies

Here, we will introduce two threshold increased strategies.
The RPRU Size1 Strategy calculates the relative utility
for all of the positive items in database D and it inserts
those positive items into the RPRU Size1 List. Then, the
RPRU Size1 Strategy sorts the RPRU Size1 List accord-
ing to the descending order of relative utilities and it increases
the threshold value to the k-highest relative utility in the
RPRU Size1 List. The RRU Size2 Strategy calculates
the relative utilities for all of the items in database D and
it inserts them into RRU Size2 List. The RRU Size2
Strategy sorts the RRU All List according to the descending
order of relative utilities and it increases the threshold value
to the k-highest relative utility in the RRU All List.

F. The Mining Process

In the section, we will introduce the mining process of our
algorithm.

1) The Preprocessing Step: In this step, we con-
struct TI List, TotalTI Table, TIPN Table, IO Table and
NIMC Table. In addition, the minimum count of negative
items at a time interval is called Local Minimum Count. In
contrast, the minimum count of negative items is called Global
Minimum Count, which is the maximum count of all of the
local minimum counts of the negative item.

After scanning the database once, the algorithm performs
the RPRU-Size1 Strategy to increase the value of ThreVal. To
obtain the real relative utility of positive item a, we calculate
the utility of positive item a by using TIPN Table. We have
UD(a) = 115. Moreover, the list of time intervals which con-
tain item a is TI Occu List(a) = {1, 2, 3}. The total utility
of the list of time intervals which contain item a is calculated
as TI Occu Total(a) = 133. The real relative utility of item
a is calculated as UD(a)/TI Occu Total(a) = 0.86. The
result of RPRU Size1 List which stores real relative utilities
of positive items is [Each positive item, RPRU] = [[a, 0.86],
[c, 0.54], [e, 0.17], [f, 0.09]]. If the size of RPRU Size1 List
is not less than k, we increase the threshold value ThreV al to
the k-highest value in RPRU Size1 List. On the other hand,
TK List stores the k-highest HOUIs and it is sorted by the
descending order of the relative utility. Therefore, TK List
is updated by RPRU Size1 List.

Then, we calculate the TWUGC value of all of the items in
the database for overestimating the relative utility. Here, we
define a total order called TWUGC Order for finding the Top-
k HOUIs efficiently. TWUGC Order has three ordering rules.
First, positive items are sorted by the descending order of
TWUGC. Second, negative items are sorted by the descending
order of TWUGC. Third, negative items succeed positive
items. TWUGC Order of database D2 is [f, a, e, c, b, d].
Figure 4 shows the result of sorted TIPN Table.

After TIPN Table is sorted by the TWUGC Order, our
algorithm creates Time Interval Utility List for all of the single
items in the database. Time Interval Utility List of each single
items can be used for discovering itemsets with the large size
by using the itemset expansion method.

Fig. 4. Sorting TIPN Table in TWUGC Order

To further increase the minimum threshold value for find-
ing Top-k HOUIs, our algorithm applies another threshold
increased strategy called the RRU-Size2 Strategy. The RRU-
Size2 Strategy calculates the real relative utility for each size
2 itemsets and stores them in RRU Size2 List. Moreover, the
algorithm uses the Time Interval Utility List and IO Table to
calculate the real relative utility of the size 2 itemset efficiently.
For obtaining the real relative utility of itemset x∪y, we need
to calculate the utility of itemset x∪ y and the total utility of
each time Interval which contains the occurrence of itemset
x ∪ y. The real relative utility of x ∪ y can be calculated
as Relative(x ∪ y) = UD(x ∪ y)/TI Occu Total(x ∪ y).
TK List is updated by RRU ALL List.

2) The Mining Step: In the mining step, our algorithm
applies the pattern growth method to discover Top-k HOUIs.
At the beginning of the mining process, our algorithm traverses
through all of the TIULs of items from the root node of the set-
enumeration tree, i.e. empty itemset {}. In the each iteration,
the original itemset P is appended with the current item x to
obtain new itemset NewP = P ∪ {x}. Then, our algorithm
checks whether new itemset NewP is a HOUI or not. If the
relative utility of the itemset is not less than the threshold value
ThreVal, the itemset is a HOUI. If the relative utility of the new
itemset NewP is greater than the k-highest relative utility in
TK List, our algorithm removes the k-highest itemset, and
inserts the new itemset NewP into TK List. Moreover, the
threshold value ThreV al is updated as the k-highest relative
utility in TK List. In order to calculate the relative utility of
new itemset NewP , we have to calculate the utility of new
itemset NewP in the database and the total utility of each
time interval that contains the occurrence of the new itemset
in the database TI Occu Total. For calculating the utility
of new itemset NewP , our algorithm uses TIUL of itemset
NewP . The sum of positive utilities and negative utilities of
itemset NewP contains sumPN Util(NewP ), which is the
accumulation of positive utilities sumP Util(NewP ), and
the accumulation of negative utilities sumN Util(NewP ).

Moreover, if sumPN Util(NewP ) is less than 0, our
algorithm skips it directly. For calculating TI Occu Total,
our algorithm performs the AND operation of all of the time
intervals of itemset NewP in IO Bitmap.



If the related utility of the new itemset NewP is not less
than the threshold value ThreV al, the new itemset NewP
is a HOUI. Moreover, Our objective is to discover the Top-k
HOUIs within the database. Moreover, our algorithm creates
a list called TK List to store the Top-k HOUIs during the
mining process. TK List is a list which dynamically sorts all
of the HOUIs in TK List according to the descending order
of relative utilities. If the size of TK List is less than the
user-defined parameter k, our algorithm inserts the new itemset
NewP into TK List directly. If the size of TK List is equal
to the user-defined parameter k, our algorithm checks whether
the relative utility of new itemset NewP is greater than the k-
highest relative utility in TK List or not. If the result is true,
the new itemset NewP is inserted into TK List. After the
above checking, whether the new itemset NewP is a HOUI
or not, our algorithm applies the TWUGC Pruning Strategy to
prune unpromising itemsets.

IV. PERFORMANCE

In this section, we will show the performance study of our
TIPN-Table-Based algorithm and the KOSHU algorithm [4].
In this performance study, we utilize two types of databases,
which are real database and the synthetic database, to perform
the experiment.

A. The Performance Model

The real database which we have used for experiments
is retail (the sparse database). The above real database is
downloaded from the SPMF library [5]. The retail database
has the density lower than 1%, it is treated as the sparse
database. The value of the time interval is 5, which is equal to
the consideration of the KOSHU algorithm [4]. On the other
hand, we set k to the range between 50 and 150. The real
database has 88162 transactions (containing 16470 items) with
desity=0.06.

For the synthetic database, we also utilize four parameters
T , I , MI and NP to conduct the performance experiments
of our TIPN-Table-Based algorithm and KOSHU algorithm,
where T represents the total amount of transactions in the
database, I represents the total amount of distinct items of
the database. MI represents the maximum amount of distinct
items of a single transaction and NP represents the percent-
age of counts of items with negative profits. For example,
T10000 I4000 MI10 NP80 is a synthetic database with
10000 transactions, 4000 distinct items, up to 10 distinct items
in a single transaction and 80 percent of items with negative
profits. These synthetic databases has been produced by the
generator from the IBM Almaden Quest research group [1].

B. Experiment Results

Here, we will show the comparison of the performance
between our TIPN-Table-Based algorithm (denoted as TIPN-
Table-Based) and the KOSHU algorithm [4] (denoted as
KOSHU).

The KOSHU algorithm has produced the EMPRS data struc-
ture during the preprocessing step, which is time-consuming.

Moreover, the number of candidates of our TIPN-Table-Based
algorithm is less than that of the KOSHU algorithm. There are
two reasons why our algorithm could generate less number
of candidates than the KOSHU algorithm. First, our TWUGC
Pruning Strategy considers the global minimum count of all
of the items with negative profits. Second, our RLC Pruning
Strategy utilizes the local minimum count of all of the items
with negative profits at each time interval. Therefore, the
remaining utility of our RLC Pruning Strategy is tighter
than that of the KOSHU algorithm. Moreover, the number of
candidates could be pruned by our algorithm more than that
of the KOSHU algorithm during the mining process.

Figure 5(a) and Figure 5(b) show the comparisons of the
performance between these two algorithms by using the real
database retail. As the value of k is increased, the performance
measures including the processing time and the number of
candidates of our proposed algorithm are better than those of
KOSHU algorithm. Moreover, the reasons for such results are
the same as those reasons described before.

For the synthetic databases T10000 I100 MI10 NP80
(the dense database). Figure 5(c) and Figure 5(d) show com-
parisons of the two concerned algorithms. Those result are
similar to the comparison between the two algorithms.

(a) the processing time by using the real
database retail

(b) the total amount of candidate by using
the real database retail

(c) the processing time by using the syn-
thetic database T10000 I100 MI10 NP80
(the dense database)

(d) the total amount of candidate
by using the synthetic database
T10000 I100 MI10 NP80 (the dense
database)

Fig. 5. A comparison under the change of k

V. CONCLUSION

In this paper, we have proposed the TIPN-Table-Based
algorithm, which is able to mine top-k high on-shelf utility
itemsets efficiently. The TIPN-Table-Based algorithm only
scans the database once and sorts the database once. Moreover,



we have proposed the global and local concepts to make
the tight upper bound. Furthermore, we have utilized a bit
map strategy to decrease the processing time. Our experiment
results have shown that our TIPN-Table-Based algorithm has
a better performance than the KOSHU algorithm.

REFERENCES

[1] “IBM Quest Synthetic Data Generation Code”
http://www.almaden.ibm.com/cs/quest/syndata.html, 1996

[2] M. Ashraf, T. Abdelkader, S. Rady, and T. F. Gharib, “TKN: An Efficient
Approach for Discovering Top-k High Utility Itemsets with Positive or
Negative Profits,” Information Sciences, Vol. 587, pp. 654–678, March
2022.

[3] J. Chen, X. Guo, W. Gan, C.-M. Chen, W. Ding, and G. Chen, “On-shelf
Utility Mining from Transaction Database,” Engineering Applications of
Artificial Intelligence, Vol. 107, pp. 1–12, January 2022.

[4] T.-L. Dam, K. Li, P. Fournier-Viger, and Q.-H. Duong, “An Efficient
Algorithm for Mining Top-k On-shelf High Utility Itemsets,” Knowledge
and Information Systems, Vol. 52, pp. 621–655, January 2017.

[5] P. Fournier-Viger, C. W. Lin, A. Gomariz, T. Gueniche, Z. D. A.
Soltani, and H. T. Lam, “The Spmf Open-Source Data Mining Library
Version 2,” Proc. 19th European Conf. on Principles of Data Mining
and Knowledge Discovery (PKDD 2016) Part III, pp. 36–40, 2016.

[6] S. Krishnamoorthy, “Mining Top-k High Utility Itemsets with Effective
Threshold Raising Strategies,” Expert Systems with Applications, Vol.
117, pp. 148–165, March 2019.

[7] J. Lee, U. Yun, G. Lee, and E. Yoon, “Efficient Incremental High Utility
Pattern Mining Based on Pre-large Concept,” Engineering Applications
of Artificial Intelligence, Vol. 72, pp. 111–123, June 2018.

[8] K. Singh, S. S. Singh, A. Kumar, and B. Biswas, “TKEH: An Efficient
Algorithm for Mining Top-k High Utility Itemsets,” Applied Intelli-
gence, Vol. 49, pp. 1078–1097, October 2018.

[9] K. Singh, A. Kumar, S. S. Singh, H. K. Shakya, and B. Biswas, “EHNL:
An Efficient Algorithm for Mining High Utility Itemsets with Negative
Utility Value and Length Constraints,” Information Sciences, Vol. 484,
pp. 44–70, May 2019.

[10] B. Vo, H. Bui, T. Vo, and T. Le, “Mining Top-Rank-k Frequent Weighted
Itemsets Using WN-list Structures and an Early Pruning Strategy,”
Knowledge-Based Systems, Vol. 201-202, pp. 1–12, August 2020


