
Journal of Information Technology and Applications
Vol. 1 No. 3 December, 2006, pp. 145-154

A Recursive Relative Prefix Sum Approach to
Range Sum Queries in Data Warehouses

Ye-In Chang Hue-Ling Chen Jiun-Rung Chen Fa-Jung Wu
National Sun Yat-Sen University/Dept. of Computer Science and Engineering

{changyi, chenjr, wufj}@cse.nsysu.edu.tw; chen.hueling@gmail.com

Abstract

Data warehouses contain data consolidated from several operational databases and provide the historical,
and summarized data. On-Line Analytical Processing (OLAP) is designed to provide aggregate information to
analyze the contents of data warehouses. An increasingly popular data model for OLAP applications is the
multidimensional database, also known as data cube. A range sum query applies a sum aggregation operation
over all selected cells of an OLAP data cube where the selection is specified by providing ranges of values for
numeric dimensions. It is very useful in finding trends and in discovering relationships between attributes in the
database. For today's applications, interactive data analysis applications which provide the current information
will require fast response time and have reasonable update time. Since the size of a data cube is exponential in
the number of its dimensions, it costs a lot of time to rebuild the entire data cube. To solve these updating
problem, we present the recursive relative prefix sum method, which provides a compromise between query and
update cost. From our performance study, we show that the update cost of our method is always less than that of
the prefix sum method. Our recursive relative prefix sum method has a reasonable response time for ad hoc
range queries on the data cube, while at the same time, greatly reduces the update cost.

Keyword: data warehouse, OLAP, range query, range sum query, update.

1. Introduction
The data warehouse is usually a read-only

database for data analysis and querying processing [6,
7]. On-Line Analytical Processing (OLAP) [5]
provides advanced analysis tools to extract
information from data stored in a data warehouse. An
increasingly popular data model for OLAP
applications is the multidimensional database
(MDDB), also known as data cube. In OLAP, a range
query [3] applies a given aggregation operation over
selected cells where the selection is specified as
contiguous ranges in the domains of some of the
attributes [4]. Such range queries are very useful in
finding trends and in discovering relationships
between attributes in the database. A range sum query
is one aggregation operation that sums the measure
attribute within the range of the query. For instance,
consider a range sum query to the insurance data
cube: find the total sales for customers with an age
from 30 to 55, in year 1995-2001, in all of U.S., and
with auto insurance. To answer this query, one way is
to scan all involved cells in the data cube, and then
sum them up as the results. However, since the
number of cells in a data cube is exponential with its
dimensions, it costs a lot of time which is
proportional to the number of involved cells.
Therefore, it is imperative to have a system with fast
response time [8] in an interactive exploration of data
cube.

Ho et al. [3] initialized the problem of range
sum query and have presented the prefix sum
approach to precompute prefix sums of cells in the

data cube, which can then be used to answer ad hoc
queries in constant time. However, when there is an
update to a cell in the data cube, it requires rebuilding
an array of the same size as the entire data cube. Due
to the cascading update effect, the update cost is very
expensive and is proportional to the entire array size.
In the worst case, the update cost is O(nd) and can
become impractical, where n is the size of each
dimension in a d-dimensional data cube. Then,
Geffner [1] proposed the relative prefix sum method
to answer rang sum queries on data cubes. It takes
O(nd/2) time for an update and constant time for a
query. However, it still incurs substantial update costs
in the worst case, i.e., with order of the square root of
the size of the cube. In order to speed up range sum
queries in data cube, Liang et al. [4] proposed the
double relative prefix sum method. It requires O(n1/'i)
time for each range sum query and O(nd/3) time for
each update. Geffner [2] proposed Dynamic Data
Cube, a method that provides sublinear performance
for both range sum queries and updates on the data
cube. It has performance complexity of O(log n) for
both queries and updates.

The above strategies have tried to improve the
update problems. However, they either take more
query time or need high storage cost. Thus, we
propose a method, called the recursive relative prefix
sum method with k-levels, which uses k relative
overlay arrays and a relative prefix array. By using
these components, we can provide a compromise
between the range sum query cost and the update
cost.

A Recursive Relative Prefix Sum Approach to Range Sum Queries in Data Warehouses

The rest of the paper is organized as follows. In
Section 2, we describe the range sum query. In
Section 3, we present our recursive relative prefix
sum method to answer the range sum query. In
Section 4, we study the performance of the recursive
relative prefix sum method. Finally, we give the
conclusion.

2. The Range Sum Query

Let D = {1,2, ...,d} denote the set of dimension,
where each dimension corresponds to a functional
attribute [3]. A d-dimensional data cube can be
represented by a d-dimensional array A of size n1 * n2
* … * nd , where nj > 2, j D. We assume that an
array has a starting index 0. For convenience, we will
call each element a cell, and each cell contains the
aggregate value of the measure attribute
corresponding to a given point in the d-dimensional
space formed by the dimensions. Without loss of
generality, we assume that each dimension has the
same size. This allows us to present many of the
formulas more concisely [1]. Thus, let the size of
each dimension be n, and the total size of array A is N
= nd.

A range-sum query in a d-dimensional data

Figure 1: A geometric illustration for the
two-dimensional case: Sum(Area_E) = Sum(Area_A)

- Sum(Area_B) - Sum(Area_C) + Sum(Area_D)

cube is to find the sum of the values in cells that fall
within the specified range. For example, in the
two-dimensional case, given a measure attribute
SALES and the dimensions CUSTOMER.AGE and
DATE_OF_SALE, the cell at A [37, 25] contains the
total sales to age 37 years old customers on day 25. A
range-sum query asking for the total sales to 37 years
old customers from days 20 to 22 would be answered
by summing the cells A[37, 20], A[37, 21], and A[37,
22]. In general, any range-sum of A can be answered
by accessing and combining 2d appropriate
prefix-sum. Figure 1 gives a geometrical explanation
for the two-dimensional case [1]. The sum
corresponding to a range query's region can be
determined by adding and subtracting the sums of
various other regions until we have extracted the
interesting region.

3. The Recursive Relative Prefix Sum
Approach

Our method makes use of k relative overlay ar-
rays, which are level-1, level-2, .. . , level-k relative

overlay arrays, respectively, and a relative prefix (RP)
array. All of these arrays are d-dimensional arrays
which are defined below.

3.1 Level-k Relative Overlay Arrays and
Relative Prefix Array

A level-k relative overlay array has a set of dis-
joint hyper-rectangles (hereafter called "boxes") of
equal size that cells of array A are completely
partitioned into non-overlapping regions. Assume that
the length of the level- k relative overlay box in each
dimension is rk . The size of array A is nd, thus the
total number of level-fc relative overlay boxes is

. . Without loss of generality, we assume that n is
divisible by rk . Then, the boxes in level-k relative
overlay array are partitioned into disjoint level-(k - 1)
boxes. Each dimension of a level-(k - 1) box has the
same size rk-1rk . Thus, there are level-
(k - 1) relative overlay boxes. Each level-(k - 1)
relative overlay box covers level-k relative
overlay boxes. Following this recursive partition
rule, we can find out all these k

Figure 2: A two-dimensional data cube represented as

a two-dimensional array A

Figure 3: The level-2 relative overlay array of the
data cube A

different level overlay arrays.

A level-j relative overlay box is anchored at (a1,
a2, ..., ad) if the box corresponds to the region of array
A where (a1, a2,..., ad) is the lowest index of a cell at
each dimension. We denote the level-j relative
overlay box as Bj[a1, a2, …, ak], for j {1,2,... ,k}. A

Journal of Information Technology and Applications
Vol. 1 No. 3 December, 2006, pp. 145-154

level-j relative overlay box Bj[a1, a2, …, ad] is said to
cover a cell (x1, x2,..., xd) in array A, if the cell falls
within the boundaries of the level-j relative overlay
box, i.e., if Each
level-j relative overlay box corresponds to an area of
array A of size (rj * rj+1 * … * rk)d cells, for j {1,
2, ..., k}.

We take an 8 x 8 array A in Figure 2 as an
example to illustrate a recursive relative prefix sum
method with 2-levels as follows. Each level-2 relative
overlay box in Figure 3 is bounded by bold lines is of
size 2x2, i.e., r2 = 2. The total number of level-2
relative overlay boxes is = (8/2)2 = 16. The
boxes are anchored at cells (0,0), (0,2), (0,4), (0,6),
(2,0), (2,2), (2,4), (2,6), (4,0), (4,2), (4,4), (4,6), (6,0),
(6,2), (6, 4), and (6, 6). Each level-2 relative overlay
box covers 22 = 4 cells of array A. In Figure 4, each
level-1 overlay box which is bounded by bold lines is
of size 4x4, i.e., r1r2 = 4 and r1 = 2. The total number
of level-1 relative overlay boxes is =
(8/4)2 = 4. The boxes are anchored at cells (0,0), (0,4),
(4,0), and (4,4). Each level-1 relative overlay box
covers (r1r2)2 = 16 cells of array A and r1

2 = 4 level-2
relative overlay boxes.

Figure 4: The level-1 relative overlay array of the
data cube A

Each level-j relative overlay box stores an

anchor value Vj, plus border
values. The other cells covered by the level-j relative
overlay box are not needed in the level-j overlay, and
would not be stored. Values stored in a level-j relative
overlay box provide sums of regions outside the box,
but within its level-(j - 1) relative overlay box, for j

 {1, 2, .. ., k}. Note theat j = 1, level-0 means the
region of entire A. The anchor value of a level-j
relative overlay box is the sum of all cells in A up,
but not including, the cell under Vj within its level-(j -
1) relative overlay box.

For example, there are 16 level-2 relative
overlay boxes of size 2 x 2 in Figure 3. The anchor
value at cell (6, 6) and the border values at cells (6, 7)
and (7, 6) are stored in one of the level-2 relative
overlay boxes. In Figure 4, there are 4 level-1 relative
overlay boxes of size 4x4. The anchor value at cell (4,
4) and the border values at cells (4, 5), (4, 6), (4, 7),
(5,4), (6,4), and (7, 4) are stored in one of the level-1

relative overlay boxes.
The relative prefix array (RP) has the same size

as array A. It is partitioned into regions of cells that
correspond to level-k relative overlay boxes. A cell
RP[x1,x2, …,xd] = Sum(A[b1,b2, …, bd] : A[x1, x2, …,
xd]) is covered by a level-2 relative overlay box B2,
where (b1, b2, …, bd) is the lowest index of a cell at
each dimension. Each region in RP contains prefix
sums that are relative to the area enclosed by the
level-fc relative overlay box. Each region of RP is
independent of other regions.

Figure 5 shows a relative prefix array RP, where
r2 = 2 and the shaded area denotes the difference
between the proposed approach and the relative
prefix sum method. Take Figure 2 as an example.
RP[4,7] = Sum(A[4, 6] : A[4, 7]) = A[4, 6] + A[4, 7] =
3 + 4 = 7, RP[5, 6] = Sum(A[4, 6] : A[5, 6]) = A[4, 6]
+ A[5, 6] = 3 + 8 = 11 and RP[5, 7] = Sum(A[4, 6] :
A[5, 7]) = A[4, 6] + A[4, 7] + A[5, 6] + A[5, 7] =
3+4+8+3 = 18. The lowest index of a cell at each
dimension in the level-2 relative overlay box which
contains these cells is cell (4, 6).

Now we give a formal definition of anchor value
and border value as follows. Let (b1, b2, .. ., bd) be the

Figure 5: The relative prefix array RP of the data
cube A

lowest index of a cell at each dimension in a level-2
relative overlay box B2, and (a1, a2,. .., ad) be the
lowest index of a cell at each dimension in a level-1
relative overlay box B1. The variable V2 is denoted as
the level-2 anchor value, where V2[b1, b2, …, bd] =
Sum(A[a1, a2, …, ad] : A[b1,b2, …, bd] – A[b1, b2, …,
bd], and B2 is covered by B1. Take Figure 3 as an
example. The cell [4, 6] is one of the lowest index of
a cell at each dimension in the level-2 relative
overlay box. Then, V2[4, 6] = Sum(A[4, 4] : A[4, 6]) -
A[4, 6] = A[4, 4]+,4[4, 5]+,4[4, 6]-A[4, 6] = 2+2+3-3
= 4. The level-2 border value contained in cell (x1,
x2, .. ., xd) is equal to

where V2 is the anchor value of the level-2 relative
overlay box, RP[x1, x2,. .., xd] is the value of this cell
in array RP, and (a1, a2,. .., ad) is the lowest index of a

A Recursive Relative Prefix Sum Approach to Range Sum Queries in Data Warehouses

cell at each dimension in a level-1 relative overlay
box which covers this level-2 relative overlay box.
Take Figure 3 as example. The level-2 border value
contained in cell (5, 6) is equal to Sum(A[4,4] : A[5,6])
- RP[5, 6] - V2 = Sum(A[4,4] : A[5,6]) - (Sum(A[4,6] :
A[5,6]) - ((Sum(A[4, 4] : A[4, 6]) - A[4, 6]) = Sum(A[5,
4] : A[5, 5]) = 9. The level-2 border value at the row
dimension can be computed similarly.

The level-1 relative overlay box anchored at (ai,
a2, .. ., ad) has a level-1 anchor value Vi[a1, a2,. .., ad]
= Sum(A[0, 0,. .., 0] : A[a1,a2,. .. ,ad]) - A[a1,a2,. .. ,ad].
And the level-1 border value contained in cell (y1,
y2, …, yd) is equal to

where V1 is the anchor value of the level-1 relative
overlay box. Figure 6 shows a level-1 relative overlay
box superimposed on array A. Similarly, the level-1
anchor value of the level-1 relative overlay box is
equal to the sum of the shaded region in array A.
Figure 7 shows the calculation of level-1 border
values. The level-1 border values are equal to the sum
of the associated shaded regions of array A.

Take Figure 4 as an example. The cell [4,4] is
one of the lowest index of a cell at each dimension in

Figure 6: Array A showing calculation of a level-1
relative overlay box anchor value

a level-1 relative overlay box. Then, Vi[4,4] =
Sum(A[0,0] : A[4,4]) - A[4,4] = 81. The level-1
border value Y1 contained in cell (4, 5) is equal to
Sum(A[0, 0] : A[4, 5]) - Sum(A[4, 4] : A[4, 5]) - V1 =
20. The level-1 border value Y2 contained in cell (4,6)
is equal to Sum(A[0,0] : A[4, 6]) - Sum(A[4, 4] : A[4,
6]) - V1 = Y1 + Sum(A[0,6] : A[3,6]) = 41. The level-1
border value Y3 contained in cell (4,7) is equal to
Sum(A[0,0] : A[A,7]) - Sum(A[4,4] : A[4,7]) - V1 =Y2
+ Sum(A[0, 7] : A[3, 7]) = 55. The level-1 border
values X1, X2, and X3 at the column dimension can be
computed similarly.

3.2 Range Sum Queries and Updates

According to Figure 1, Figure 8 shows the con-
struction of a complete region sum using the recur-
sive relative prefix sum method with 2-levels. In
Figure 8, * denotes an arbitrary cell in array A at cell
(3, 7), as shown in 2. For reference, the level-1

relative overlay box and level-2 relative overlay box
covering this cell have been superimposed on array A.
The level-1 anchor and level-1 border values from the
level-1 relative overlay box provide the sum of the
portion of the light-dark region outside the level-1
relative overlay box. The level-2 anchor and level-2
border values from the level-2 relative overlay box
provide the sum of the portion of the diagonal region
between the level-1 relative overlay box and the
level-2 relative overlay box. The cell * in RP
provides the sum of the portion of the deep-dark
region within the level-2 relative overlay box. Sum of
these three shaded regions together yields the sum of
all cells in array A that fall within the shaded region.
Following this manner, any region sum rooted at
A[0,0,..., 0] could be generated, and it is sufficient to
provide the region sums required by the method
illustrated in Figure 1.

Take Figure 2 as an example. Suppose a range
sum query is given which ranges from cell .A[0,0] to
cell A[3,7] in array A. We find that cell [3, 7] is
covered by the level-1 relative overlay box anchored
at cell [0,4] in Figure 4 and level-2 relative overlay
box anchored at cell [2, 6] in 3. First, we calculate the
sum of the area that falls outside the level-1 relative

Figure 7: Array A showing calculation of level-1
relative overlay box border values: (a) level-1 border
values X1 and Y1; (b) level-1 border values X2 and Y2;

(c) level-1 border values X3 and Y3.

Journal of Information Technology and Applications
Vol. 1 No. 3 December, 2006, pp. 145-154

Figure 8: Construction of complete region sum from
level-1 relative overlay, level-2 relative overlay and

RP

overlay box, which is the sum of a level-1 anchor
value and two level-1 border values. The level-1
anchor value of the level-1 relative overlay box
which is anchored at cell (0, 4) is 14. Since cell (3, 7)
is three cells to the right of, and three cells down
from the level-1 anchor cell, there are two level-1
border values X3 and Y3 which are 41 and 0,
respectively. Therefore, the area outside the level-1
relative overlay box has a value equal to 14+41+0.
Then, we calculate the sum of the area that falls
between the level-1 relative overlay box and the
level-2 relative overlay box, which is the sum of a
level-2 anchor value and two level-2 border values.
The level-2 anchor value of the level-2 relative
overlay box which is anchored at cell (2, 6) is 36.
Since cell (3, 7) is one cell to the right of, and one
cell down from the level-2 anchor cell, there are two
level-2 border values which are 12 and 7, respectively.
Therefore, the area between the level-1 relative
overlay box and the level-2 relative overlay box has a
value equal to 36 + 12 + 7. Finally, we calculate the
sum of the cells inside the level-2 relative box which
is anchored at cell (2,6). This sum is stored in RP[3, 7]
as shown in Figure 5, and its value is 17. Thus, the
complete range sum for the region A[0, 0] : A[3, 7] is
14 + 41 + 0 + 36 + 12 + 7 + 17 = 127.

3.2.1 Updates

Assume that a cell in the data cube has been
updated. Updating this cell requires updates to the
data structures. Updates in RP are constrained to a
region covered by one level-2 relative overlay box. In
other words, every cell in the level-2 relative overlay
box whose index is larger than the index of the
updated cell will be updated. Then, we update the
content of the level-2 relative overlay boxes covered
by a level-1 relative overlay box in which the updated
cell is contained. That is, we update the level-2
border values and level-2 anchor values of some
level-2 relative overlay boxes within the level-1
relative overlay box. For example, as shown in Figure
9, * denotes the location of the changed cell. The
shaded region to the right of the changed cell shows
the level-2 relative overlay box whose border values
in the first dimension will be affected by the update.
In this example, only level-2 relative overlay cell (2,1)

will be updated. The shaded region below the
changed cell shows the level-2 relative overlay box
whose border values in the second dimension will be
affected by the update. In this example, level-2
relative overlay cell (1, 2) will be updated. Every
level-2 anchor value whose index is larger than the
changed cell will be affected by the update, too. In
this case, level-2 relative overlay cell (2, 2) will be
affected.

Finally, the content of every level-1 relative
overlay box whose cells' lowest index is larger than
the lowest index of cells within the level-1 relative
overlay box covering the changed cell must be
updated; i.e., we update the level-1 border values and
level-1 anchor values of some level-1 relative overlay
boxes. For example, as shown in Figure 10, * denotes
the location of the changed cell. The shaded region to
the right of the changed cell shows the level-1
relative overlay box whose border values in the first
dimension will be affected by the update. In this
example, level-1 relative overlay cells (4,1), (4, 2),

Figure 9: An update example of level-2 relative
overlay array

Figure 10: An update example of level-1 relative
overlay array

and (4,3) will be updated. The shaded region below
the changed cell shows the level-1 relative overlay
box whose border values in the second dimension
will be affected by the update. In this example,
level-1 relative overlay cell (1,4), (2,4), and (3,4) will
be updated. Every level-1 anchor value whose index
is larger than the changed cell will be affected by the
update, too. In this case, level-1 anchor cell (4, 4) will
be affected.

Algorithms for query and update operations in
the recursive relative prefix sum method with more

A Recursive Relative Prefix Sum Approach to Range Sum Queries in Data Warehouses

than 2-levels are similar to those in the recursive
relative prefix method with 2-levels. So we do not
describe the algorithms further. By recursively
creating boundaries with appropriate k levels, we can
get the sum of each region in constant time.

4. Performance Study

In this section, we study the performance of our
proposed recursive relative prefix sum method for the
range sum query problem, and make a comparison
with other range sum query strategies, including the
prefix sum method [3], the relative prefix sum method
[1], the double relative prefix sum method [4], and the
dynamic data cube method (DDC) [2].

4.1 Performance Analysis

In the recursive relative prefix sum method with
2-levels, choosing different values of r1 and r2 can
make quite different update costs, where r2 is the
length of the level-2 relative overlay box in each
dimension and r1 means a level-1 relative overlay box
covering r1 level-2 relative overlay boxes in each
dimension. When the values of r1 and r2 are smaller,
fewer cells in RP will be updated, but more cells in
the level-2 and level-1 relative overlay arrays will be
updated, which would result in a larger total number
of affected cells. When the values of r1 and r2 are
larger, fewer cells in the level-2 and level-1 relative
overlay arrays will be updated; however, more cells
in RP will be updated. This may lead to a larger total
number of affected cells. We make different
combination of values of r1 and r2. Then, we observe
that update costs would be smallest when we choose
r1 = r2 = 16.
For the the recursive relative prefix sum method with
2-levels, each level-2 relative overlay box is of size r2
and each level-1 relative overlay box covers (r1r2)d
cells of array A and level-2 relative overlay boxes.
Let U = (u1, u2, …, ud) be the updated cell, B2 be the
level-2 relative overlay box anchored at (b1, b2, …, bd)
that covers U and B1 be the level-1 relative overlay
box anchored at (a1, a2, …, ad) that covers #2. The cost
of updating U requires updates to the overlay cells and
RP. Updates in RP are constrained to a region covered
by level-2 relative overlay box #2. In the worst case,
the cost of updating RP is Next, we describe which
level-2 relative overlay cells and level-1 relative
overlay cells need to be updated. Generally speaking,
these are all level-2 relative overlay cells and level-1
relative overlay cells that include U in their
aggregation. Let Mi denote the coordinates of the
anchors of the affected level-1 relative overlay boxes
in the i-dimension. Thus, we have Mi = {ai+r1r2;
ai+2r1r2; ai+3r1r2, …, n-r1r2}. Let Ni denote the
coordinates of the affected level-1 relative overlay
cells inside a certain level-1 relative overlay box in the
i-dimension. Then, we have Ni = {ui; ui+1; ui+2; …,
ai+(r1 r2-1}}. Let P = (p1, p2, …, pd) denote the level-1

relative overlay cells that need to be updated. These
level-1 relative overlay cells satisfy

and do not belong to level-1 relative overlay box B1.
When we choose ui ≠ ai and ui as small as possible
(the smaller ui, the smaller dj, i.e., the more elements
in Mi), the largest number of affected level-1 relative
overlay cells would be obtained. Therefore, in the
worst case, Mi has at most n / r1r2 - 1 elements, and
Ni has up to r1r2 - 1 elements. Consequently, there are
at most (n / r1r2 - 1 + r1r2 - 1) = (n / r1r2 + r1r2 - 2)
possible values for each dimension, and there are at
most (n / r1r2 + r1r2 - 2)d level-1 relative overlay cells
that satisfy the above formula. Within these cells,
(r1r2 — l)d cells fall into level-1 relative overlay box
B\. In the worst case, (n / r1r2 + r1r2 - 2)d - (r1r2 - 1)d
level-1 relative overlay cells must be updated.

Figure 11: The level-1 relative overlay array of the
data cube A

For example, as shown in Figure 11, we assume

that cell (1,1)(= U) is updated. Then, we have Mx =
{4}, Nx = {1;2;3}, My = {4}, and Ny = {1;2;3}. The
affected level-1 relative overlay cells are all cells (px ,
py) where px {1;2;3;4} and py {1;2;3;4}, minus
(1,1), (1, 2), (1, 3), (2,1), (2, 2), (2, 3), (3,1), (3, 2)
and (3, 3) which fall into the same level-1 relative
overlay box as (1,1). Thus, in this worst case, (n / r1r2
+ r1r2 - 2)d - (r1r2 - l)d = (8/4 + 4 -2)2 - (4 - l)2 = 7
level-1 relative overlay cells must be updated.

Next, we discuss which level-2 relative overlay
cells need to be updated. Let Si denote the coordi-
nates of the anchors of the affected level-2 relative
overlay boxes in the i-dimension. Thus, we have Si =
{bi + r2; bi + 2r2; bi + 3r2 , …, bi + r1r2 -r2}. Let Ti
denote the coordinates of the affected level-2 relative
overlay cells inside a certain level-2 relative overlay
box in the i-dimension. Then, we have Ti = {ui, ui + 1;
ui + 2; …, bi + (r2 - 1)}. Let Q = (q1, q2,. .., qd)
denote the level-2 relative overlay cells that need to
be updated. These level-2 relative overlay cells
satisfy

Journal of Information Technology and Applications
Vol. 1 No. 3 December, 2006, pp. 145-154

and do not belong to level-2 relative overlay box B2.
Similarly, when we choose ui ≠ bi and Ui as small
as possible, the largest number of affected level-2
relative overlay cells would be obtained. Therefore,
in the worst case, Si has at most r1 –1 elements, and
Ti has up to r2 - 1 elements. Consequently, there are at
most (r1 - 1 + r2 - 1) = (r1 + r2 - 2) possible values for
each dimension, and there are at most (r1 + r2 - 2)d
level-2 relative overlay cells that satisfy the above
formula. Within these cells, (r2 - 1)d cells fall into
level-2 relative overlay box B2. In the worst case, (r1
+ r2 - 2)d - (r2 - 1)d level-2 relative overlay cells must
be updated.

For example, as shown in Figure 12, we assume
that cell (1,1)(= U) is updated. Then, we have Sx =
{2}, Nx = {1}, My = {2}, and Ny = {1}. The affected
level-2 relative overlay cells are all cells (qx , qy)
where qx {1; 2} and qy {1; 2}, minus (1,1)
which fall into the level-2 relative overlay box. In this
worst

Figure 12: The level-2 relative overlay array of the
data cube A

case, (r1 +r2 - 2)d - (r2 - 1)d = (2 + 2 - 2)2 - (2 - l)2 = 3
level-2 relative overlay cells must be updated.

Therefore, the worst update cost is obtained,
when cell (1,1,..., 1) is updated, resulting in a cost of

This value is minimized for r1 = r2 =

Similarly, in the recursive method with 3-levels,
the worst update cost could be obtained, when cell
(1,1,..., 1) is updated, resulting in a cost of

And this value is minimized for r1 = r2 = r3 =

4.2 Simulation Study

 For a given data cube, we assume that each
range query takes time tq and each update takes time
tu . Both tq and tu are the time in the worst case. For a
given time window, we assume that the average
numbers of range sum queries and updates to a data
cube are known in advance. Thus, if there are nq
queries and nu updates during the given time window,
the total time used for both range queries and updates
is nqtq + nutu [4]. We consider not only in the worst
case but also in the general case. Let c = nq / nu which

Table 1: Parameters used in the simulation

n length of each dimension

ri
length of the level-i relative overlay box of
recursive relative prefix sum method in each
dimension

c ration of the times of query and update

k recursive relative prefix sum method with
k-levels

is the ratio of query and update. Thus, nqtq + nutu =
nu(ctq + tu), since nq = cnu. In the general case, we
take the average of ctq + tu as our average cost, and
both tq and tu are the time on average here. We
assume that the time of accessing a cell is the same
regardless of query or update. Thus, tq and tu are
equal to how many cells they access on average. The
parameters used in our simulation are shown in Table
1.

If we could reduce the dependencies between
border values of level-1 relative overlay boxes, the
update cost can be significantly improved. Therefore,
We apply the Cumulative B Tree (Bc tree) [2] to
reduce the cascading update that occurs when an
individual row sum is updated. There will be a
separate Bc tree for each set of level-i border values,
where i {1,2, ..., k - 1}, in the recursive relative
prefix sum method with fc-levels.

Figure 13 shows a Bc tree for one set of border
values in a level-i relative overlay box. The Bc tree
modifies the standard S-tree in two ways. The first

A Recursive Relative Prefix Sum Approach to Range Sum Queries in Data Warehouses

modification is with regard to keys. Each leaf of the
Bc tree corresponds to one border value cell in a
level-i relative overlay box. The key for each leaf is
not equal to the data value in the cell, but rather is
equal to the index of the cell in the one-dimensional
array of level-i border values. Thus, the leaves of the
Bc tree are in the same order as the border value cells
in the level-i relative overlay box. The first leaf in the
figure corresponds to the first border value cell of the
level-i relative overlay box. Its key is thus 1, and it
stores the value 8, which is the sum of all cells in the
column above the first border value cell of the level-1
relative overlay box. The second leaf correspond to
the second border value cell; its key is thus 2, and its
value is (14 - 8 = 6), which is the sum of all cells in
the column above the second border value cell of the
level-i relative overlay box. A Bc tree also augments
the standard B-tree by storing additional values in
interior nodes. For each node entry, the subtree sum
(STS) stores the sum of the subtree found by
following the left branch associated with the entry.
The fanout of the tree in the figure is three, so there
are at most two STS values in each node. However,
for fanout f, there are (f - 1) STSs. In this example,
the root stores an STS of 23, which represents the
sum of the leaf values in the left subtree below the

Figure 13: One set of border values stored in a Bc tree

root (8 + 6 + 9 = 23). The interior node with key 6
has an STS of 7, which represents the sum of the leaf
values in its left subtree (7).

A border value is obtained from the Bc tree in
O(log r) steps, where r is the number of border values
in the level-i relative overlay box. For example, as
shown in Figure 13, we wish to find the value of
border value cell 5 in the level-i relative overlay box.
We start at the root, using 5 as the key. 5 is in the
right subtree of the root. The STS of 23 precedes it,
so we add 23 to our total and descend to the right
child of the root. 5 is in the middle subtree of this
node. The node has two STSs, 11 and 7. The STS 11
precedes the subtree we will descend, so we add it to

our total. The STS 7 is after the subtree we will
descend, so we ignore it. We descend to the leaf,
which contains the value 7, and add it to our total,
producing 23 + 11 + 7 = 41. In the worst case, the
query time of the Bc tree requires O(log r).

Similarly, as shown in Figure 13, we suppose an
update to the data cube causes the border value cell 3
to change from 9 to 12. To update the Bc tree to
reflect this change, we will use a bottom-up method.
We begin by traversing down the tree to the leaf,
where we note that the difference between the old
and new value is +3. After we update the value of cell
3 with the new value, we will return up the tree and
update one STS value per visited node with the
difference, when appropriate. In this case, we first
ascend to the node with key 3 in tree level 1. We do
not update the STS value of this node because the
changed cell does not fall in its left subtree. We next
ascend to the root, we update the STS value in the
root with the difference, producing 23 + 3 = 26. At
most one STS value will be modified per visited node
during the update process. Thus, updating the Bc tree
requires O(log r).

The Bc tree breaks the barrier to efficient updates
of border values in one dimension. Now, let us
consider the general case, where the dimensionality
of the data cube is greater than two. In general, a
level-i relative overlay box of d dimensions has d
groups of border values, and each group is (d - 1)
dimensional. Thus, the level-i relative overlay box
values of a d-dimensional data cube can be stored as
(d - l)-dimensional data cubes, recursively; when d =
2, we use the Bc tree to store the border values.
Algorithms for query and update are as described
before, except that border values of level-i relative
overlay are not accessed directly from arrays; rather,
they are obtained from secondary trees. In the recur-
sive relative prefix sum method with 2-levels, the
worst update case will affect
border cells of level-1 relative overlay originally, and
therefore, we could reduce affected level-1 border
cells to Thus, in the worst update
case, an update to the data cube will affect (r2 - 1)d
cells in the RP array + border cells of
level-2 relative overlay + (r1 - 1)d level-2 anchor cells
+ border cells of level-1 relative
overlay + level-1 anchor cells. This
formula can be reasonably approximated as

By using approximation, we find that the cost is
minimized when r1 = r2 = and the time for
the worst update cost therefore is O(nd/3).

Since we apply the Bc tree to the border val¬ues
of level-i relative overlay boxes, the query time time
is not a constant time anymore. In the re¬cursive

Journal of Information Technology and Applications
Vol. 1 No. 3 December, 2006, pp. 145-154

relative prefix sum method with 2-levels, calculating
each region sum requires adding one level-1 anchor
value, d level-1 border values, one level-2 anchor
value, d level-2 border values, and one value from RP.
Thus, when r1 = r2 = the query time is
O(logn). Table 2 presents the performance
complexities of various methods of computing range
sum queries.

Similarly, the parameters used in our simulation
are like previous subsection. But here, we apply the
Bc tree structure to the border values of level-1
relative overlay boxes in the recursive relative prefix
sum method with 2-levels, and the border values of
level-1, level-2 relative overlay boxes in the recursive
relative prefix sum method with 3-levels. The details
of the comparison for the average cost is summarized
in Table 3. From Table 3, we observe that the average
cost of our proposed method is better than the others.
When we consider the ratio c of the times of query
and updates, Figure 14 shows the result of the
simulation. As c increases gradually, the average cost
of our proposed method increases gently, and has
better average cost performance than the others.

5. Conclusion

For large data cubes in OLAP that are updated
weekly or daily, effective performances for both
range query time and update time are essential. In this
paper, we have proposed a new method called
recursive relative prefix sum method with fc-levels
which creates boundaries recursively that limit
cascading updates to distinguished cells. From our
performance study, we have shown that the update
cost of our method is always less than that of the
prefix sum method. Our recursive relative prefix sum
method has a reasonable response time for ad hoc
range queries on the data cube and greatly reduces
the update cost.

Table 2: Performance complexities of various
methods

Method Query Update Time for q
queries and
p updates

Native O(nd) O(l) O(p + qnd)

Prefix sum O(l) O(nd) O(pnd + q)

Relative
prefix sum

O(l) O(nd/2) O(pnd/2 + q)

Double
relative
prefix sum

O(n1/3) O(nd/3) O(pnd/3 +
qn1/3)

DDC O(logdn) O(logd n) O(plogdn
+qlogdn)

Recursive
relative
prefix sum
method
with
2-levels

O(log n) O(nd/3) O(pnd/3 + q
log n)

References
[1] S. Geffner, D. Agrawal, A. El Abbadi and T.

Smith, 1999, "Relative Prefix Sums: An
Efficient Approach for Querying Dynamic
OLAP Data Cubes," Proc. of the 15th IEEE Int.
Conf. on Data Eng., pp. 328-335.

[2] S. Geffner, D. Agrawal and A. El Abbadi, 2000,
"The Dynamic Data Cube," Proc. of the 7th Int.
Conf. on Extending Database Technology, pp.
237-248.

[3] Ching-Tien Ho, Rakesh Agrawal, Nimrod
Megiddo and Ramakrishnan Srikant, 1997,
"Range Queries in OLAP Data Cubes,"
Proc. of ACM SIGMOD Int. Conf. on
Management of Data, pp. 73-88.

[4] W. Liang, H. Wang and M. E. Orlowska, 2000,
"Range Queries in Dynamic OLAP Data
Cubes," Trans, on Data and Knowledge Eng.,
Vol. 34, No. 1, pp. 21-38.

[5] Z. Liu and Wesley W. Ch, 2005,

"Knowledge-Based Query Expansion to
Support Scenario-Specific Retrieval of Medical
Free Text," Proc. of ACM Symp. on Applied
computing, pp. 1076-1083.

[6] E. Malinowski and E. Zimanyi, 2006, "A
Conceptual Solution for Representing Time in
Data Warehouse Dimensions," Proc. of the 3rd
Asia-Pacific Conf. on Conceptual Modelling,
pp. 45-54.

A Recursive Relative Prefix Sum Approach to Range Sum Queries in Data Warehouses

* Recursive RPS(2): Recursive Relative Prefix Sum
method with 2-levels

Figure 14: A comparison of the average cost by using

different c

[7] Mikael R. Jensen, Thomas Holmgren and

Torben Bach Pederse, 2004, "Discovering
Multidimensional Structure in Relational Data,"
Proc. of the 6th Int. Conf. on Data Warehousing
and Knowledge Discovery, pp. 138-148.

[8] Tok Wang Ling, Wai Chong Low, Zhong Wei
Luo, Sin Yeung Lee and Hua-Gang Li, 2002,
"Variable Sized Partitions for Range Query Al-
gorithms," Proc. of the 13th Int. Conf. on
Database and Expert Systems Applications, pp.
193-202.

Table 3: A comparison of the average cost between different strategies

