An Efficient Signature-based Strategy for Supporting
Inexact Filtering in Information Filtering Systems

Ye-In Chang, Lee-Wen Huang, Jun-Hong Shen and Yi-Siang Wang

Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, R.O.C
{E-mail: changyi@cse.nsysu.edu.tw}
{Tel: 886-7-5252000 (ext. 4334)}
{Fax: 886-7-5254301}

Abstract

To help users find the right information from a great quantity of data, Information Filtering
(IF) sends information from servers to passive users through broadcast mediums, rather
than being searched by them. To efficiently store many user profiles in servers and filter
irrelevant users, many signature-based index techniques are applied in IF systems. By
using signatures, IF does not need to compare each item of profiles to filter out irrelevant
ones. However, because signatures are incomplete information of profiles, it is very hard
to answer the complex queries by using only the signatures. Therefore, a critical issue of
the signature-based IF service is how to index the signatures of user profiles for an efficient
filtering process. The inezact filtering query is one kind of queries in the signature-based
IF' systems which is used to filter out the non-qualified data compared with queries. In
this paper, we propose an ID-tree index strategy, which indexes signatures of user profiles
by partitioning them into subgroups using a binary tree structure according to all of the
different items among them. In an ID-tree, each path from the root to a leaf node is the
signature of the profile pointed by the leaf node. Because each profile is pointed by only
one leaf node of the ID-tree, there will be no collision in the structure. Moreover, only
the different items among subgroups of profiles will be checked at one time to filter out
irrelevant profiles for queries. Therefore, our strategy can answer the inexact filtering query
with less number of accessed profiles as compared to Chen’s signature tree strategy. From
our simulation results, we have shown that our strategy can access less number of profiles
to answer the queries than Chen’s signature tree strategy for the inexact filtering.

(Keywords: Data partition, Inexact filtering, Information filtering, Signature, Similarity
search)

1 Introduction

A tremendous amount of information is created and delivered over World Wide Web. This
has made it increasingly difficult for individuals to control and effectively manage the po-
tentially infinite flow of information. Ironically, just as more and more users are getting
online, it is getting increasingly difficult to find information unless one knows exactly where
to get it from and how to get it. Information filtering has made considerable progress in
recent years, which denotes a family of techniques that help users find the right informa-
tion items while filtering out undesired ones. In order to dispatch relevant information to
users with respect to their specific information need, a user expresses his (her) interests
in a number of long-term [18], continuously evaluated queries, called profiles. The users
will then passively receive information filtered according to their profiles. In a wide range
of applications, such as spam email filtering [8], film filtering [15], news filtering, and rec-
ommender systems for products, information filtering is playing an increasingly important
role.

Information Filtering (IF) is an area of research that develops tools for discriminating
between relevant and irrelevant information [14]. It deals with the delivery of items selected
from a large collection that the user is likely to find interesting or useful and can be seen
as a classification or a cluster task. Unlike information retrieval (IR) technique, IF deals
with users who have long-term interests (information needs) that are expressed by means
of user profiles, rather than with casual users whose needs are expressed as ad-hoc queries
[2, 11]. To date, a large number of filtering techniques have been developed.

A signature is an access strategy for partial-match retrieval which meets many require-
ments of an office environment [4]. To apply on IR or IF systems, signatures can be used
to save the storage of database and speed up the query performance. Signatures are hash-
coded binary words derived from objects stored in the database. They serve as a filter for
retrieval in order to discard a large number of non-qualified objects. Generally, all bits
of the signature are cleared to zero, then a hash transformation is applied to the object’s
values to determine which bits are set to one.

Inezact filtering is one kind of searching strategies which are usually applied on the

signature-based IF systems. An inexact filtering strategy is often used to filter out the

Qualified Document
{a,b,c,d, e

Query Itemset
{a, c, &

Unqualified Document
@ : Query {ab,cgfh}

Q : Document

Figure 1: An example of the relationship between a query and database documents in the
inexact match

non-qualified data compared with the queries. It can retrieve the database very quickly,
but still needs a stage to refine the searched answers. The inexact filtering problem is
extended from the inexact match. In the inexact match, to answer query ¢, we need to find
all objects in the database which contain each item of q. However, in the inexact filtering,
we need to filter out all objects in the database which are not contained in q. Therefore,
the inexact filtering can be considered as the inverse problem of the inexact match. An
example of the relationship between a query user and database documents in the inexact
match is shown in Figure 1. In this example, there are 3 items, i.e., a, ¢ and e, contained
in the query itemset. Because the document with items a, b, ¢, d and e contains the items
of the query entirely, this document is qualified to be sent to the query user. On the other
hand, the document with items a, b, ¢, g, f and h does not contain the items of the query
entirely. Therefore, this document will not be sent to the query user.

The inexact filtering strategies are often applied on the content-based filtering systems.
In these systems, the query is an incoming document which will be sent to database users
according to their profiles. The formal definition of the inexact filtering problem is described

as follow:

Definition 1. Giving an incoming document, I_Doc, the inexact filtering problem is to
find all database user profiles whose interest items are all contained in I_Doc. That is,

P; C I_Doc, where P; s the i-th profile in the database.

Query Document
{a,b,c,d, &

Qualified User Profile
{a,c €

. 1 Query
() + user Profile
Unqualified User Profile

{a,c.g}

Figure 2: An example of the relationship between a query document and profiles in the
inexact filtering

An example of the relationship between a query document and profiles in the inexact filter-
ing is shown in Figure 2. In this example, there are 5 items, i.e., a, b, ¢, d and e, contained
in the query document. Because the profile with items a, ¢ and e is entirely contained
in the incoming document, this profile is qualified to receive the incoming document. On
the other hand, the profile with items a, ¢ and ¢ is not entirely contained in the incoming
document. Therefore, this profile will not receive the incoming document.

Different strategies for the inexact match have been proposed, such as the Signature
Files [5, 10], the Bit-Slice Files [9], the S-trees [4], and the Signature Trees [3]. All of these
strategies can be revised for the inexact filtering by changing the query process very easily.
However, the inexact match means that all database objects containing the query need to
be found. Chen has proposed signature tree strategy [3] to solve the inexact match problem
efficiently. This strategy can also be revised to solve the inexact filtering. The signature
tree is built by partitioning database profiles into groups according to the different items
among them. Therefore, when a query is received, it needs only to check the existence of
these different items in the query to filter irrelevant database profiles. However, because
it extracts only one different item among each group at a time, the filtering effect may
become poor when the query contains all of these different items.

Therefore, instead of using the signature tree to store user profiles, in this paper, we

propose a data structure, called the Identifier Tree (ID-tree), by extracting more number
of different items among profiles to index them. Similar to the signature tree, each internal
node of the ID-tree can be considered as a partition of profiles. However, there could be
more than one item used to partition profiles in an ID-tree. Therefore, the profiles will
be partitioned into groups more exactly. Moreover, because all profiles in the database
are indexed globally, we only consider constructing the index structure for storing profile
signatures in the case of the off-line processing. From our simulation, we have shown that
the ID-tree strategy can reduce the most number of accessed profiles in the inexact filtering
as compared with the signature tree strategy [3].

The rest of this paper is organized as follows. Section 2 gives a survey of several signature-
based index strategies under the inexact filtering. Section 3 presents the proposed strategy,
called the ID-tree index strategy. In Section 4, we study the performance and make a
comparison of the proposed strategy with the signature tree strategy. Finally, we give the

conclusion.

2 A Survey

In this section, we present a survey of some well-known signature-based index strategies
which are often applied in information filtering systems. First, we will introduce some
index strategies of the inexact filtering, including the Signature File [5, 10], the Bit-Slice
File 9], the S-Tree [4] and the Signature Tree [3].

In the content-based information filtering systems, an incoming document is represented
by a collection of keywords. Moreover, a user profile in the database is also represented by a
sequence of distinct keywords. If an incoming document matches a profile, it must contain
each keyword of the profile [6]. To save the storage of user profiles and filter documents
much efficiently, profiles and documents are often represented as bitmaps in the filtering
process. The Signature File [5, 10], the Bit-Slice File [9], the S-Tree [4] and the Signature
Tree [3] are introduced.

In information filtering systems, a user profile may contain several keywords to filter
incoming documents. Thus, a profile signature is formed by superimposing the signatures

for all its keywords. Figure 3 depicts the signature generation and compression process of

Profile: ’ computer ‘ algorithm ‘programming

Keyword signature:
computer 010 100 011 000
agorithm 100 010 010 100
programming , 010 100 101 001
Profile signature 110110111101
Queries: Query signatures: Matching results:
computer 010 100 011 000 match with the profile
network 010 001 110 100 no match with the profile
calculate 110100 100 101 false drop

Figure 3: Signature generation and comparison

Y«

a profile having three keywords: “computer,” “algorithm,” and “programming.” When a
new document arrives, the profile signatures are scanned and many non-qualified profiles
are discarded. Then, the rest profiles are checked in the refinement step to eliminate
the false drops. After the refinement step, the matched document will finally return to
the remaining users. A document containing certain keywords to be searched will be
transformed into a document signature Sig(D) in the same hash function. The document
signature is then compared sequentially with every profile signature Sig(P;) in signature
files. Three possible outcomes of the comparison are exemplified in Figure 3: (1) the profile
matches the query (i.e., Sig(D) A Sig(P;) = Sig(F;)); (2) the profile does not match the
query (i.e., Sig(D) A SigP; # Sig(P;)); (3) the signature comparison indicates a match but
the profile in fact does not match the search criteria; this case is also called a false drop [5].

In a signature file, a set of profile signatures is sequentially stored, which is easy to
implement and requires low storage space and low update cost. However, when a new
document arrives, a full scan of the signature file is required. Therefore, it is generally slow
in retrieval. Thus, each profile has to be checked when a new document arrives. In order to
improve the matching process, the profile can be stored in a column-wise manner. That is,
the signatures in the file are vertically stored in a set of files [9]. Concretely, if the length

of the signatures is m, then all the signatures will be stored in m files. Thus, the profiles

in the signature files are separated by each bit. Therefore, the search cost of a bit-slice
file is lower than that of a sequential one. However, the update cost in this data structure
becomes larger than that of a sequential one.

The S-tree is a kind of the multi-level signature-based data structure, and is wildly
applied on IR and IF systems. S-trees are first purposed by Deppisch [4]. Similar to B*-
trees [1] and R-trees [7], they are height-balanced trees having all leaves at the same level
[4]. The advantage of this index strategy is that the scanning of a whole signature file is
replaced by searching several paths in an S-tree. However, the storage overhead is almost
doubled because of the space used by internal nodes. Furthermore, due to the OR operation
among child nodes, the node near the root tends to have many “1” bits, resulting in low
selectivity. The disadvantage was improved by Tousidou et al [16, 17]. They propose several
strategies for node splitting and partial-tree restructuring to improve query-response time.
However, this kind of improvement is achieved at cost of time to update data, because it
is very time consuming to determine seeds in splitting nodes.

A signature tree that works for a signature file is just like a ¢rie [13] for a text. But
in a signature tree, each path is a signature identifier which is not a continuous piece of
bits. A signature tree is quite different from a trie in which the bits labeling a path are
consecutive. The signature identifiers can be considered as a generalization of the concept
of position identifiers [3] extended to handle inexact matching.

The signature tree replaces the slice checking in the bit-slice strategy with a single bit
checking. Thus, it takes less time to perform the insertion and deletion operations on
signatures as compared with the bit-slice strategy. Moreover, because of the binary tree
structure, the storage requirement of signature trees is much less than that of S-trees.
However, because the signature tree extracts only one different item among each group at
a time, the filtering effect may become poor when the query contains all of these different

items.

3 The ID Tree Index Strategy

In this section, we present a signature-based tree structure to index database transactions,

which can efficiently support the inexact filtering. The structure of the ID-tree is similar

Table 1: The example user profiles

Profile Items Signature

P1 1234 1111000000
P2 1356 1010110000
P3 23457 0111101000
P4 24689 0101010110
P5 24678 0101011100
P6 123910 1110000011
p7 1789 1000001110
P8 12678 1100011100
P9 123 1110000000

to a binary trie [13] for a text. But unlike the consecutive bits of each path in a trie,
the paths in an ID-tree are discontinuous. The concept of the ID-tree is similar to the
decision tree, which can partition data into subgroups according to the characteristic of
each profile. However, the results of the ID-tree are profiles which have some relationship to
the queries according to the query types; on the other hand, the results of the decision tree
are some classifications of profiles which turn a complex data representation into a much
easier structure. However, the ID-tree partitions data by finding items which can evenly
divide user profiles into subgroups, but the decision tree partitions data by calculating the

entropy value of each attribute in the profiles.

3.1 Construction of the ID Tree

The construction process of the ID-tree is composed of two steps: (1) preprocessing, and
(2) extension. In the preprocessing step of constructing an ID-tree from database profiles,
a count-based method is used to preprocess the database profiles. Figure 4 illustrates the
ID-tree generated from the profiles in Table 1 after the preprocessing step. The preprocess
steps of the profiles by using counting tables are described in procedure Construct_IDtree
shown in Figure 5.

Initially, all profiles in the database are recorded in PSet which will be added to the
root.prof (line 3). Next, if the size of a group is greater than 1, we will partition the profiles

into subgroups (line 4). Function Generate_Key is used to find the key for partitioning. This

| P4 P5 | |P7] P8 P2]

Figure 4: An example of the ID-tree after the preprocessing step

key will be set as an ID-key of identifier root (line 6). After finding the key for partitioning,
this key will be removed from domain itemset D (line 7). Next, we will allocate all profiles
into two subgroups according to whether they contain the key or not (lines 8-12). If the
key is contained in a profile, this profile will be partitioned into the right subgroup, which
is recorded in root.re.prof (lines 9-10). Otherwise, the profile will be partitioned into the
left subgroup, which is recorded in root.lc.prof (lines 11-12). Therefore, the first ID-key
will exist only in one subgroup of profiles partitioned by an identifier. The partition of
profiles will be continued recursively until the size of each subgroup is equal to 1 (line 13).
When both the left and right subgroups partitioned by an identifier contains only 1 profile,
we will set the profile as I_key of the left and right children of this identifier (lines 14-17).
The value of I_key will be used in the extension step. Finally, we will check the size of the
left and right subgroups partitioned by the identifier. If the size of a subgroup is greater
than 1, this subgroup will be partitioned recursively (lines 19-28).

Function Generate_Key shown in Figure 6 is to generate the ID-keys of each identifier by

its counting table. To find the key for partitioning, function ItemCount is used to count

1: procedure Construct_IDtree(D, PSet, root)
2: begin

3: root.prof := PSet,;

4: if (|root.prof| > 1) then /* Create a branch. */

5: begin

6: root.key := Generate_Key(D, PSet); /* Find the key for partition. */
7: D := (D — root.key_set); /* Remove the used key from domain D. */
8: for each (profile ¢ € root.prof) do

9: if (root.key € t) then

10: root.re.prof 1= root.rc.prof Ut

11: else

12: root.le.prof := root.le.prof Ut;

13: if (|root.le.prof| =1 and |root.rc.prof| = 1) then

14: begin

15: root.lc.I_key := root.lc.prof;

16: root.rc. I _key := root.rc.prof;

17: end;

18: end;

19: if (|root.lc.prof| > 1) then /* Partition root.lc.prof recursively. */
20: begin

21: root := root.lc;

22: Construct_I Dtree(D, root.prof, root);

23: end;

24: if (|root.re.prof| > 1) then /* Partition root.rc.prof recursively. */
25: begin

26: 700t := T001.7C;

27: Construct_I Dtree(D, root.prof, root);

28: end;

29: end;

Figure 5: Procedure Construct_I Dtree

1: function Generate_Key(D, PSet): Integer
/* Return the first ID-key of each identifier by its counting table. */

2: begin
3: first_key := 0;
4: I.C := ItemCount(PSet);
5: mad = |PSet|.
: : ERE
6: first_key = minl_C(I-C,mid);
7: end;

Figure 6: Function Generate_Key

the number of each item in domain itemset D according to PSet. This function will return
a counting table of PSet and recorded as I_C' (line 4). Next, the value of @ is calculated
as mid to find the half number of profiles in the group (line 5). The value of PSet and
mid will be used in function minl_C to find the item which has the minimum value of
|I_C[i] — mid|, where 1 < i < |I_C| (line 6). After the preprocessing step, the database
profiles will be partitioned into subgroups with no collision in all leaves of the ID-tree.

Take the profiles shown in Table 1 as an example. Figure 7 illustrates the generation
process of the first ID-key in each identifier using the counting tables. At the beginning, a
counting table with all domain items is built in Function Generate_Key shown in Figure 6
to record the number of items in the database profiles. Next, the item j is chosen from the
counting table such that [I_C[j] — N[is minimal, 1 < j < N, where I_C[j] is the number
of item j appearing in all database profiles and N is the number of profiles in this group
(or subgroup). This item will then be used as the first ID-key of the identifier. In Figure
7-(a), because there are 9 profiles in the database before the first partition, the first item
in the counting table with the minimum value of [I_C[j] — 3 x 9], 1 < j <9, i.e., item 3,
will be used as the first ID-key of the root identifier (i.e., level 1). After the first ID-key is
generated, the corresponding item will be removed from the domain, because this item will
no longer be used as the ID-key of its descendant identifiers. Then, the database profiles
can be partitioned into two subgroups according to whether they contain item 3 or not. In
this case, item 3 is not contained in each profile of the left subgroup, i.e., Py, Ps, P; and
Py, and is contained in each profile of the right subgroup, i.e., P, P5, P3, Py and Py. After
the profiles are partitioned, a path bit “0” will be assigned to the left link of the identifier
and a bit “1” will be assigned to the right one.

Next, to generate the identifiers of the subgroups, the counting tables of the profiles in
each subgroup are recursively built to find the ID-keys. Figure 7-(b) shows the process
of the identifier generation in the second level of the ID-tree. Because item 3 has been
removed from the domain at the first partition, this item will not be recorded in both
counting tables used in level 2. In the left subgroup partitioned by the root identifier, there
are 4 profiles in the subgroup. Thus, the counting table of this subgroup will be rebuilt by

counting the number of items in these 4 profiles. In the counting table of the left subgroup,

10

Item ID | C
1 6
2 7
*3 5 e e
4 4 0 L
5 2
6 4
P1, P2,
7 4 P4, P5,
P3, P6,
) 4 P7, P8 Pg
9 3
10 1
N=9
(a)
I C
4
4
Item ID e
*1 2
2 3 s ’
3 6 1
4 2 7 1
° 0 P4, p5| p7,pgl (P2 P2 b1 p3 8 0
9 1
! £ 10 1
8 4 NosE
9 2 -
10 0
N=4
(b)

Figure 7: The generation process of the first ID-key in each identifier by the counting
tables: (a) level 1; (b) level 2.

11

item 1 can be chosen as the ID-key because that |/_C[1] — £ x 4| is minimum as compared
with other items, where N/2 = 2. After ID-key 1 is determined in the left subgroup (i.e.,
level 2), profiles Py and P are partitioned into the left subgroup because that item 1 is not
contained in them. Moreover, P; and Py are partitioned into the right subgroup because
that item 1 is contained in them.

Similar to the processing of the left subgroup, the first ID-key of the right subgroup can
be determined by the counting table of the profiles in it. Thus, item 4 with [_.C' = 2 is
set as the first ID-key of the right child identifier since N/2 = 2.5. Profiles P,, P; and P,
are partitioned into the left subgroup for excluding item 4, and P; and P; are partitioned
into the right subgroup for including item 4. The partition of the profiles will be continued
recursively until the number of profiles in each subgroup is decreased to 1.

Because there is only one ID-key in each identifier after the preprocessing step, the
filtering effect of subgroups using ID-keys may be inefficient. To improve the filtering
efficiency of each subgroup, a method for extending an identifier with more than one ID-
key is used in our strategy. Because there may be more than one different item between
two subgroups partitioned by an identifier, the basic idea of extending the ID-keys of each
identifier is to find all the different items between two subgroups to partition them at one
time. In other words, we increase the number of ID-keys in each identifier to partition each
group more precisely. Figures 8-(a) and 8-(b) show the tracing paths of the ID-tree with
inexact filtering query ¢ = (1,2, 3,5, 8) before and after the extension steps, respectively.
We can observe that the number of ID-keys in each identifier increases after extension. For
example, in Figure 8-(a), the root identifier of the ID-tree only contains 1 ID-key (i.e., 3).
In contrast, it contains 2 ID-keys (i.e., 3, 8) after the extension step shown in Figure 8-(b).
This is because these database profiles can be partitioned up by the absence or occurrence
of 2 ID-keys at one time, which results in filtering more number of non-qualified profiles
than the version of a single ID-key shown in Figure 8-(a). In the example, the tracing paths
of query ¢ are drawn in bold lines. If the path is connected to a profile, this profile will be
checked with the query physically. That is, each bit of the profile will need to be checked
with ¢. In the example, we can observe that 5 profiles are needed to be accessed physically

before the extension (i.e., Py, Py, P;, Py and Py) and only 1 profile is needed to be accessed

12

Figure 8: The tracing examples of ID-trees with the inexact filtering query ¢ = (1,2, 3, 5, 8):
(a) the ID-tree before the extension step; (b) the ID-tree after the extension step.

physically after the extension (i.e., Py). Therefore, it will filter out more irrelevant profiles
to answer a query after the extension step.

The extension process of the identifiers in the ID-tree is described in procedure Fz-
tend_IDkey as shown in Figure 9. In this procedure, three arrays key_set, U_key and [I_key
are used in each identifier to record the information of subgroups partitioned by it. The

information recorded in these arrays are described as follows:
1. key_set is used to record the ID-keys in an identifier.

2. U_key is used to record the ID-keys which have been used by the descendant of an

identifier.

3. I_key is used to record the intersection of all profiles in each subgroup partitioned by

an identifier.

To extend the ID-keys of each identifier, the procedure first traces the ID-tree by its identi-
fiers in the post-order manner (lines 3-6). After an identifier is searched (i.e., a leaf node),
the union of U_key in its left and right children are calculated to get these ID-keys which
have been used (line 7). Then, in line 8, the exclusive OR (XOR) of I_key in these two

13

1: procedure Extend_IDkey(root)
/* Extend ID-keys of each identifier in the ID-tree. */

2: begin
if (root.lc is not a leaf) then

Extend_I Dkey(root.lc);
if (root.rc is not a leaf) then

Extend_I Dkey(root.rc);
root.U_key = (root.lc.U _key U root.rc.U_key);
root.key_set:=(the “1” bit positions of

(root.le.I_key XOR root.re.d _key)—root.U _key);
9: root.U_key := (root.U_key U root.key_set);
10: root.I_key := (root.lc.I _key AND root.rc.I key);
11: Assign_Path(root);
12: end;

Figure 9: Procedure Extend_IDkey

children (root.lc.I_key XOR root.re.d _key) will be calculated to get all of different items
between two subgroups partitioned by the identifier. Therefore, each extended ID-key will
also exist only in one subgroup of profiles partitioned by an identifier. Because some of
these items may have existed in descendants of the identifier, these duplicated items have
to be eliminated according to U_key to prevent false calculation in the query stage. This is
the reason of the operation ((root.lc.]_key XOR root.re.I_key)—root.U key)). After dupli-
cated items are eliminated, the remaining items will be used as new ID-keys and recorded
in key_set of the identifier (line 8). That is, the “1” bit positions of ((root.lc.I_key XOR
root.rc.I_key)—root.U_key)). Because new ID-keys are added to the identifier, the infor-
mation of used ID-keys need to be updated to U_key (line 9). Then, the intersection of
I _key in the left and right children of the identifier will be calculated and recorded in I _key
of it (line 10). The information will be used in the extension of its father identifier. Finally,
Function Assign_Path will be used to assign new bit paths of the left and right subgroups
partitioned by the identifier (line 11).

Take the identifiers shown in Figure 10 as an example. In the example, identifier I is
the right child of identifier H. To generate the information of H, i.e., H.key_set, H.U _key
and H.I key, the information of left and right children of H (i.e., H.lc and H.rc) will be
used. In Figure 10-(a), first, H.I _key is generated by (H.lc.I_key AND H.rc.I_key), and
H.U _key is generated by (H.le.U _key U H.rc.U_key). Next, the ID-keys of H is generated

14

The"1" bit positions of (H.lc.I_key XOR H.rc.|_key)

(H.lc.U_key U H.rc.U_key)

H.lc.l_key AND H.rc.l ki
(hed) » |_key | 00000 |«

key set | 2,3
0

H.U_key U H.key_set

Y
C
I~

2
L
N
o
w
.

key_set 2,3

[[o101 | 0

Figure 10: An example of the extension step: (a) before duplication being eliminated; (b)
after duplication being eliminated.

15

key_set | 3,8
1,2,3,4,5
Ukey | 123,45
- 16,7,89,10
0000000000
key set | 4
key set | 1,4
p ke | 12456
Uke [1,24,67,9 o1 0 i 79,10
0000000100 0010000000
key_set | 2,5,6 key set | 1,57
o1 10 Ukey [2,5,6,9,10) ukey | 1,57
key_set | 7,9
— 1_k
e 79 - 1010000000 0111000000
[1key [0101010100 2,69 keyset | 9,10

Ukey | 9,10

01

Figure 11: An example of ID-tree after the extension step

by the “1” bit positions of (H.lc.I_key XOR H.rc.I_key) and recorded in H.key_set. Then,
H.U _key is used to check whether these ID-keys have already been used by the descendants
of H or not. Item 2 of H.key_set, which is in underline in Figure 10-(a), is contained in
H.U _key; therefore, this item needs to be removed from H.key_set. It means that item 2
certainly has been used by the descendants of H. Thus, the ID-keys of H contain only 1
and 5. The result of H.key_set after the duplication is eliminated is shown in Figure 10-(b).
After the duplication is eliminated, H.U_key is reassigned by (H.U_key U H.key_set) to
guarantee that it contains all of the used ID-keys.

After the generation of new ID-keys, function Assign_Path is used to assign the bits
to the left and right bit paths (i.e., Ip and rp) of the identifier according to whether the
subgroups contain the ID-keys or not. The extension step will be continued recursively until
the ID-keys of each identifier are extended. Figure 11 illustrates the ID-tree generated from
the profiles in Table 1 after the extension step. The filtering efficiency of each identifier in
the ID-tree will be better after the extension process. Thus, when queries are received, it

needs shorter time to search their similar profiles by using the ID-tree.

16

1: procedure Inezact_Filter(q, root)
/* Filter out the profiles in the signature tree which are not contained in the query g.

*/

2: begin
3: if (root is not a leaf node) then
4: if (root.key € ¢q) then

/* q contains the key item. */
5: begin
6: Inexact_Filter(q, root.lc);
7: Inexact_Filter(q, root.rc);
8: end
9: else
10: Inexact_Filter(q, root.lc)

/* Trace the left child of root if ¢ does not contain the key item. */
11: else

12: if (root.pro C ¢q) then
13: Add root.prof to the answer set;
14: end;

Figure 12: Procedure Inexact_Filter (based on the signature tree)

3.2 Inexact Filtering in the ID Tree

Basically, the query process for the inexact filtering in our ID-tree strategy is similar to
the signature tree strategy which retrieves the inexact match information [3]. However,
for inexact filtering, we need to revise Chen’s signature tree strategy [3] by a simple mod-
ification since we want to filter out irrelevant information, instead of retrieving it. The
modified strategy based on the signature tree is described in the procedure Inexact_Filter
shown in Figure 12. In procedure Inexact_F'ilter, when a query is received, it will trace
the signature tree in the pre-order manner. In the inexact filtering, we will trace both the
left and right children of a node if query ¢ contains the key item recorded in this node (line
4). (However, in the inexact match, it will traverse both children of a node if query ¢ does
not contain the key item.) Otherwise, we will only trace the left child if query ¢ does not
contain the key item. This is because all the database profiles in the right subtree are not
contained in the query (lines 9-10). (However, in the inexact match, it will only trace the
right child if query ¢ contains the key item.)

Take the profiles in Table 1 as the input data. Figure 13-(a) illustrates the tracing

17

Table 2: A comparison of the number of accessed data with query ¢ = (1,2,3,5,8) in
inexact filtering

Strategies The number of | The number of

accessed profiles | traversed bits in the index
Signature tree | 6 (60 bits) 8 bits
ID-tree 1 (10 bits) 13 bits

example by using Chen’s signature tree [3] with the query ¢ = (1,2,3,5,8). The tracing
paths of the query are drawn in bold lines. Therefore, to answer the inexact filtering result
with query ¢, 8 internal nodes and 6 profiles with query ¢ are checked in the example.

Instead of using Chen’s signature tree [3], we use the ID-tree structure to index the
database profiles. The query steps using the ID-tree are described in procedure Mod_Inexact_Filter
shown in Figure 14. In the procedure, it traverses the subtrees according to the bit paths
of each identifier. That is, it traces the subtree of the identifier only if the key items which
correspond to the bit paths are contained in the query (lines 4-9). For example, there are
three ID-keys 2, 5 and 6 in the identifier I’ of the tree in Figure 13-(b). Because the left
bit path of F'is “011,” the profiles of the left subgroup partitioned by F' certainly contain
items 5 and 6, and item 2 must be excluded from them. Thus, the left subtree of F' will
not be traced unless the query contains both items 5 and 6. Figure 13-(b) illustrates the
tracing example by using the ID-tree. Therefore, to search the inexact filtering result of
the query, we only have to check 13 ID-keys and 1 profile in the ID-tree.

A comparison of the number of accessed data between the signature tree and the ID-tree
with query ¢ = (1,2, 3,5,8) in inexact filtering is shown in Table 2. Although we need to
traverse more bits in the index by using the ID-tree strategy, the accessed profiles can be
reduced a lot by using it. Moreover, the indexes of both strategies will be loaded into
memory, and the physical profiles will be stored in the disk. Therefore, it is obvious that
our ID-tree strategy can improve the query performance in the inexact filtering database

systems as compared with the signature tree strategy.

18

Figure 13: A tracing example with the inexact filtering query ¢ = (1,2, 3,5,8) by using
two kinds of signature-based binary trees: (a) the signature tree; (b) the ID-tree.

19

1: procedure Mod_Inexact_Filter(q, root)
/* Filter out the profiles in the ID-tree which are not contained in the query ¢. */

2: begin

3 if (root is not a leaf node) then

4 begin

5 if (the left bit path of root is contained in ¢) then
6: Mod_Inexact_Filter(q, root.lc);

7 if (the right bit path of root is contained in ¢) then
8 Mod_Inexact_Filter(q, root.rc);

9: end

10: else

11: if (root.prof C q) then

12: Add root.prof to the answer set;

13: end;

Figure 14: Procedure Mod_Inexact_Filter (based on the ID-tree)

Table 3: Parameters used in the generation of synthetic profiles of the simulation

Parameter | Description

N The number of profile signatures

D The number of items in the domain itemset

W The number of items in each profile signature

Q The parameter that controls the similarity among profiles
query_w The percentage of domain items

4 Performance

In this section, we study the performance of our strategy for inexact filtering query based
on the ID-tree. First, the simulation model is presented briefly. Second, we compare the

performance of our strategy with that of Chen’s signature tree strategy [3].

4.1 The Simulation Model

In this simulation, we use the profile generator which has been applied in [3] to generate syn-
thetic profiles and to evaluate the performance. Each synthetic profile will be transformed
into the signature defined in [12] after the generation. The parameters used to generate the
synthetic profiles are shown in Table 3. Parameter /N is the number of database profiles.

Each profile is composed of keywords chosen from the domain item set. Therefore, the

20

length of each profile signature is set to a fixed number D, which is the number of items in
the domain item set. To simplify the study of the effect of the profile size on performance,
all synthetic profiles have the same number of items. Parameter W is used to control the
number of items in each profile signature, ¢.e., the number of “1” bits in a signature. Thus,
we can generate a sparse profile, i.e., a profile which contains few items, by tuning param-
eter W. The first profile generated from the domain items is called the base profile. The
base profile is like a seed of all the other synthetic profiles. After the base profile has been
generated, other profiles will be generated according to it.

The similarity parameter,), controls how similar the new profiles and the base profile
are, where 0 < () < 1. That is, for each bit which is set to “1” in the signature of the base
profile, there is a probability () that the corresponding bit of the new profile signature is
also set to “1.” A random variable r will be used to determine whether the probability
is hold or not, where 0 < r < 1. If r < @), then the corresponding bit of the new profile
signature is set to “1.” Otherwise, this bit is set to “0.” After each “1” bit of the base
profile has been scanned, if the number of items in the new profile is less than W, we will
turn on the “0” bits of this profile to “1” at random until the number of “1” bits in it
is equal to W. Because there is no duplicated profile in the database, we can control the
distribution of the cluster by tuning the similarity parameter () from 0 to 1. In other words,
all the synthetic profile signatures are created randomly using a uniform distribution for
the positions that will be set to “1.” After the signatures of synthetic profiles are generated,
they will be used as the input data of the signature tree [3] and our proposed ID-tree.

For the inexact filtering, parameter query_w is used to control the number of items in
the synthetic query. This parameter is chosen from 0% to 100%. It indicates that what
percentage of the domain items will be chosen in the query. If a domain item is chosen by
the query, the corresponding bit position in the signature of the query will be set to “1.”
For example, when query_w is set to 50%, and the domain contains 100 items (D = 100),

there will be 50 bits set to “1” in the query signature.

21

Table 4: Base values for five parameters used in the simulation

Parameter | Default value
N 1000

D 110

w 35

Q 0.5

query_w 80%

Table 5: Comparisons between the signature tree and the ID-tree (under the base case)

Strategies The number of | The number of

accessed profiles | traversed bits in the index
Signature tree | 334 854
ID-tree 7 (reduced 98%) 2996

4.2 Simulation Results of Inexact Filtering Strategies

In this section, we make a comparison of our ID-tree strategy and the signature tree strategy
[3] in inexact filtering. In our simulation, we define a base case as shown in Table 4. That
is, we cluster 1000 user profiles into the same group. All the profile signatures are created
randomly by using a uniform distribution with similarity parameter 0.5 (i.e., @@ = 0.5) for
the positions that will be set to “1.” The set of domain items is composed of 110 items,
i.e., D = 110. The length of each profile is fixed, i.e., W = 35. In the following, our
simulation results are the average of 1000 queries.

According to those parameters in the base case, a comparison of the number of accessed
profiles and the number of traversed bits in the index by using our ID-tree strategy and
the signature tree strategy for query_w = 80% is shown in Table 5. In Table 5, we show
that the signature tree strategy [3] needs to access more physical profiles to filter the false
answers as compared with the ID-tree strategy. This is because that the signature tree
traverses fewer bits in the index stored in the memory. In Table 5, although the ID-tree
strategy traverses more bits in index, the traversal needs less time as compared with the
access time in physical profiles. For each physical profile, it needs to check D bits (i.e.,

110 bits) to filter the false results. Moreover, all physical profiles are stored in the disk.

22

Therefore, to access the profiles, it needs extra time to load them into the memory. Because
the cost of the profile access time is over 200 times more than the index access time, we
can ignore the number of traversed bits in the index unless the number of accessed profiles
between two strategies is almost the same in the following. In Table 5, on the average, our
strategy can reduce about 98% number of accessed profiles as compared to Chen’s strategy
[3]. The value of the reduced percentage can be calculated by using the formula described

as follow:

the number of accessed profiles by using the ID—lree strategy) % 100%

reduced percentage = (1 " the number of accessed profiles by using the signature tree strategy

700

600 —X — Signature tree

500 | ——ID-tree /
X

400 | /

300 | /X

200 | X

100

The number of accessed profiles

500 1000 1500 2000
The number of profiles (N)

Figure 15: A comparison of the number of accessed profiles (under changing the value of
N)

Next, we study the impact of five parameters on the performance. In the first case,
we vary the value of N, the number of profiles. The range of N is set to 500, 1000, 1500
and 2000, while the other parameters are kept as their base values. Under changing the
value of N, a comparison of the number of accessed profiles by using the ID-tree strategy
and the signature tree strategy for query_w = 80% is shown in Figure 15. In Figure 15,
when the value of NV increases, the number of accessed profiles by using the ID-tree and the
signature tree also increases. However, our strategy needs to access less profiles to refine
the answers as compared to Chen’s strategy. This is because that the ID-tree can filter

more false profiles in the index as compared to the signature tree.

23

400

| X
350 X — X

300 | \x

250 -

200 -

The number of accessed profiles

150 %
100 + —X — Signature tree
50 A\A\A_'__A —A— ID-tree
0 . | x AN
35 60 85 110 135 160

The number of items in the domain (D)

Figure 16: A comparison of the number of accessed profiles (under changing the value of
D)

In the second case, we vary the value of D, the number of items in the domain. The
range of D is set to 35, 60, 85, 110, 135 and 160, and the base values are used for the other
parameters. Under changing the value of D, a comparison of the number of accessed profiles
by using the ID-tree strategy and the signature tree strategy for query_w = 80% is shown
in Figure 16. In Figure 16, when the value of D increases, the number of accessed profiles
by using our strategy decreases. However, the number of accessed profiles by using Chen’s
strategy is unstable. This is because that it only considers one of different items among
database profiles in the signature tree. Under the fixed value of W (i.e., the weight of
each database profile), the sparsity of each profile will increases as the value of D (i.e., the
number of items in the domain) increases. A user profile will become sparse if the number
of items chosen from his or her domain is very small. Therefore, from this result, we show
that our strategy can reduce more accessed profiles as compared to Chen’s strategy when
database profiles become sparse. This is because when the database profiles are sparse,
there may be more different bit positions among them. Thus, the probability to generate
more [D-keys by using the ID-tree strategy will become greater.

In the third case, we vary the value of W, the number of items in each profile signature.
The range of W is set to 15, 35, 55, 75, and 95, and the base values are used for the

other parameters. Under changing the value of W, a comparison of the number of accessed

24

400

—X —Signature tree

X— /X\ —A— ID-tree
X

350 r

300 |-
250
200 -
150
100 -

527 A\ M/

15 35 55 75 95

The number of items in each profile signature (W)

The number of accessed profiles

Figure 17: A comparison of the number of accessed profiles (under changing the value of
W)

profiles by using the ID-tree strategy and the signature tree strategy for query_w = 80% is
shown in Figure 17. In Figure 17, when the value of W increases, the number of accessed
profiles by using our strategy increases from W = 35. Moreover, the number of accessed
profiles by using Chen’s signature tree strategy is still unstable. This is because that it only
considers one of different items among database profiles in the signature tree. Therefore,
from this result, we show that our strategy can reduce more the number of accessed pro-
files as compared to Chen’s signature tree strategy, when database profiles become sparse.
However, when the value of W is smaller than 35, the number of accessed profiles by using
the ID-tree strategy decreases when the value of W increases. This is because the number
of different bit positions among all profiles is too less. Therefore, the number of ID-keys in
the ID-tree may become less in this condition. If there is only one item in each database
profile (i.e., W = 1), the index of the ID-tree will become the same as the signature tree.

In the fourth case, we vary the value of (), the parameter that controls the similarity
among profiles. The range of () is set to 0.1, 0.3, 0.5, 0.7, and 0.9, and the base values
are used for the other parameters. Under changing the value of (), a comparison of the
number of accessed profiles by using the ID-tree strategy and the signature tree strategy

for query_w = 80% is shown in Figure 18. From this result, we show that when the value of

25

400

—X — Signature tree

350 |- X/X\
% —A— ID-tree
300 | \
X

250
200 -
150

100

50 |
0 I~ M

X

0.1 0.3 0.5 0.7 0.9

X

The number of accessed profiles

The similarity among profiles (Q)

Figure 18: A comparison of the number of accessed profiles (under changing the value of

Q)

(2 increases, it needs to access more profiles as compared to the small value of () by using
our strategy. This is because when the value of () increases, the number of identical items
among database profiles will also increase. Therefore, the number of ID-keys in the ID-tree
may relatively decreases. Moreover, we can observe that the number of accessed profiles
by using the signature tree decreases as the value of () increases. This is because when
the database profiles are similar to each other, the number of internal nodes with identical
values in the signature tree will increase. Therefore, it will filter a large number of profiles
at once by the index nodes of the signature tree in this condition. However, our strategy
still reduces over 65% the number of accessed profiles as compared to Chen’s strategy even
if @ = 0.9. When () is set to nearly 1 and each database profile has only one item different
from others, the ID-tree will become the same as the signature tree. Moreover, both of
these trees will be very unbalanced in this condition.

In the fifth case, we vary the value of query_w, the parameter that controls the weight of
each query. We vary query_w from 50% to 90% and the base values are used for the other
parameters. Under changing the value of query_w, a comparison of the number of accessed
profiles by using the ID-tree strategy and the signature tree strategy is shown in Figure

19. From this result, we show that when the value of query_w increases, both strategies

26

700

600 | |—X-—Signature tree %
500 | —— ID-tree
400 | /
300 | /
200

X
100 | x/

The number of accessed profiles

50% 60% 70% 80% 90%

The percentage of the domain items chosen in the query (query_w)

Figure 19: A comparison of the number of accessed profiles (under changing the value of
query_w)

need to access more physical database profiles to refine the answers. This is because when
the weight of a query is very large, it may pass most of the index nodes in both strategies.
However, passing the index nodes of the ID-tree, it needs to check all the different items
among database profiles. Therefore, the probability to pass the ID-tree is much less than
the signature tree. In other words, our strategy can filter out more false profiles as compared
to Chen’s strategy. Moreover, if query_w is set to 100%, both strategies need to traverse
all of the index nodes and access all physical profiles. Because the index size of the ID-tree
is larger than that of the signature tree, it needs longer access time to respond the query
by using our strategy in this condition.

From these simulation results, we have observed that our strategy can really reduce the
number of accessed profiles more than Chen’s signature tree strategy. Unless the weight of
the incoming query is very heavy, our strategy can filter most of false profiles in the index,
which is stored in the memory. That is, the ID-tree strategy provides the best results with
different kinds of input data sets.

27

5 Conclusion

As the booming development of web data, information filtering has become an important
issue for sending appropriate information to appropriate users. In this paper, we have pro-
posed an efficient signature-based index strategy, the ID-tree index, to support the inexact
filtering in information filtering systems. Our proposed ID-tree strategy can reduce the
number of accessed profiles as compared with Chen’s signature tree strategy. Our ID-tree
structure partitions profiles into subgroups globally by considering all of the different items
among database profiles at one time. These items will help us filter most irrelevant profiles
in the index and answer queries efficiently. Moreover, each profile will be assigned a unique
path and can be recognized by the path. After filtering irrelevant profiles, information
can be sent to a group of users by using our ID-tree strategy. From our simulation, we
have shown that our strategy can reduce up to 98% the number of accessed profiles in the

inexact filtering as compared with Chen’s signature tree strategy.

6 Acknowledgement

This research was supported in part by the National Science Council of Republic of China
under Grant No. NSC-95-2221-E-110-101. The authors also like to thank “Aim for Top
University Plan” project of NSYSU and Ministry of Education, Taiwan, for partially sup-

porting the research.

References

[1] R. Bayer and K. Unterrauer, “Prefix B-Tree,” ACM Trans. on Database Systems,
Vol. 2, No. 1, pp. 11-26, March 1977.

2] Y. I. Chang, J. H. Shen, and T. I. Chen, “A Data Mining-Based Method for the

7

Incremental Update of Supporting Personalized Information Filtering,” Journal of

Information Science and Engineering, Vol. 24, No. 1, pp. 129-142, Jan. 2008.

[3] Y. Chen, “On the Signature Tree and Balanced Signature Trees,” Proc. of the 21st
IEEE Int. Conf. on Data Engineering, pp. 742-753, 2005.

28

[4]

[5]

[6]

[7]

8]

9]

[10]

[11]

[12]

[13]

U. Deppisch, “S-Tree: A Dynamic Balanced Signature Index for Office Retrieval,”
Proc. of ACM Conf. on Research and Development in Information Retrieval, pp. 77—
87, 1986.

C. Faloutsos, “Access Methods for Text,” ACM Computing Surveys (CSUR), Vol. 17,
No. 1, pp. 49-74, March 1985.

C. Faloutsos and D. W. Oard, “A Survey of Information Retrieval and Filtering Meth-
ods,” Technical Report, University of Maryland, Aug. 1995.

A. Guttman, “R-Tree: A Dynamic Index Structure for Spatial Searching,” Proc. of
1984 ACM SIGMOD Int. Conf. on Management of Data, pp. 47-54, 1984.

M. Hammami, Y. Chahir, and L. Chen, “Webguard: A Web Filtering Engine Combin-
ing Textual, Structural, and Visual Content-Based Analysis,” IEEE Trans. on Knowl-
edge and Data FEngineering, Vol. 18, No. 2, pp. 272-284, Feb. 2006.

Y. Ishikawa, H. Kitagawa, and N. Ohbo, “Evaluation of Signature Files as Set Access
Ficilities in Oodbs,” Proc. of ACM SIGMOD Int. Conf. on Management of Data,
pp. 247-256, 1993.

A. J. Kent, R. Sacks-Davis, and K. Ramamohanarao, “A Signature File Scheme Based
on Multiple Organizations for Indexing Very Large Text Databases,” Journal of the
American Society for Information Science, Vol. 41, No. 7, pp. 508-534, Oct. 1990.

T. Kuflik and P. Shoval, “User Profile Generation for Intelligent Information Agents-
Research in Progress,” Proc. of the Second Int. Workshop Agent-Oriented Information
System, pp. 6372, 2000.

N. Mamoulis, D. W. Cheung, and L. Wang, “Similarity Search in Sets and Cate-
gorical Data Using the Signature Tree,” Proc. of the 19th IEEE Int. Conf. on Data
Engineering, pp. 75-86, 2003.

D. R. Morrison, “Patricia — Practical Algorithm to Retrieve Information Coded in

Alphanumeric,” Journal of ACM, Vol. 15, No. 4, pp. 514-534, Oct. 1968.

29

[14]

[16]

[17]

[18]

L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank Citation Ranking:
Bringing Order to the Web,” Technical Report, Stanford University, Stanford, CA,
Jan. 1998.

J. Salter and N. Antonopoulos, “Cinemascreen Recommender Agent: Combining Col-
laborative and Content-Based Filtering,” IEEE Intelligent Systems, Vol. 21, No. 1,
pp- 3541, Feb. 2006.

E. Tousidou, P. Bozanis, and Y. Manolopoulos, “Signature-Based Structures for Ob-
jects with Set-Valued Attributes,” Information Systems, Vol. 27, No. 2, pp. 93-121,
April 2002.

E. Tousidou, A. Nanopoulos, and Y. Manolopoulos, “Improved Methods for Signature-
Tree Construction,” The Computer Journal, Vol. 43, No. 4, pp. 301-314, June 2000.

D. H. Widyantoro, T. R. Toerger, and J. Yen, “An Adaptive Algorithm for Learning
Changes in User Interests,” Proc. of the 8th Int. Conf. on Information and Knowledge
Management, pp. 405-412, 1999.

30

