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Abstract

In this paper, we propose an efficient iconic indexing strategy called Generalized Prime-
Number-based Matriz (GPN Matrix) for symbolic pictures, in which each spatial relation-
ship between any two objects is represented as a product of some prime numbers from a
set of 12 prime numbers and is recorded in a matrix. In the proposed strategy, we clas-
sify 169 spatial relationships between two objects in 2D space into five spatial categories,
and define a generalized category rule (based on module operations) for each of those five
spatial categories. As compared to the Prime-Number-based Matrix (PN Matrix) strategy
[5], in which each spatial relationship between any two objects is represented as a product
of some prime numbers from a set of 17 prime numbers, the GPN Matrix strategy has a
smaller storage space requirement than the PN Matrix strategy, which also improves the
query processing time.

(Keywords: 2D string, 2D C-string, image databases, pictorial query, pictorial databases,
similarity retrieval, spatial reasoning)

! This research was supported in part by the National Science Council of Republic of China under Grant
No. NSC-87-2213-E-110-014.



1 Introduction

One of the most important problems in the design of multimedia systems is how images (or
symbolic pictures) are stored in the database [2, 12]. In traditional database systems, the
use of indexing to allow database access has been well established. Analogously, pictorial
indexing techniques are needed to make ease pictorial information retrieval from a pictorial
database.

Over the last decade, many approaches to represent symbol data have been proposed,
for example, 2D-string [2, 3], 2D C-string [8, 10, 11], and 9DLT matriz [4]. Based on those
representations, several algorithms in pictorial querying, spatial reasoning and similarity
retrieval are proposed, where pictorial querying allows the users to query images with a
specified spatial relationship, spatial reasoning means the inference of a consistent set of
spatial relationships among the objects in an image, and the target of similar retrieval is
to retrieve the images that are similar to the query image.

In [5], Chang and Yang proposed a prime-number-based strategy (denoted as the PN
Matrix strategy), which combines the advantages of the 2D-C string and 9DLT Matrix
strategies. In this PN Matrix strategy, each spatial relationship between any two objects
is represented as a product of some prime numbers from a set of 17 prime numbers and
is recorded in a matrix. Moreover, the PN Matrix strategy classifies those 169 spatial
relationships between two objects in 2D space into five spatial categories, including disjoin,
join, contain, belong and part-overlap, by category rules which are efficient modulus-based
operations. For example, 2 x 47 is used to denote the ”disjoin” spatial relationship between
objects A and B along the x-axis (or y-axis), and a "mod 2” operation can answer whether
objects A and B have the "disjoin” spatial relationship.

In this paper, we propose an efficient iconic indexing strategy called Generalized Prime-
Number-based Matriz (GPN Matrix) for symbolic pictures, which is a revised version of
the PN Matrix strategy. In the proposed GPN Matrix strategy, each spatial relationship
between any two objects is represented as a product of some prime numbers from a set of
12 prime numbers and is recorded in a matrix. Moreover, we present the related generalized
category rules. Next, we carefully assign a product of some of the 12 real prime numbers

to each of the 13 spatial operators that denote those 13 spatial relationships, which tries to



make the maximum value of those spatial operators as small as possible. As compared to
Chang and Yang’s PN Matrix strategy [5], in which 20 bits are needed to record the product
of some of those 17 prime numbers (due to the maximum value of 13 spatial operators =
17 x 29 x 37 x 43 = 784363), the proposed GPN Matrix strategy needs 14 bits to achieve
the same goal (due to the maximum value of 13 spatial operators = 2 x 3 x 7 x 11 x
23 = 10626). Furthermore, based on a different approach to handle the join category, we
modify our GPN Matrix strategy to GPN*, so that only 11 prime numbers and 11 bits are
needed (due to the maximum value of 13 spatial operators = 2 x 5 x 7 x 19 = 1330).
Based on the current technology, a short integer is represented in 16 bits and an integer
is represented in 32 bits, the proposed GPN (and GPN*) strategy can reduce the storage
space requirement (needed in the PN strategy) from 32 x N? bits to 16 x N? bits per
picture, where N is the number of objects in the symbolic picture, which also improves the
query processing time.

The rest of the paper is organized as follows. In Section 2, we give a brief description of
the PN Matrix representation. In Section 3, we will present the proposed generalized prime

number matrix representation for symbolic pictures. Finally, Section 4 gives a conclusion.

2 Background

Table 1 shows the definition of the set of spatial operators that are used to denote spatial
relationships, where the notation "begin(A)” denotes the value of begin-bound of object A
and ”end(A)” denotes the value of end-bound of object A [8]. (Note that for an efficient
storage and retrieval of the extended structure objects, in all of the previous approaches
mentioned before, each object of a picture is abstracted as a minimum bounded rectangle
(MBR).) According to the begin-bound and end-bound of the picture objects, spatial rela-
tionships between two enclosing rectangles along the z-axis (or y-axis) can be categorized
into 13 types ignoring their length. Therefore, there are 169 types of spatial relationships
between two rectangles in 2D space, as shown in Figure 1, where operator* denotes the
inverse operator of the related operator, for example, A < B implying B <* A. They can
be categorized in five types, disjoin, join, contain, belong and partial overlap. The five types

of the spatial relations between objects are defined in Figure 2. The measure criteria for



Notation Condition Meaning

A<B end(A) < begin (B) A disjoinsB
A=B begin(A) = begin(B) A isthesameasB
end(A) = end(B)
A|B end(A) = begin(B) A is edgeto edge with B
A %B begin(A) < begin(B) A contains B and they
end(A) > end(B) have not the same bound
Al[B begin(A) = begin(B) A contains B and they
end(A) > end(B) have the same begin bound
AlB begin(A) < begin(B) A contains B and they
end(A) = end(B) have the same end bound
A/B begin(A) < begin(B) A is partly overlapping
< end(A) < end(B) with B

Table 1: Definitions of Lee’s spatial operators

categorization is the area of the intersection of A and B.

Suppose A and B are two objects in a picture f, and the spatial relationship between
them in terms of r-axis and y-axis is (Arf§ zpB, Ar%) zB), where 1%  and 7% ; are the
spatial operators in Table 1. By observing the five spatial categories among the 169 spatial
relationships in Figure 1, Chang and Yang [5] discovered some interesting and useful results
as shown in Figure 3. Based on the observation, the PN Matrix strategy can support
efficient spatial reasoning by making use of the Prime-Number-based (PN) Matrix. The
major step is to assign each spatial operator a unique number (= a product of some prime
numbers) according to these five spatial categories.

The assignments of spatial-operator-values for these 13 spatial operators are shown in
Figure 4, and the five category rules based on the module operation are shown in Figure
5. Note that in Figure 5, let sov(r) be the spatial-operator-value of r (i.e., the product of
some prime numbers as shown in Figure 4) and sv(A, B) = sov(r} ) X sov(r}) p) as the
spatial-value of the objects pair (A, B).

For the symbolic picture shown in Figure 6, the corresponding spatial matrix S is shown

as follows:
A B C D FE
Ao | % % /]
g Bl< 0 < %N* <
S Cl< | 0 % )
D|l<* < < 0 |
E|%* [* < < 0

where the lower triangular matrix stores the spatial information along the z-axis, and
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Figure 1: The 169 spatial relationship types of two objects

Disjoin: ANB=10
Join: A N B = single point or line segment
Contain: ANB=B
Belong: ANB=A

Partial overlap: A N B = the area of partial A and partial B.

Figure 2: The category rules defined by intersection

. Disjoin: One or both the r% 5, ¥ 5 spatial operators are in { <, <* }.

. Join: (a) None of the 1§ p, 7} p spatial operators is in { <,<* }. And, (b) one or both the
4.8 %  spatial operators are in { |,|* }.

. Contain: Both the r§ 5, r%’B spatial operators are in { =,%,],[ }.
. Belong: Both the 4 , TZ,B spatial operators are in { =, %*,]*,[* }.
. Part_overlap: (a) One of the T B TZ,B spatial operators is in { /, /* } and the other is in

{%,[],/,=,%",[*,]*,/* }- Or (b) one of the r§ p, r%,B spatial operators is in { %, ],[ } and
the other is in { %*,]*,[* }.

Figure 3: Specific characteristics of five spatial categories



L2 % 4T (= 94)

. 3% 53 (= 159)

L5 x 7 x 37 x 41 ( = 53095)
. 5 x 13 x 37 x 41 ( = 98605)
05 x 11 x 37 x 41 ( = 83435)
. 31 x 37 x 59 ( = 67673)

: 5 x 17 x 37 ( = 3145)

| A

122 (=4)

:32(=9)

.17 x 19 x 37 x 43 ( = 513893)
0 17 % 29 x 37 x 43 ( = 784363)
. 17 x 23 x 37 x 43 ( = 622081)
: 312 x 37 ( = 35557)

Figure 4: The assignments of those 13 spatial operators in the PN Matrix strategy by using

17 prime numbers

Disjoin if sv(A, B) mod 2 = 0.

Join if sv(A, B) mod 2 # 0, and sv(A, B) mod 3 = 0.

Contain if su(A, B) mod 52 = 0.

Belong if su(A, B) mod 172 = 0.

Part_overlap if sv(A, B) mod (31 x 37%) = 0, or sv(4, B) mod (41 x 43) = 0.

Figure 5: Category rules in the PN Matrix strategy

=

..........

Figure 6: An image and its symbolic representation



the upper triangular matrix stores the spatial information along the y-axis. That is,
Slv,v;] = 3, if @ > j; S, vl = rf; it i < j; Slo,v] = 0if i = j, Yo, v; € V,
Vr}"i,rf’j € A, 1 <4,5 < m, where rj; is the spatial operator between objects v; and v;
along the x-axis and 7"5-’,]- is the spatial operator between objects v; and v; along the y-axis.
Note that in this representation, we always record the relationships between two objects v;
and v; from the view point of object v; no matter along the z-axis or the y-axis, where 7 <
j- That is why S{v;, v;] = rf; when ¢ > j. For instance, for the example shown in Figure 6,
the spatial relationship between A and B along the z-axis is A < B.

According to the assignments of spatial-operator-values for those 13 spatial operators

described before, the PN Matrix strategy can transform the spatial matrix S of f into a PN

Matriz T by replacing each spatial operator r¢; (r{;) with its unique spatial-operator-value

0
as follows:
A B C D E
A 0 3x53 5xTx37x4l 17 x 19 x 37 x 43 312 x 37
r_ B 2 x 47 0 22 17 x 19 x 37 x 43 22
T C 2 x 47 3 x 53 0 17 x 19 x 37 x 43 312 x 37
D 22 22 22 0 5 x 13 x 37 x 41
E |17 x19 x 37 x 43 312 x 37 22 2 x 47 0

In this example, since sv(A, B) mod 2 = ((2 x 47) x (3 x 53)) mod 2 = 0, objects A

and B have the ”disjoin” spatial relationship.

3 The GPN Matrix Strategy

Suppose r is a spatial operator in the set { <, <*/|, |*,[,[*,],]*, %, %*, /, /*,=} and A, B are
two objects in the symbolic picture. We define gsov(r) as the generalized spatial-operator-
value of r with a initial value 1, and gsv(A, B) = gsov(r} ) x gsov(r¥) p) as the generalized
spatial-value of the objects pair (A, B). Based on the same observation of those five spatial
categories as shown in Figure 3, we have a different way of assignments. Assume a prime
number set P = { pi,pa,p3, -+, P12 }, where there is no relationship between p; and p;, 1
<1,7 < 12. That is, P is not an ordered set.
To classify the disjoin category, the prime number p; is applied. That is,
gsov(<) := gsov(<) X py;
gsov(<*) := gsov(<*) x ph.



Since only gsov(<) and gsov(<*) are the multiples of p;, one (gsv(A, B) mod p)
operation can determine whether one or both the r% p, 7% 5 spatial operators are in the
set { <,<*}. (Note that to distinguish spatial operators ”<” and ”<*”, we let gsov(<*)
multiply with one more p;.) That is, one (gsv(A, B) mod p;) operation can determine the
disjoin category.

To classify the join category, the prime number p, is applied. That is,

gsouv(]) := gsov(]) X pa;
gsov([*) := gsov(|") x pj.

Since only gsov(|) and gsov(|*) are the multiples of ps, one (gsv(A, B) mod ps) operation
can determine whether one or both the 7% 5, 7 5 spatial operators are in the set { |, |* }.
(Note that to distinguish spatial operators ”|” and ”|*”, we let gsov(|*) multiply with one
more py.) Moreover, none of the 1} g, 7% p spatial operator should be in the set { <, <* },
so a prime number ps is applied. (In other words, both of the 7% 5, 7% ; spatial operators
should be in the set { =,%, %", ],1*,[,[*,|,|*./,/* }). That is,

gsov(r) :=gsov(r) xps,  Vre{=%%"L1"L1LE /L)

Finally, one (gsv(A, B) mod (ps X p3)) operation can determine the join category.

To classify the contain category, the prime number p, is applied. We multiply p4 to the
generalized spatial-operator-value of the spatial operators which are in the set { =, %, ], [ }.
That is,

gsov(r) = gsov(r) X pq, vre{=%,]1}.

From the observation of the contain category, one (gsv(A, B) mod p?) operation can
determine whether both the r§ p, 7%} 5 spatial operators are in the set { =, %, ], [}. That is,
one (gsv(A, B) mod p?) operation can determine the contain category. But to distinguish
these four symbols, three more prime numbers must be applied. Therefore,

gsov(%) := gsov(%) X ps;
gsouv(]) == gsov(]) x pe;
gsov([) == gsov([) X pr.

To classify the belong category, the prime number pg is applied. We multiply pg to the
generalized spatial-operator-value of the spatial operators in the set { =, %*,]*,[* }. That

is,



gsov(r) := gsov(r) X ps, vre {= %1%}

From the observation of contain category, one (gsv(A, B) mod pZ) operation can deter-
mine whether both the 7 g, 7} 5 spatial operators are in the set { =, %*,]*,[* }. That is,
one (gsv(A, B) mod p2) operation can determine the contain category. But to distinguish
these four symbols, three more prime numbers must be applied. At this time, we re-use
those prime numbers ps, pg and p;. Although they are used before, it will not cause any
problem here. Therefore,

gsov(%*) := gsov(%*) x ps;
gsov(]*) := gsov(]") X ps;
gsov([*) = gsou([*) x pr.

To classify the part_overlap category, let’s consider the following two cases stated be-
fore. First, to determine whether one of the 7% 5, %) p spatial operators is in the set {/, /*},
and the other is in the set { %, [,], /,=, %", [*,]*, /" }, two prime numbers py and p;, are
applied. That is,

gsov(/) = gsov(/) X py;
gsov(/*) := gsov(/*) X pg;
gsov(r) := gsov(r) X pio, vre{%,L],/,= %515/}

Therefore, one (gsv(A, B) mod (py X p?;)) operation can determine whether one of the
4.5 Th,p Spatial operators is in the set { /, /* }, and the other is in the set { %,[,], /,=,
%*, %*,[*,]*,/* }. That is, one (gsv(A, B) mod (py x p?,)) operation can determine the
first case of the part_overlap category. (Note that since ”/” and ”/*” also appear in the
set { %,[,1,/,=, %, %* [*,]%,/* }, gsov(/)(and gsov(/*)) mod (py x p1g) = 0.) Second, to
determine whether one of the 14 5, 7 5 spatial operators is in the set { %,], [}, and the
other is in the set { %*,]*,[* }, two prime numbers p;; and p;, are applied. That is,

gsov(r) := gsov(r) X pi1, vre{%,],[};
gsov(r) := gsov(r) X pia, vre { %% )

Therefore, one (gsv(A, B) mod (p11 X p12)) operation can determine whether one of the
r4.5» T4 p sbatial operators is in the set { %,],[ }, and the other is in the set { %*, [*,]* }.
That is, one (gsv(A, B) mod (p1; X pi2)) operation can determine the second case of the

part_overlap category. Consequently, one (gsv(A, B) mod (pg x p%;)) operation and one



< 1 p1LXps < it

|t p2 X p3 X ps I* :pxop;

% 1 p3 X PpsXpsXpio X P %* : p3 X ps X pg X Pio X P12
[t p3XpsXprXpoXpi [t p3 X pr X pg X pio X Pi2
| 1 p3 X paXpe X pio X Ppii ¥ 1 p3 X pe X pg X Pig X Pi2
/3 X prXpyXpio /¥t p3 X P X pio

T P3 X Ppa X pg X Pio

Figure 7: The assignments of those 13 spatial operators in the GPN Matrix strategy

Disjoin if gsv(A, B) mod p; = 0.

Join if gsv(A, B) mod (py x p2) = 0.

Contain if gsv(A, B) mod p? = 0.

Belong if gsv(A, B) mod pZ = 0.

Part_overlap if gsv(4, B) mod (py X p¥;) = 0, or gsv(A, B) mod (p11 X p12) = 0

Figure 8: Generalized category rules

(gsv(A, B) mod (p11 X p12)) operation can determine the part_overlap category.

According to the above descriptions, we have assigned each spatial operator a unique
value which can be used to determine different spatial categories efficiently. However, in
order to determine the spatial relationships between any two objects efficiently, we have to
make each of the generalized spatial-operator-values of these spatial operators indivisible
by the generalized spatial-operator-value of any other spatial operator. That is, no one
generalized spatial-operator-value of a spatial operator is a multiple of the generalized
spatial-operator-value of any other spatial operator. Therefore, we let gsov(<) := gsov(<)
X ps to distinguish spatial operators < and <*, let gsov(|) := gsov(]) X ps to distinguish
spatial operators | and |*, and let gsov(/) := gsov(/) X p; to distinguish spatial operators /
and /*. Finally, the assignments of generalized spatial-operator-values for these 13 spatial
operators are shown in Figure 7, and the five generalized category rules based on the
modulus operation are shown in Figure 8.

By carefully assign a different prime number to each p; [14], we can assign 12 real
prime numbers to those p; as shown in Table 2. The complete assignment of those 13

spatial operators is shown in Figure 9, and the related category rules are shown in Figure



Old | p1 | p2 | P3| Pa| D5 | P6 | D7 | P8 | Po|Pi0| P11 | P12
New | 37| 31| 2 5 117119123 7 | 29 3 13 11

Table 2: The relationships between the original assignments and the new assignments in
the GPN Matrix strategy

< 17T x 37 (= 629) <* 372 (= 1369)

| :2x19x31 (=1178) [* 2 x31% (= 1922)

% :2x3x5x13x17 ( = 6630) %* 1 2x3x7x11x17 (= 7854)
[ :2x3x5x13x23(=28970) [* :2x3x7x11x23(=10626)
] :2x3x5x13x19 (= "7410) I :2x3x7x11x19 (=8778)
/1 2x3x23x29 (=4002) /¥ 12 x 3 x29? (= 5046)

:2x3x5xT7(=210)

Figure 9: The assignments of those 13 spatial operators in the GPN Matrix strategy by
using 12 prime numbers

10. (Note that in this assignment, we try to assign a smallest prime number to a p; which
occurs in the longest product of prime numbers (i.e., a product which has the largest
number of prime numbers) and has the largest times of occurrence in all assignments. For
example, we will assign 2 to ps.) Based on this assignment, the maximum value is 10626
in the GPN Matrix strategy, which needs 14 bits to store it, as compared to 784363 in the
assignment of the PN Matrix strategy as shown in Figure 4, which needs 20 bits to store it.
Therefore, our GPN Matrix strategy requires a smaller storage space than the PN Matrix
strategy.

If we apply the join category rule as described in the PN Matrix strategy [5] in which

Disjoin if gsv(A, B) mod 37 = 0.

Join if gsv(A, B) mod (22 x 31) = 0.

Contain if gsv(A, B) mod 52 = 0.

Belong if gsv(A, B) mod 72 = 0.

Part_overlap if gsv(A, B) mod (3% x 29) = 0, or gsv(A, B) mod (11 x 13) = 0.

Figure 10: Generalized category rules in the GPN Matrix strategy by using 12 prime
numbers

10



two modulus (and comparison) operations are used (as shown in Figure 5), instead of one
modulus (and comparison) operation used in the GPN Matrix strategy, we can use only 11
prime numbers to distinguish all spatial operators as shown in Figure 11. We call it the
GPN* Matrix strategy. The resulting category rules are shown in Figure 12. In the GPN*
Matrix strategy, the maximum value is 1330, which needs only 11 bits to record it, resulting
in a smaller storage space requirement than the PN Matrix strategy. Based on the current
technology, a short integer is represented in 16 bits and an integer is represented in 32 bits,
the proposed GPN (and GPN*) strategy can reduce the storage space requirement (needed
in the PN strategy) from 32 x N? bits to 16 x N? bits per picture, where N is the number
of objects in the symbolic pictures. Therefore, the storage space requirement both in the
GPN Matrix and GPN* Matrix strategies is smaller than that of the PN Matrix strategy.

To study the effect of the storage space requirement to the query processing time, we
also do a simulation study. Our experiments were performed on a Pentium IT with one CPU
clock rate of 450 MHz, 256 MB of main memory, running under Window 2000 Professional
with the Microsoft Visual C++ 6.0 compiler in a released mode. To simplify our simulation,
we let the maximum number of different objects appearing in the database be 20. For each
object, it can appear in a picture with 100000 * 100000 points [1]. We prepare 2000 pictures
with each of them 10 different objects appearing in each picture, which are created randomly
with a uniform distribution. (That is, for each object shown in a picture, we generate its
left-top and right-bottom coordinates randomly.) Those 2000 pictures then represented in
the GPN matrix and the PN matrix representation in the database in advance. For this
case, we consider the query processing time of type-0 similarity retrieval, where a picture
is of type-0 similarity if all the spatial category relationships of object pairs are the same
to the query picture. We compare one input query picture represented in the GPN matrix
(or PN matrix) with each of those prepared 2000 pictures in the database, respectively.
We then compute the average cost for comparing the query picture with each of those 2000
pictures. (Note that this is the same case as we have 200 pictures in the database, and
then we prepare 10 query pictures to compare with each of those 200 pictures stored in
the database and compute the average cost of those 200 * 10 = 2000 tests. Therefore, the

simulation result is the average cost of 2000 tests.) From the simulation result, the query

11



< 13 x29 (=377) <0292 (= 841)

| 113 x 31 (= 403) |* 1312 (= 961)

% :2x3x11x13 (= 858) %* 1 2x5x7x13 (= 910)
[ 1 2x3x11x17 (= 1122) [* :2x5x7x17 (=1190)
] :2x3x11x19 (= 1254) ¥ 12x5x7x19 (=1330)
/ :2x13x23 (= 598) J* 2 %232 (= 1058)

= :2x3x5(=30)

Figure 11: The assignments of those 13 spatial operators in the GPN* Matrix strategy by
using 11 prime numbers

Disjoin if sv(A, B) mod 29 = 0.

Join if sv(A, B) mod 29 # 0, and sv(A, B) mod 31 = 0.

Contain if su(A, B) mod 32 = 0.

Belong if sv(A, B) mod 5% = 0.

Part_overlap if su(A4, B) mod (2% x 23) = 0, or sv(A4, B) mod (7 x 11) = 0.

Figure 12: Category rules in the GPN* Matrix strategy by using 11 prime numbers

processing time in the GPN strategy is 0.005 seconds per picture, while the query processing
time in the PN strategy is 0.01 seconds per picture. Therefore, we show that the proposed
GPN strategy also has better performance than the PN strategy in terms of time. (Note
that although the PN and GPN (or GPN*) strategies have the same total performance
complexity (O(K % N?)) for query processing, where K is the number of pictures and N
is the number of objects in the database, the difference of the storage space requirement
between them has really affected the query processing time as shown in our simulation

study.)

4 Conclusion

In this paper, we have proposed an efficient iconic indexing strategy called Generalized
Prime-Number-based Matriz for symbolic pictures. In the proposed strategy, we have as-
signed each spatial operator a unique value which is a product of some prime numbers from
a set of 12 prime numbers, and derived five generalized category rules. As we have shown

that the GPN Matrix strategy needs a smaller storage space requirement than the PN

12



Matrix strategy, which also improves the query processing time. To handle large amounts

of image databases, several access methods [6, 9] have been proposed by using the concept

of superimposed coding [7] and two-level signature files [13]. However, such a bit-pattern-

based signature approach can cause a false match, where a false match is that a record

signature matches a query signature but the corresponding record does not satisfy the

query. How to efficiently handle large amounts of image databases with a low false match

rate is an important future research direction.
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