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Abstract

The target of similarity retrieval is to retrieve the images that are similar to the query
image. Good access methods for large image databases are very important for efficient
retrieval. The 2D B-string-based and the unique-ID-based signature methods can provide
four kinds of similarity retrieval, object and type-i, 0 < ¢ < 2, and can distinguish 169
spatial relationships. However, 169 spatial relationships are still not sufficient to show all
kinds of spatial relationships between any two objects in 2D space, for example, the direc-
tional relationships, like north. Moreover, in most of the previous methods for similarity
retrieval, to simplify the concerns, they apply the M BRs of two objects to define the spa-
tial relationship between them. The topological relationships, however, between objects
can be quite different from the spatial relationship of their respective M BRs. Therefore,
in this paper, by focusing on the above two problems, we propose a new method. To solve
the first problem, we add 9 directional relationships to 169 spatial relationships. In this
way, we can distinguish up to 289 spatial relationships in 2D space. To handle the second
problem, we adopt the concept of topological relationships in our proposed method. From
our simulation study, we show that our method can provide a higher correct match rate
than the 2D B-string-based and the unique-ID-based signature methods.
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Figure 1: An example of physical and logical parts: (a) the physical picture; (b) the logical
picture.

1 Introduction

Recently, in the field of pattern recognition and image processing, much attention has been
paid to the design of image database systems [2, 11, 25]. Applications which use image
databases include office automation, computer aided design, robotics, and medical pictorial
archiving. In general, an image database can be divided into two parts: the physical and
the logical parts. The logical part is used to describe the image features and the secondary
information in the original physical pictures. For example, in Figure 1, the logical picture
can be regarded as the abstract model of the corresponding physical picture. By searching
the logical picture, the corresponding physical one can be retrieved.

In the logical part of an image database, several methods have been introduced. An
extended survey about them can be found in [29]. Most of the methods have been clas-
sified into the content-based indexing field [24]. The indexes by content are divided into
several categories, such as textual, hot spot, color, texture, shape, sketch and the spatial
relationships among the elements. For example, the QBIC system [15] supports queries
based on image features such as color, shape, texture, and sketch; while the Intelligent
Image Database System (IIDS) [7] focuses on the spatial relationships.

Based on previous researches, the spatial relationships used for spatial similarity re-
trieval can be roughly classified into four approaches: (1) spatial relationships derived from
the symbolic projection, (2) directional relationships, (3) topological relationships, and (4)
geometry-based spatial relationships [11, 13]. From the viewpoint of the projection along

the z- and y-axes, each object can be viewed as surrounding by a Minimum Boundary



Rectangle (M BR), as proposed in the 2D string method [6]. Based on the symbolic pro-
jection (i.e., approach 1) of each object along one of the axes, as proposed in Lee et al.’s
2D C-string method [20], there are up to 13 spatial relationships in 1D space. The M BR
representation is a simple way to represent an object with any shape in an image, which
is helpful and efficient for visualization and database browsing [17]. On the other hand, a
new method of similarity retrieval by a nine-direction lower-triangular (9DLT) matrix was
proposed in [4]. Based upon the variations of 2D strings or the 9DLT matrix, another data
structure, a set of triples, to represent the spatial relationship between each pair of objects
in a picture, was proposed. For each triple, a hashing value is found and stored. Hence, the
problem of image matching becomes a problem of matching hashing value sequences [5, 30].
Moreover, in order to solve the ambiguity of M BRs, a method combining the topological
and directional relationships to introduce another spatial relationships which are hashed in
a hashing table to answer the spatial queries was proposed in [30]. There are some other
methods [9, 16, 18, 19, 23, 27, 31].

When there are a large number of images in the image database and each image con-
tains many objects, the processing time for image retrieval is tremendous. Actually, the
objects or spatial relationships among objects can be treated as attributes or keywords of a
document. Thus, a signature can act as a searching filter to prune (i.e., filter out) most of
the unqualified images. Only the records which match the signature need to be examined
further for exact query matches. Therefore, to handle large amounts of image databases,
several access methods [8, 10, 13, 21] have been proposed.

In [21], based on the 2D B-string method, Lee et al. presented a signature method
which contains 4 kinds of signatures for object and type-i similarity retrieval. Figure 2
shows some examples of different types of similarity. As compared to Figure 2-(a), Figure
2-(b) only contains the same objects, Figure 2-(c) contains the same objects and have the
same spatial category (the disjoin category) between objects, which is referred to as type-0
similarity. Moreover, as compared to Figure 2-(a), Figure 2-(d) satisfies type-0 similarity
and has the same orthogonal relations, which is referred to as type-1 similarity; while Figure
2-(e) satisfies type-1 similarity and has the same spatial relationships in z-axis and y-axis,

which is referred to as type-2 similarity. (Note that the difference between Figure 2-(d)
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Figure 2: Types of similarity: (a) the original picture; (b) object similarity; (¢) type-0
similarity; (d) type-1 similarity; (e) type-2 similarity.

and Figure 2-(e) is that the cat immediately follows, or meets, the duck in z-axis in Figure
2-(d); while it is not in Figure 2-(e).) In [10], based on the unique-ID method, Chang et
al. presented another signature method for object and type-: similarity retrieval. However,
Chang et al.’s signature contains only type-2 information. Signatures for other type-i and
object similarity retrieval are dynamically constructed based on the type-2 signature.

In this paper, two important problems are addressed. One problem is that although the
2D B-string-based [21] and the unique-ID-based [10] signature methods can do similarity
retrieval up to distinguish 169 spatial relationships, it is still not sufficient to present all
kinds of spatial relationships between any two objects based on 169 spatial relationships.
For example, the directional relationship, like south, exists in 2D space and is difficult to
be deducted from those 13 spatial operators. Therefore, we propose to consider both of
the 9 directional relationships [4] (i.e., approach 2) and the 169 spatial relationships in 2D
space. In this way, we can distinguish up to 289 spatial relationships in 2D space. Thus,
we have the ability to represent the spatial relationships in 2D space more completely.
The other problem is that it is hard to correctly describe the spatial relationships of the
objects in terms of relationships between their corresponding MBRs. To solve this problem
resulted from MBRs, we adopting the concept of topological relationships (i.e., approach
3) in our proposed method. In this way, we revise the definition of three kinds of type-i
similarity defined in [22] to six kinds to aid similarity retrieval more precisely. From our
simulation study, we show that our method can provide a higher correct match rate than
the 2D B-string-based and the unique-ID-based signature methods.

The rest of this paper is organized as follows. Section 2 gives a survey of previous

proposed representations for symbolic pictures. Section 3 presents the proposed signature



Table 1: Definitions of spatial operators based on the 2D C-string representation

Notation Condition Meaning
A<B end(A) < begin (B) A digoinsB
A=B begin(A) = begin(B) A isthesameasB
end(A) = end(B)
A|B end(A) = begin(B) A isedgeto edgewith B
A%B begin(A) < begin(B) A contains B and they
end(A) > end(B) have not the same bound
A[B begin(A) = begin(B) A contains B and they
end(A) > end(B) have the same begin bound
AlB begin(A) < begin(B) A contains B and they
end(A) = end(B) have the same end bound
AlB begin(A) < begin(B) A ispartly overlapping
< end(A) < end(B) with B

method. Section 4 studies the performance of our proposed method. Finally, Section 5

gives the conclusion.

2 Background

In this section, first, we describe 169 spatial relationships [20], the 9DLT matrix [4], the
directional and topological relationships [30] which are major concerns of our proposed
method. Next, we describe the structures of the 2D B-string-based signature [21] and the
unique-ID-based signature [10].

2.1 Spatial Relationships

Table 1 shows the formal definition of the spatial operators defined in the 2D C-string
representation [20]. Those operators and the inverse ones for the related operators represent
the spatial relationships between objects in 1D space completely (based on the related
positions of the begin bound and the end bound of two objects). Therefore, there are
13 x 13 = 169 spatial relationships between two objects in 2D space, as shown in Figure 3
[9], where some of them are surrounded with bold box will be discussed in details in Section
3. (Note that spatial relationships among more than two objects can be represented as the

union of spatial relationships between any two of those objects.)
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D: Disjoin; J: Join; P: Partial overlap; C: Contain; B: Belong.

Figure 3: 169 spatial relationships in 2D space

For convenience, in [21], they classify 169 spatial relationships into five types of cate-
gories: disjoin, join, partial overlap, contain, and belong. These five categories are called
spatial category relationships and are described as follows: (1) Disjoin: ANB = (; (2) Join:
AN B = single point or line segment; (3) Contain: AN B = B; (4) Belong: ANB = A; (5)
Partial overlap: A N B = the area of partial A and partial B. The two objects A and B are
enclosed by MBRs. The measure criterion for categorization is the area of the intersection
of A and B.

They also considered the basic four orthogonal relationships which are east, west, north

and south [21]. In pictures with no overlapping objects, it is easy to describe the orthogonal
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Figure 4: The 9DLT representation: (a) 9 direction codes; (b) a symbolic picture; (c) the
related 9DLT matrix.

relationship between objects A and B, because A and B can be regarded as points. But in
the case of non-zero sized objects, they described the rules to characterize the orthogonal
relationships in the symbolic picture as follows: (1) A is to the east of B iff: end(A) >
end(B) on x-axis. (2) A is to the west of B iff: begin(A) < begin(B) on x-axis. (3)
A is to the north of B iff: end(A) > end(B) on y-axis. (4) A is to the south of B iff:
begin(A) < begin(B) on y-axis.

In [4], C. C. Chang presented the 9 direction codes, as shown in Figure 4-(a). The
centroids of two objects are used to obtain the directional relationship between them. For
the symbolic picture shown in Figure 4-(b), Figure 4-(c) is the corresponding 9DLT matrix.

In Zhou et al.’s method [30], instead of applying the concept of MBRs, the directional
and topological relationships (i.e., approaches 2 and 3) are combined into one represen-
tation. Topological relationships are relationships which are invariant under topological
transformation. Given two objects O; and Oj, their centroids and their boundaries can
be used to determine whether the topological relationship between them is disjoin, join,
contain, belong, or partial overlap [12]. (Note that the spatial category relationships men-
tioned before are different from the topological relationships, even though they use the
same terminologies to describe their respective five types.) For example, in Figure 5-(a),
the topological relationship between the objects is disjoin. But, in Figure 5-(b), the spa-
tial category relationship between the objects of their respective M BRs is partial overlap.

Zhou et al.’s method can avoid this drawback resulted from M BRs. Combining the direc-
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Figure 5: The M BR drawback: (a) the real picture; (b) the related MBRs; (c) the direc-
tional and topological relationships.

tional and topological relationships, there are 41 types of spatial relationships in 2D space
displayed in Figure 6. Let’s call this method, the DT (Direction and Topology) method.
Following this classification of 41 spatial types, the objects shown in Figure 5-(a) can be
represented in Figure 5-(c) correctly.

However, there are some disadvantages in Zhou et al.’s method. One is that these
41 spatial relationships cannot describe the spatial relationships between two objects as
precisely as the 169 spatial relationships derived from the M BRs, which may also cause
the problem of ambiguity. For example, the spatial relationships between the white and
gray objects as shown in Figure 7-(a) are different; however, these four different spatial
relationships are classified into the same type (type-ID 2) in Zhou et al.’s method as shown
in Figure 7-(b). The other disadvantage is that we find one missing spatial relationship
in Zhou et al.’s method. Take Figure 8 for example. Because those two objects shown in
Figure 8-(a) have the same centroid, the spatial relationship between them is with type-ID 0
as shown in Figure 8-(b). In fact, the spatial relationship between these two objects should
be the one as shown in Figure 8-(c). However, this type of spatial relationship belonging

to the partial overlap category does not exist in their proposed 41 spatial relationships.

2.2 Signatures

In [21], Lee et al. proposed the 2D B-string-based signature by using superimposed coding
and disjoint coding to speed up the access. The integrated signature, as shown in Figure

9, can handle the retrieval by objects, by binary spatial relationship and by subpicture to



(0) A and B has the same \\://
centroid

3
=
K<)

Digjoint Meet Overlap Coqtain Inside
6 © an @) @3
+@ O e @
(¥ % N N N
@ (10) 19 26) )
... @ o
L N i N
® @) (19) @) @)
©h @ @ ¢ fe i
N Y U N
@ 12 @0 @8 (36)
® 3 @ @) @7
oV T T YT ®
® a9 @) (30 @9
D D ! an) )
¢ o J

(23
N NS Neej

7
O
é

®) (16) (24 (32) (40)

Figure 6: 41 types of spatial relationships in 2D space
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Figure 7: An ambiguous case in Zhou et al.’s method: (a) 4 different spatial relationships
in Lee et al.’s method; (b) one unique code (type-ID 2) in Zhou et al.’s method.
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Figure 8: The missing spatial relationship in Zhou et al.’s method: (a) the (%, %*) spatial
relationship in Lee et al.’s method; (b) the spatial relationship with type-ID 0 in Zhou et
al.’s method; (¢) an unknown type-ID (spatial relationship) in Zhou et al.’s method.

object type-0 type-1 type-2
RS RS® RS RS?
Wy bits W bits W bits W bits

Figure 9: The structure of the 2D B-string-based signature

different types of similarity.

In [10], Chang et al. defined a unique-ID-based signature consisting of RS' and RS?
as shown in Figure 10. RS! contains RS' (13-bit string) and RS', which represent the
record signature flags from the viewpoint of z- and y-axes, respectively. These two 13-bit
strings are used to indicate the existence or absence of those 13 spatial operators along
the 2- and y-axes, respectively. RS? contains RS?® (13 bit strings) and RS?. The i-th
bit string among those 13 bit strings is used to record the union of the signatures of those

pairs of objects which have the same i-th spatial operator.

RS RS
13-bit string 3 13-hit string 13 bit strings 3 13 bit strings
RS* RS’ RS* RS’

Figure 10: The structure of the unique-ID-based signature
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Figure 11: An example of the orthogonal relationship

3 The Proposed Method

From the above observations, we are motivated to find a way to integrate the advantages
from Lee et al.’s [20] and Zhou et al.’s [30] methods (approaches 1, 2, and 3). That is, the
169 spatial relationships, the directional relationships, and the topological relationships,
are all considered in our method. We carefully classify each one of 169 spatial relationships
into 9 groups based on 9 directional relationships. (Note that the topological relationships
between objects are recorded directly in our signature by using a number.) However, some
of 169 spatial relationships surrounded with bold box shown in Figure 3 are difficult to be
classified.

In this section, we first present the definitions of the extended type-i similarities. Next,
we define four new spatial strings. Then, we describe how to construct the record signature.

Finally, we present the algorithms for object and type-i similarity retrieval.

3.1 The Extended Type-i: Similarities

According to the definition of orthogonal relationships introduced in [21], the situation that
both A is to the east of B and A is to the west of B (as shown in Figure 11, for example)
may occur. This consideration, however, is not natural to human beings. Thus, similar
to the DT method [30], we revise the definition of orthogonal relationships (denoted by
newQ) based on the centroid of the iconic objects as follows: (1) A is to the east of B
iff: centroid(A) > centroid(B) on x-axis. (2) A is to the west of B iff: centroid(A) <
centroid(B) on x-axis. (3) A is to the north of B iff: centroid(A) > centroid(B) on y-axis.
(4) A is to the south of B iff: centroid(A) < centroid(B) on y-axis.

From the above discussion, we can extend and revise the existing similarity of types 0,

10



1, and 2 which were introduced in [21] into types 0, 1’, 1.5, 2/, 2.5, and 3 as follows.
Definition 1. Picture f’ is a type-i similar picture of f, if
1. all objects in " are also in f,

2. for any two objects A and B,
A Cup B, AnewOup B, A9Dsp B, A Ryg B, and ATy B in f
A CYp B, A newO'z B, A9D",z B, A R,z B, and A T,z B in {’, then

type-0: C'yp = Cap;

type-1': (type-0) and (newO'yz = newOap);
type-1.5: (type-1') and (9D',; = 9Dag);
type-2': (type-1') and (R)y5 = Rag);
type-2.5: (type-1.5) and (type-2');

type-3: (type-2.5) and (T gz = Tap);

For the above definition, we have used the following notations: (1) C4p denotes one
of the 5 spatial category relationships between A and Bj; (2) newO 45 denotes one of the
revised 4 orthogonal relationships between the centroid of A and the centroid of B; (3)
9D 4p denotes one of 9 direction codes between centroid of A and centroid of B; (4) Rap
denotes one of 169 spatial relationships in 2D space between A and B; (5) T4p denotes one
of the 5 topological relationships between A and B. For example, in Figure 12, fy, f{, fis,
f5, fa5, and f3 are of type-0, 1', 1.5, 2/, 2.5, and 3 similarity, respectively. Figure 13 shows
the hierarchy of the definition for the extended type-i similarity.

There is a division at the type-1" similarity. We explain this situation by using two
figures as shown in Figures 14 and 15. In Figure 14, since object A in both pictures is
to the north east of object B, picture P is of type-1.5 similarity with picture ). But, the
spatial relationship between objects A and B in picture P is “/* <*”, while that in picture
Q is “|* <*”7. Therefore, picture P is not of type-2' similarity with picture @, which tells
us a fact that pictures are of type-1.5 similarity with each other may not be of type-2’
similarity. In Figure 15, object B in both pictures P’ and @' is to the west of object A.

11
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Figure 13: The hierarchy of the type-i similarity
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Figure 14: An example of two pictures for type-1.5 similarity: (a) picture P; (b) picture
Q.

(a) (b)
Figure 15: An example of two pictures for type-2' similarity: (a) picture P'; (b) picture @'

Moreover, the spatial relationship, “/ %”, between them in picture P’ is the same as that
in picture @)'. Therefore, picture P’ is of type-2' similarity with picture )'. However, object
B in picture P’ is to the north west of object A, while object B in picture Q' is to the south
west of object A. Therefore, Picture P’ is not of type-1.5 similarity with picture ', which
tells us another fact that some pictures which are matched with type-2' similarity may not
be matched with type-1.5 similarity. Note that although the set of pictures of type-1.5
similarity is not always a subset of pictures of type-2' similarity and vise versa, we still put
the position of type-2' similarity lower than that of type-1.5 similarity in the hierarchical
picture shown in Figure 13. The reason is that pictures of type-1.5 similarity can only be
distinguished into 9 different spatial relationships, while pictures of type-2' similarity can
be classified into 169 different spatial relationships.

The branches join together at type-2.5 similarity. The reason is that based on combining

9 directional relationships (type-1.5) with 169 spatial relationships in 2D space (type-2'),

13
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Figure 16: One example of picture f: (a) the real picture, (b) the corresponding MBR.

we can induce up to 289 spatial relationships in 2D space which can represent all kinds of
spatial relationships more completely than 169 spatial relationships. The symbol R* shown
in Figure 13 is used to represent one of the 289 spatial relationships which will be described

later.

3.2 Four New Spatial Strings

To support the representation of the extended type-i: similarities, we present four new

spatial strings: SCS, DCS, INS, and TRS.

3.2.1 Spatial Category Strings (SC'S)

For the picture shown in Figure 16, the corresponding spatial matriz S is shown as follows,

where the spatial relationship between A and B along z-axis (y-axis) is A /* B (A % B):

A B C D

Al0o /r < <
S=B|% 0 <* <*
Cl% % 0 %
D% | / 0

We let Sid 1, 2, 3,4,5,6,7,8,9, 10, 11, 12 and 13 represent spatial identifiers to denote
the spatial operators <, <*, |, |*, /, /%, |, [, %, =, I*, [, and %*, respectively [9]. Then, the

corresponding reduced spatial matriz (RSM) for the above spatial matrix S is as follows:

B D

Q®
© O O O o
N o oo
oo Q)
O © o

14



Function CATEGORY (Sid} p, Sid} p)

1 if (Sid% > 4) and (Sid") , > 4) then

2 if (7 < Sid?, 5 <10) and (7 < Sid% 5 < 10) then

3 return (2) (* contain *)

4 else if (10 < Sid% p < 13) and (10 < Sid)) g < 13) then
5 return (3) (* belong *)

6 else return 4 (* partial overlap *)

7 else if (Sid p > 2) and (Sid)) > 2) then

8 return (1) (* join *)

9 else return (0) (* disjoin *)

Figure 17: The category function

According to a given reduced spatial matrix, we can call function CATEGORY (T[i,j], T/j,i])
[9] (as shown in Figure 17) to construct the related spatial category matrix, C[i,j|.
For the picture shown in Figure 16, the corresponding spatial category matrix C'is shown

as follows, where 0 and 4 denote the join and partial overlap relationships, respectively.

A B C D
Al—- — - _—
C= B |4 - -
c|io 0 — -
D0 0 4 -

Based on the spatial category matrix, a spatial category string SCS is defined as {O,;0;¢;5lci; €
{0,1,---,4}}, where O; and O; are objects. Therefore, the corresponding SCS set for the
spatial category matrix C is SCS = {AB4, AC0, AD0, BC0, BD0, CD4}.

3.2.2 Nine Direction Code Strings (DC'S)

According to 9 direction codes, the corresponding 9DLT matrix for Figure 16 is as follows:

A B C D
Al—- — — _—
M= B |5 - =
cl4 4 — —
Di6 6 8 —

According to the 9DLT matrix M, a nine direction code string DCS is defined as
{0;0;m;jlm;; € {0,1,---,8}}. Then, the corresponding DCS set for Figure 16 is DCS
= {ABb, AC4, AD6, BC4, BD6, C D8}.

15



Table 2: 27 cases in the contain category

2bC Proposed 2DC Proposed
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3.2.3 Identification Number Strings (/NS)

Based on the definition given in [20], there are 169 spatial relationships in 2D space. How-
ever, if we add the information about directional relationships, some spatial relationships
among those 169 spatial relationships will be separated into several more kinds of spatial
relationships. Take the spatial operator “%%” in Table 2 as an example. Up to 9 cases
can occur for the same “%%” operator.

Therefore, the 169 spatial relationships introduced by the 2D C-string method [20] are
not sufficient to represent spatial relationships in 2D space. In this way, we preserve those
operators used in 169 spatial relationships, then we integrate spatial category relationships
and directional relationships into one representation to divide spatial relationships in 2D
space. Take Figure 18 as an example. There are 17 spatial relationships which belong
to the partial overlap spatial category accompanied with the direction code 2 (i.e., north
west). Note that the number of spatial relationships in each division is variant.

Therefore, after taking 9 directions into consideration, the total number of spatial re-

lationships in our proposed method is 289 (= 64 + 56 + 36 + 35 + 98), as summarized in

16
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Figure 18: One example for the integration of the spatial category and directional rela-
tionships: (a) Partial overlap category and the direction code 2; (b) 17 possible spatial
relationships.

Table 3: The number of spatial relationships in the proposed method

9 direction codes
Category 0 1 2 3 4 5 6 7 8
Disjoin (64) 0 3 13 3 13 3 13 3 13
Join (56) 0 3 11 3 11 3 11 3 11
Contain (36) 4 4 4 4 4 4 4 4 4
Belong (35) 3 4 4 4 4 4 4 4 4
Partial Overlap (98) 2 7 17 7 17 7 17 7 17

Table 3. We assign the identification number to each spatial relationship carefully such
that for the same spatial operator with different direction codes is assigned with the same
identification number [28]. For example, the same spatial operator “%%*” with different
direction codes shown in Table 4 has the same identification number 10. Based on this
arrangement, we can distinguish up to 289 spatial relationships which include the original
169 spatial relationships.

Because the information about spatial category relationships and 9 directional relation-
ships are stored in SCS and DCS, respectively, we just further record the identification

number of the related spatial relationship between two objects. Therefore, we define the

17



Table 4: Identification numbers for the partial overlap spatial category
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identification number string INS as {0;0;id;j|id;; € {0,1,---,16}}. Consequently, the
corresponding I NS set for the Figure 16 is INS = {ABS8, AC7, AD7, BC'7, BD9, CD2}.
Therefore, based on the specific combination of the SCS, DCS, and INS, we can discriminate

one of 289 spatial relationships between any two objects.

3.2.4 Topological Relationship Strings (T'RS)

Basically, a m x m Topological Relationship Matriz TRM of picture f has similar defini-
tion as a Spatial Category Matriz C', except that the codes of topology relationships are

recorded instead of the codes of spatial categories. For the picture shown in Figure 16, the
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Figure 19: The structure of the proposed signature: (a) RS'; (b) RS2

corresponding topological relationship matrix TRM is shown as follows:

A B C D

Al—- — — _—
TRM = B |0 - =
c|io 0 — -

D0 0 0 -

Then, a topological relationship string TRS is defined as {0;0;t;[t;; € {0,1,---,4}}.
Therefore, the corresponding TRS set for the above topological relationship matrix TRM
is TRS = {AB0, AC0, AD0, BD0, BD0, BC0}.

3.3 Record Signature

We now define a Record Signature (RS). A RS consists of two parts, RS' and RS? as
shown in Figure 19. RS! contains four segments, RS'9¢, RS'P¢ RSP and RS'TE, which
represent the record signature flags to indicate the existence or absence of the numbers
representing the meaning defined in each segments. Figure 19 shows the number of bits
used in each segment of RS'. RS? consists of four segments, RS?¢, RS?P¢, RS*'P and
RS?TR_ The number of bit strings in each segment is also shown in Figure 19. Table 5
shows each segment notation and corresponding definition, and the algorithm for efficient
data access of image databases is described as follows.

Algorithm Record Signature.

(Step 1) List all SC'S set, DCS set, INS set, and TRS set.

(Step 2) Design the function 6, according to the given k, and b,, which maps each pair of symbols
into a unique bit string.

(Step 3) Set all bits in RS to 0.
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Table 5: Notations and related definitions used in record signature segments

Notation | Definition

k. the weight (number of 1s) of the record signature
by the length (number of bits) of the record signature
0, the hash function of the record signature

RS; the record signature for the ith picture

RS! the record signature flags

RS? the 36 bit strings of a record signature

RSTTE | the record signature flags from the viewpoint of topological relationship

RS'SY | the record signature flags from the viewpoint of spatial category

RSTPY | the record signature flags from the viewpoint of 9 direction code

RS™D | the record signature flags from the viewpoint of identification number

RS?TE | the 5 bit strings corresponding to the signature flag field RSTTF

RS?5C | the 5 bit strings corresponding to the signature flag field RST5C

RS?PY | the 9 bit strings corresponding to the signature flag field RS'PY

RS?™P | the 17 bit strings corresponding to the signature flag field RSP

RS!(j) | the jth bit of RSt

RS?(j) | the jth bit string of RS>

RS} the RS® for the jth picture

QRS the query record signature

(Step 4)
(Step 5)
(Step 6)
(Step 7)

(Step 8)

For each spatial category string ABi in SCS, we let the i-th bit of RS be 1, and then
perform RS?9¢(i) = RS*3C (i) U6, (AB).

For each nine direction code string ABi in DCS, we let the i-th bit of RS'PC be 1, and then
perform RS?P¢ (i) = RS*PC (i) U b, (AB).

For each identification number string ABi in INS, we let the i-th bit of RS''” be 1, and then
perform RS?'P (i) = RS?'P (i) U#,(AB).

For each topological relationship string ABi in TRS, we let the i-th bit of RS'T be 1, and
then perform RS?TE(j) = RS?>TR(i) U6,.(AB).

Compress RS? by removing useless bit strings. If the i-th bit of RS! is 0, then remove the
corresponding bit-string RS? (i)

To illustrate the algorithm, let’s see the following example. For the figure shown in

Figure 20,

first, we construct the spatial matrix and the reduced spatial matrix (RSM).

A B C
A0 %
=Bl o |
Cl< % 0

A B C

Al0 6 9

RSM = B3 0 3

cl1 9 0
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Figure 20: An example

Applying the algorithm, we can construct the Record Signature of the picture as follows.

1. Generate SCS set, DCS set, TRS set and TRS set. We have SCS = {AB1, ACO,
BC1}, DCS = {AB6, AC'7, BC2}, INS = {AB1, AC10, BC0}, and TRS = {ABO,
AC0, BC0}.

2. Design the function 6, (where b, = 5, k, = 2) which maps each pair of symbols to a
unique bit string. For example, we can have 6,(AB) = 10001, 6,(AC) = 10100, and
0,(BC) = 01100

3. Set all bits in RS to 0.

4. If ABi € SCS, we let the i-th bit of RS™¢ be 1, and then perform RS*¢(i) =
RS*C(i) U 0,(AB).
RS'SY = 11000.
RS?*3¢(1) = RS?3¢(1) U 6,.(AB) U 6,.(BC) = 11101.
RS?*5¢(0) = RS?9¢(0) U 6,.(AC) = 10100.

5. Repeat Step 4 by replacing SC'S with DC'S. We have
RS'P¢ = (001000110.
RS?*PC(6) = RS?*PY(6) U 0,(AB) = 10001.
RS?*PC(7) = RS?*PC(7) U 6,(AC) = 10100.
RS?*PC(2) = RS?*PC(2) U 4,(BC) = 01100.

6. Repeat Step 4 by replacing SC'S with INS. We have
RS™P = 11000000001000000.
RS?'P(1) = RS*'P(1) U 6,(AB) = 10001.
RS?'P(10) = RS?P(10) U 6,.(AC) = 10100.
RS?'P(0) = RS*'P(0) U 6,(BC) = 01100.

7. Repeat Step 4 by replacing SCS with TRS. We have
RS'TE = 10000.
RS?*TE(0) = RS?*TE(0) U 0,(AB) U 6,.(AC)U 6,(BC) = 11101.

8. Corglpress RS? by removing useless bit strings. If the i-th bit of RS! is 0, then remove
RS?(i).

RS = 11000 001000110 11000000001000000 10000
10100 11101 01100 10001 10100 01100 10001 10100 11101
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After the record signature RS and the query signature QQRS are constructed, we then
can use the condition, RS N QRS # QRS, to decide whether RS should be removed from

our consideration.

3.4 Object and Type-: Similarity Retrieval

We will use our proposed structure of a signature discussed in the previous section to do

the object and type-i similarity retrieval in the following subsections.

3.4.1 Query of Object Similarity

To simplify our algorithm, we convert each signature back to its completed form, instead of
the reduced form. Given a record signature, we now present an algorithm to convert such

a record signature into the related object record signature as follows.

Algorithm Object.

(Convert a Record Signature into an Object Record Signature)
(Step 1) Set every bit in ORS to 0.

(Step 2) fori=0to 4 do
if RS'TE(i) = 1 then ORS = ORS U RS?TE(i).

To illustrate the algorithm, let’s see the following example. Suppose there are 8 pictures
in the database as shown in Figure 21. Let the hash function 6, have b, = 5 and k, = 2.
For example, we can have 6,(AB) = 10001, #,(AC) = 10100, #,.(BC) = 00101, 6,(AD) =

10010, 6,(BD) = 00011, and 6,(C'D) = 00110.
In this case, for example, the corresponding record signatures for picture P is:

RSg = 11001 001000100 01100010000000000 11001
10100 10001 00101 00101 10101 10001 10100 00101 10100 10001 00101.

Then, let’s see how to convert the record signatures into the object record signatures.
Take picture P as an example:
ORSg = 10100 U 10001 U 00101 = 10101.

Thus, the object record signatures for pictures P; through P are:
ORS; = 10011, ORS> = 10101, ORS3; = 10101, ORS,; = 10101,

ORS5 = 10101, ORSg = 10101, ORS7 = 10101, ORSg = 10101.
Given a query picture ¢; as shown in Figure 21, the corresponding record signature is

QRS = 11001 000000101 01100010000000000 11000
10100 10001 00101 10101 00101 10001 10100 00101 10101 10001.
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Figure 21: An image database (P, Py, Ps, Py, Ps, Ps, P7, Pg) and a query picture (g;)

The corresponding object query signature is QORS = 10101.

Next, since QORS N ORS; # QORS, and QORS N ORS; = QORS, 2 < i < 8, we
conclude that pictures from P, through Py may have the same objects with the query
picture ¢;, while picture P; has some objects different from the query picture ¢;. (Note
that, in fact, in the above Algorithm Object, we can replace RST% (i) (RS*' % (7)) with any

of other three fields as shown in Figure 19.)

3.4.2 Query of Type-0 Similarity

The spatial category field (RS'® and RS?®) of the record signature contains the infor-
mation of the spatial category relationship between any two objects in the picture. Since
the record signature has the complete information for type-0 similarity (i.e., RS™% and
RS?R) we only have to compare the related bit-strings to find out the possible answers.

Taking the pictures and the query shown in Figure 21 as an example.

1. We have RSIST (1 QRS'® = QRS', RSIS® 1 QRS £ QRS'ST, RSIS® N
QRS"E = QRS'SE 3 < { < 8. Picture P, needs not to be checked furthermore.
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Figure 22: Type-1' signature NSWFE

2. Next, we have RSZ°F N QRS*F # QRS**®, RS?°F N QRS*® = QRS* %, and the
remaining pictures have the same result as picture P;. We conclude that pictures from
P;3 through Ps may be of type-0 similarity with the query picture ¢, while pictures
P, and P, are not of type-0 similarity with the query picture ¢;.

3.4.3 Query of Type-1’ Similarity

Figure 22 shows the structure of the type-1' record signature NSWE. Given a record sig-
nature, we now present an algorithm to convert such a record signature into the related

type-1' record signature as follows.

Algorithm Type-1'.
(Convert a Record Signature into a Type-1' Record Signature)

(Step 1) Set every bit in NSWE to 0.

(Step 2) Fori € {1,2,8} do /* North */
if RS1PC (i) is 1, set NSWE(0) to 1, and let NSW E?(0) = NSW E?(0) U RS?>P¢(i).
(Step 3) Fori € {4,5,6} do /* South */
if RS'PC (i) is 1, set NSWE(1) to 1, and let NSWE?(1) = NSWE?(1) U RS?*P¢(i).
(Step 4) Fori € {2,3,4} do /* West */
if RS'PC(4) is 1, set NSWE(2) to 1, and let NSW E?(2) = NSWE?(2) U RS?PC(i).
(Step 5) Fori € {6,7,8} do /* East */

if RS'PC (i) is 1, set NSWE(3) to 1, and let NSWE?(3) = NSWE?(3) U RS?PC(i).

For those 8 pictures from P; through FPs as shown in Figure 21, only pictures from Pj
through Py are of type-0 similarity; therefore, we only have to check whether pictures from
P; through P are of type-1' similarity with the query picture ¢;. We now convert the
record signatures of pictures from P; through Ps into the type-1’ signatures. Take picture

P5 as an example:
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01 If NSWE!'N QNSWE! = 0000 Then

02 Return (“the picture is not matched.”);

03 Fori:=0to3do

04 Begin

05  j:= (i+1) mod 4; k := (j+1) mod 4;

06 flagl := 0; flag2 := 0; flag3 := 0;

07 If NSWE'Y(i) N QNSWE!(i) = 1 Then

08 If NSWE?(i) N QNSW E?(i) = $ Then flagl := 1;
09 Else flagl := 2;

10 If NSWE'(j) N QNSWE!(j) = 1 Then
11 If NSWE?(j) N QNSWE?(j) = $ Then flag2 := 1;

12 Else flag2 := 2;

13 If NSWE'(k) N QNSWE'(k) = 1 Then

14 If NSWE?(k) N QNSW E?(k) = $ Then flag3 := 1;

15 Else flag3 := 2;

16 flag := flagl * flag2 * flag3;

17 If (flag # 0 And flag # 8) Then Return (“the picture is not matched.”);
18 End;

19 Return (“two signatures are of type-1’ similarity.”);

1 The symbol $ means that the intersection of two bit strings is not the union of some 6,..

Figure 23: Algorithm for type-1" similarity retrieval

NSWEL(0) = NSWEL(1) = NSWE}(3) =0,
NSWEZ2(0) = NSWE2(1) = NSWE2(3) = 00000,
NSWE}(2) = RSiPY(3) =1,

NSWE2(2) = RS2P¢(3) U NSWE2(2) =10101.

Thus, NSWE; = 0010 00000 00000 10101 00000.
In the same way, the resulting type-1 record signature for pictures from P, through P;

are as follows:

NSWE, = 111110101 10001 00101 10101,
NSW Es NSWE; = NSWEg = 1101 00101 10101 00000 10101,
NSW Eg 1111 00101 10101 00101 10101.

Given the query picture ¢; as shown in Figure 21, the corresponding type-1' query signature
is QNSWE = 1101 00101 10101 00000 10101.

Next, in Figure 23, we show the algorithm for type-1’ similarity retrieval based on the
type-1’ record signature, NSWE.

Therefore, according to the algorithm described in Figure 23, we conclude that from
pictures P, through Pg may be of type-1’ similarity with the query picture ¢;. But, picture
P; is not of type-1' similarity with the query picture ¢;.
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3.4.4 Query of Type-1.5 Similarity

The direction code field of the record signature (RS'P’¢ and RS?PY) has the complete
information to figure out if two objects has the same directional relationship. Taking
advantage of this feature, we can answer the query of type-1.5 similarity retrieval directly.

In Figure 21, only pictures from P, through Ps are of type-1’ similarity; therefore, we
need only to find out which picture from P, through F; is of type-1.5 similarity. The steps

to check type-1.5 similarity are described as follows.

1. We have RS{”Y N QRS'PC # QRS'”C and RSP n QRS'’Y = QRS'C, j €
{4,5,7,8}. Then, picture Py is not of type-1.5 similarity with the query picture ¢;.
Pictures P,, P5, P;, and Ps need to be checked furthermore.

2. Next, we have RS2PY N QRS?PC #£ QRS*PC. Picture P, is not of type-1.5 similarity
with the query picture ¢;. RS?P¢ N QRS*PY = QRS*PC, j € {5,7,8}. So the
pictures P5, P;, and Py may be of type-1.5 similarity with the query picture g¢;.

3.4.5 Query of Type-2' Similarity

Before checking the type-2' similarity, we must check the type-1’ similarity first. In the
previous subsection, “Query of Type-1’ Similarity”, we have pictures from P, through P
which are of type-1’ similarity with the query picture ¢;. To recognize whether two objects
have the type-2' similarity or not, we need the information of 169 spatial relationship
between them. The identification number field of the record signature (RSP and RS?!P)
provides with what we need. The steps to find out which picture is of type-2' similarity

with the query picture ¢; are stated as follows.

1. Since RSP N QRSYP # QRSYP i € {4,5}, pictures P; and P5 are not matched

and need not to be checked furthermore.

2. Next, since RS}'” N QRS*'” = QRS*'”, j € {6,7,8}, pictures P, P; and Py may
be of type-2' similarity with the query picture ¢;.
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3.4.6 Query of Type-2.5 Similarity

Suppose the set S5 contains the pictures which are of type-1.5 similarity with the query
picture ¢; and the set Sy contains the pictures which are of type-2’ similarity with the
query picture ¢;. Thus, we have S5 = {Ps, P;, P3} and Sy = {Fs, P;, Py} so far. Based
on the definition of type-2.5 similarity, the answer is the intersection of Sy 5 and Sy. That

is, pictures P; and Py are of type-2.5 similarity with the query picture ¢;.

3.4.7 Query of Type-3 Similarity

Since pictures P; and Py are of type-2.5 similarity with the query picture ¢, pictures P;
and Py are the candidates for the type-3 similarity checking. The topological relationship
field of the record signature (RS'"® and RS?"®) can help us to do the type-3 similarity

retrieval. Thus, the steps are described as follows.

1. Since RS! N QRS' = QRS", i € {7,8}, pictures P; and Py need to be checked

furthermore.

2. Next, we have RS? N QRS? # QRS?, RS2 N QRS? = QRS?. Hence, picture Py may
be matched type-3 similarity with the query picture ¢;; but picture P; is not.

4 Performance Study

In this section, we compare the performance of the 2D B-string-based [21] and the unique-
ID-base [10] signature methods with our proposed method by a simulation study. Moreover,

we present the effect of applying the block signature approach to our method.

4.1 A Comparison With the 2D B-String-Based Signature Method

In this comparison, we let the number of different kinds of objects appearing in the database
be 60. For each object, the width and height of which are bounded between 1 and 100,000
units. We prepare 2,000 pictures represented in our proposed method and Lee et al.’s
method in the database in advance. We consider the case of 15 different objects randomly
chosen with the uniform distribution to appear in each picture. There are 100 query

pictures, where each query picture contains 2 different objects. So, the maximum number
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Table 6: A comparison of correct match rates between the 2D B-string-based and our
proposed signature methods

object type-0 type-1* type-2*

2D B-based 12.10% 8.87% 3.74% 3.82%
(11858/98017)1 | (5403/60902) | (465/12430) | (298/7810)

Proposed 80.86% 40.37% 30.27% 5.41%
(11858/14665) | (5403/13383) | (4045/13363) | (300/5548)

T(C/S): C is the number of correctly matched pictures, S is the number of pictures passed
by the signature.

of matched pictures is 100 x 2,000 = 200,000. The begin bound and end bound on z-
and y-coordinates of each object are randomly generated with the uniform distribution.
(Note that the data generated in our simulation study could be considered the result of a
certain public database pre-processed by a certain image understanding technique which
can identify and label objects [13]. For the spatial relationship between any two objects, it
can be derived from the coordinates of objects.)

Table 6 shows the comparison of the correct match rate of these two methods. Each
rate is calculated from the fractional number below it. The denominator is the number
of potential matched pictures judged by Lee et al.’s or our methods. The numerator is
the number of pictures that actually match the object or type-i similarity with the query
pictures. From the denominator shown in Table 6, we observe that our method prunes
off more unqualified pictures than Lee et al.’s method. The numerator in our method for
the object similarity is the same as that in Lee et al.’s method, since both methods have
the same definition of the object similarity. The denominator in our method is less than
that in Lee et al.’s method. Thus, our method has a higher correct match rate than Lee
et al.’s method for the object similarity. Next, because we revise the definition of type-1
similarity in Lee et al.’s method as type-1’ similarity, the numerator for type-1 similarity is
different from that for type-1" similarity. The numerator in Lee et al.’s method is less than
that in our method, which implies that the definition of type-1 similarity is more restrictive
than that of type-1’ similarity. (Note that, the correct match rate could be affected by the

number of objects in the database and in each picture, and also could be further improved
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Table 7: Correct match rates of type-1.5, type-2.5, and type-3 similarity retrieval based on
the proposed method

type-1.5 type-2.5 type-3
12% 4.54% 3.33%
(1334/11120) | (213/4687) | (148/4438)

Table 8: A comparison of storage cost

Min. | Avg. | Max.
2D-B based | 2015 | 2015 | 2015
Proposed 1411 | 1523 | 1631

by choosing the suitable size of a signature and the hash function which has been studied
in [3].)

In Table 7, we observe that our method distinguishes more different pictures than Lee
et al.’s method. For instance, the numbers of matched pictures for type-2.5 and that for
type-3 similarity are 213 and 148, respectively. This shows that our method has the ability
to do the similarity retrieval precisely based on different criteria.

Next, let’s discuss the storage cost of these two methods. In Lee et al.’s method, we let
the length of the object signature be 15, the total length of the type-0 signature be 50 x 5
(with 50 bits for each category), that of the type-1 signature be 250 x 5, and that of the
type-2 signature be 250 x 2, resulting in a total 2015 bits as a record signature for a picture.
In our method, we let the length of a bit string be 55, resulting in a total 2016 bits (i.e.,
36 bits for RS! and 36 x 55 bits for RS?) as a record signature for a picture. Thus, the
size of the signature in these two methods is almost the same.

Table 8 shows the storage cost of these two methods, where “Min.”, “Avg.”, “Max.”
stands for the minimum, the average, and the maximum storage cost of one picture, re-
spectively. Note that in our method, if RS'(i) = 0, then RS?(i) can be removed. Thus,
the size of 2016 bits is the upper bound in our method. We observe that the average size of
the reduced form of our record signature is smaller than 2016 bits. Moreover, our method

needs less storage cost than Lee et al.’s method as shown in Table 8.
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If we divide the directional relationships into more than 9 cases, for example, one for each
degree in a circle, we can support more precise similarity retrieval. However, the storage
cost of signatures will be very huge. In this paper, we show that taking 9 directional
relationships into consideration is acceptable both in the degree of similarity retrieval and

the storage cost.

4.2 A Comparison With the Unique-ID-Based Signature Method

In this comparison, there are 20 different objects and 2,000 pictures in the database. We
consider the case that each picture contains 5 different objects. There are 100 query
pictures, where each query picture contains 2 different objects. We let each length of RS?*
and RS? bit strings be 100. Thus, the length of the unique-ID-based signature is (13+13) +
(13413) * 100 = 2626. We let the bit-string length of our method be 72. Then, the length
of our signature is 2628. (Note that in [10], they have shown that the unique-ID-based
signature method outperforms the 2D B-string-based signature method.) A comparison of
the correct match rate between the unique-ID-based and our proposed methods is shown
in Table 9. (Note that the unique-ID-based method cannot support type-1.5, 2.5 and 3
similarity retrieval.) In Table 9, we show that our method provide a higher correct match
rate than the unique-ID-based method. The correct match rate will be affected by many
parameters, so those in our method in Tables 6 and 9 are different. For the storage cost,

in both methods, if RS'(i) = 0, then RS?(i) can be removed.

4.3 The Block Signature

The above approach for data filtering in all the methods is based on the kind of the
storage organization called sequential signatures, as mentioned in QuickFilter [26]. That
is, given VR records, we have to compare signatures for VR times sequentially. To reduce
the number of comparisons with each record signature in image databases, we can use
techniques of block signatures [8, 10], multi-level signatures [13], or dynamic hashing [26]
to each of methods. Here, we show the simulation results of applying the block signature
(BS) to our method. The algorithm to construct BS is almost the same as RS. The

only one difference between them is that we use another hashing function 6, according to
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Table 9: A comparison of correct match rates between the unique-ID-based (UID-based)
and our proposed signature methods

object type-0 type-1* type-2*

UID-based 51.76% 42.51% 23.28% 20.98%
(10549/20382) | (4974/11701) | (1383/5941) | (292/1392)

Proposed 51.79% 65.01% 72.35% 49.48%
(10549/20370) | (4974/7651) | (3774/5216) | (1229/1491)

Table 10: Percentage of signature comparisons for different number of objects per picture

object | type-0 | type-1" | type-1.5 | type 2’ | type-2.5 | type-3
5 objects | 31.52% | 24.58% | 23.78% | 15.25% | 10.83% 9.80% | 9.71%
10 objects | 47.40% | 43.74% | 43.68% | 37.08% | 23.45% | 21.30% | 20.80%
15 objects | 67.37% | 64.09% | 65.06% | 60.50% | 44.16% | 41.75% | 40.80%

the given k, (the number of 1’s of the block signature) and b, (the number of bits of the
block signature) to get the block signatures of object blocks. Moreover, the size of the bits
generated by the hashing function 6, is usually larger than that used in a record signature
such that we can increase the correct match rate of a block signature.

Let’s consider three cases of 5, 10, and 15 objects in each picture, respectively. There
are 2000 pictures and 2000 record signatures in the database. Each block signature records
the information of 10 pictures. Thus, we have 2000 / 10 = 200 block signatures and
totally 2,200 signatures in the database. From the simulation result shown in Table 10, we
observe that the fewer objects are there per picture, the smaller percentage of signature
comparisons needed, where the percentage of signature comparisons is equal to (the total
number of compared block and record signatures) / (the total number of block and record
signatures). This is because a smaller number of objects per picture implies a smaller
number of bit 1’s in the block signature and, hence, a smaller number of comparisons.

On the other hand, let’s consider three cases of a block signature recording the informa-
tion of 5, 10, and 20 records, respectively. Therefore, there are 400 (= 2000 / 5), 200 (=
2000 / 20), and 100 (= 2000 / 20) block signatures in the database, respectively. The total

number of signatures in the database for each case is 2400, 2200, and 2100, respectively.
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Table 11: Percentage of signature comparisons for different number of records per block

object | type-0 | type-1’ | type-1.5 | type 2’ | type-2.5 | type-3
5 records | 30.54% | 28.91% | 28.86% | 25.90% | 21.00% | 20.07% | 19.84%
10 records | 47.40% | 43.74% | 43.68% | 37.08% | 23.45% | 21.30% | 20.80%
20 records | 77.46% | 72.42% | 72.36% | 65.25% | 41.03% | 38.23% | 37.10%

Table 12: Match rate of block signatures for different number of objects per picture

object | type-0 | type-1’ | type-1.5 | type 2’ | type-2.5 | type-3
5 objects | 24.68% | 17.04% | 16.16% 6.78% | 1.91% 0.78% | 0.69%
10 objects | 42.13% | 38.12% | 38.05% | 30.79% | 15.80% | 13.44% | 12.88%
15 objects | 64.11% | 61.59% | 61.57% | 56.56% | 38.58% | 35.93% | 34.88%

There are 10 objects in each picture. From the simulation result shown in Table 11, we
observe that the more records are recorded in one block signature, the larger percentage of
signature comparisons needed. This is because a larger number of records recorded in one
block signature implies a larger number of matched block signatures (QBS N BS = QBS)
and, hence, a larger number of comparisons, where (QB.S is the query block signature.

Basically, given NR records, the number of records recorded in one block signature
denoted by N RperB, and the match rate of block signatures denoted by M RB, the total
number of comparisons of record and block signatures (T'NC) is equal to
(NR/NRperB) + MRB x (NR/N RperB) « NRperB =
(NR/NRperB) % (1 + MRB % N RperB).

Therefore, TNC' will be affected by M RB and N RperB, given the same N R records.
As shown in Table 12, the number of objects per picture will affect M RB, resulting in
affecting TINC. As shown in Table 13, the number of records per block, i.e., NRperB,
will affect MRB and TNC, too. Moreover, the locality of objects in records (pictures)
and queries will also affect M RB. For example, given 1000 records, 10 objects and a
block signature containing the information of every 10 records, let’s consider the case in
which objects A and B are located in records 1 to 10 only, and most of the queries inquire

the relationship between objects A and B. In such a case, M RB will also be reduced,
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Table 13: Match rate of block signatures for different number of records per block

object | type-0 | type-1’ | type-1.5 | type 2’ | type-2.5 | type-3
5 records | 16.65% | 14.69% | 14.63% | 11.08% | 5.20% 4.08% | 3.81%
10 records | 42.13% | 38.12% | 38.05% | 30.79% | 15.80% | 13.44% | 12.88%
20 records | 76.33% | 71.04% | 70.98% | 63.15% | 38.08% | 35.14% | 33.96%

resulting in a small value of TNC'. In each of the above cases, as long as M RB is smaller
than ((NRperB —1)/N RperB), the method of applying the block signatures always needs

smaller number of comparisons than the method of sequential signatures.

5 Conclusion

In this paper, we have presented a new method which combines the advantages of the
previous methods, the 2D C-string, the 9DLT matrix, and the DT method for similarity
retrieval from a large image database. We have extended the existing three kinds of type-
¢ similarity up to six to facilitate similarity retrieval with high accuracy. By adding 9
directions to 169 spatial relationships, we have shown that up to 289 spatial relationships
can be used to represent the spatial relationships in 2D space, which can distinguish some
spatial relationships that can not be distinguished based on 169 spatial relationships defined
in 2D C-string. Moreover, in order to overcome the ambiguity resulted from enclosing
symbolic objects by M BRs, we have adopted the concept of topological relationships.
Based on the above extensions, we have proposed a new structure of a signature and
algorithms to do the object and six type-i similarities. From our simulation results, we
have shown that our proposed method provides a higher correct match rate than the 2D B-
string-based and the unique-ID-based signature methods. How to handle case of similarity

retrieval for images which may be rotated is our future work.
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