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Abstract 

Data warehouses contain data consolidated from several operational databases and provide the historical, 
and summarized data. On-Line Analytical Processing (OLAP) is designed to provide aggregate information to 
analyze the contents of data warehouses. An increasingly popular data model for OLAP applications is the 
multidimensional database, also known as data cube. A range sum query applies a sum aggregation operation 
over all selected cells of an OLAP data cube where the selection is specified by providing ranges of values for 
numeric dimensions. It is very useful in finding trends and in discovering relationships between attributes in the 
database. For today's applications, interactive data analysis applications which provide the current information 
will require fast response time and have reasonable update time. Since the size of a data cube is exponential in 
the number of its dimensions, it costs a lot of time to rebuild the entire data cube. To solve these updating 
problem, we present the recursive relative prefix sum method, which provides a compromise between query and 
update cost. From our performance study, we show that the update cost of our method is always less than that of 
the prefix sum method. Our recursive relative prefix sum method has a reasonable response time for ad hoc 
range queries on the data cube, while at the same time, greatly reduces the update cost. 
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1. Introduction 
The data warehouse is usually a read-only 

database for data analysis and querying processing [6, 
7]. On-Line Analytical Processing (OLAP) [5] 
provides advanced analysis tools to extract 
information from data stored in a data warehouse. An 
increasingly popular data model for OLAP 
applications is the multidimensional database 
(MDDB), also known as data cube. In OLAP, a range 
query [3] applies a given aggregation operation over 
selected cells where the selection is specified as 
contiguous ranges in the domains of some of the 
attributes [4]. Such range queries are very useful in 
finding trends and in discovering relationships 
between attributes in the database. A range sum query 
is one aggregation operation that sums the measure 
attribute within the range of the query. For instance, 
consider a range sum query to the insurance data 
cube: find the total sales for customers with an age 
from 30 to 55, in year 1995-2001, in all of U.S., and 
with auto insurance. To answer this query, one way is 
to scan all involved cells in the data cube, and then 
sum them up as the results. However, since the 
number of cells in a data cube is exponential with its 
dimensions, it costs a lot of time which is 
proportional to the number of involved cells. 
Therefore, it is imperative to have a system with fast 
response time [8] in an interactive exploration of data 
cube. 

Ho et al. [3] initialized the problem of range 
sum query and have presented the prefix sum 
approach to precompute prefix sums of cells in the 

data cube, which can then be used to answer ad hoc 
queries in constant time. However, when there is an 
update to a cell in the data cube, it requires rebuilding 
an array of the same size as the entire data cube. Due 
to the cascading update effect, the update cost is very 
expensive and is proportional to the entire array size. 
In the worst case, the update cost is O(nd) and can 
become impractical, where n is the size of each 
dimension in a d-dimensional data cube. Then, 
Geffner [1] proposed the relative prefix sum method 
to answer rang sum queries on data cubes. It takes 
O(nd/2) time for an update and constant time for a 
query. However, it still incurs substantial update costs 
in the worst case, i.e., with order of the square root of 
the size of the cube. In order to speed up range sum 
queries in data cube, Liang et al. [4] proposed the 
double relative prefix sum method. It requires O(n1/'i) 
time for each range sum query and O(nd/3) time for 
each update. Geffner [2] proposed Dynamic Data 
Cube, a method that provides sublinear performance 
for both range sum queries and updates on the data 
cube. It has performance complexity of O(log n) for 
both queries and updates. 

The above strategies have tried to improve the 
update problems. However, they either take more 
query time or need high storage cost. Thus, we 
propose a method, called the recursive relative prefix 
sum method with k-levels, which uses k relative 
overlay arrays and a relative prefix array. By using 
these components, we can provide a compromise 
between the range sum query cost and the update 
cost. 



A Recursive Relative Prefix Sum Approach to Range Sum Queries in Data Warehouses 
 

The rest of the paper is organized as follows. In 
Section 2, we describe the range sum query. In 
Section 3, we present our recursive relative prefix 
sum method to answer the range sum query. In 
Section 4, we study the performance of the recursive 
relative prefix sum method. Finally, we give the 
conclusion. 

 
2. The Range Sum Query 

Let D = {1,2, ...,d} denote the set of dimension, 
where each dimension corresponds to a functional 
attribute [3]. A d-dimensional data cube can be 
represented by a d-dimensional array A of size n1 * n2 
* … * nd , where nj > 2, j D. We assume that an 
array has a starting index 0. For convenience, we will 
call each element a cell, and each cell contains the 
aggregate value of the measure attribute 
corresponding to a given point in the d-dimensional 
space formed by the dimensions. Without loss of 
generality, we assume that each dimension has the 
same size. This allows us to present many of the 
formulas more concisely [1]. Thus, let the size of 
each dimension be n, and the total size of array A is N  
= nd. 
 

A range-sum query in a d-dimensional data  
 
 

 
 

Figure 1: A geometric illustration for the 
two-dimensional case: Sum(Area_E) = Sum(Area_A) 

- Sum(Area_B) - Sum(Area_C) + Sum(Area_D) 
 
cube is to find the sum of the values in cells that fall 
within the specified range. For example, in the 
two-dimensional case, given a measure attribute 
SALES and the dimensions CUSTOMER.AGE and 
DATE_OF_SALE, the cell at A [37, 25] contains the 
total sales to age 37 years old customers on day 25. A 
range-sum query asking for the total sales to 37 years 
old customers from days 20 to 22 would be answered 
by summing the cells A[37, 20], A[37, 21], and A[37, 
22]. In general, any range-sum of A can be answered 
by accessing and combining 2d appropriate 
prefix-sum. Figure 1 gives a geometrical explanation 
for the two-dimensional case [1]. The sum 
corresponding to a range query's region can be 
determined by adding and subtracting the sums of 
various other regions until we have extracted the 
interesting region. 
 

3. The Recursive Relative Prefix Sum 
Approach 

Our method makes use of k relative overlay ar-
rays, which are level-1, level-2, .. . , level-k relative 

overlay arrays, respectively, and a relative prefix (RP) 
array. All of these arrays are d-dimensional arrays 
which are defined below. 

 
3.1 Level-k Relative Overlay Arrays and 
Relative Prefix Array 

A level-k relative overlay array has a set of dis-
joint hyper-rectangles (hereafter called "boxes") of 
equal size that cells of array A are completely 
partitioned into non-overlapping regions. Assume that 
the length of the level- k relative overlay box in each 
dimension is rk . The size of array A is nd, thus the 
total number of level-fc relative overlay boxes is  

. . Without loss of generality, we assume that n is 
divisible by rk . Then, the boxes in level-k relative 
overlay array are partitioned into disjoint level-(k - 1)  
boxes. Each dimension of a level-(k - 1)  box has the 
same size rk-1rk . Thus, there are          level- 
(k - 1) relative overlay boxes. Each level-(k - 1) 
relative overlay box covers  level-k relative 
overlay boxes.  Following this recursive partition 
rule, we can find out all these k  

 
 
 
 
 
 
 
 
 
 
Figure 2: A two-dimensional data cube represented as 

a two-dimensional array A 
 
 
 
 
 
 
 
 
 

Figure 3: The level-2 relative overlay array of the 
data cube A 

 
different level overlay arrays. 

A level-j relative overlay box is anchored at (a1, 
a2, ..., ad) if the box corresponds to the region of array 
A where (a1, a2,..., ad) is the lowest index of a cell at 
each dimension. We denote the level-j relative 
overlay box as Bj[a1, a2, …, ak], for j  {1,2,... ,k}. A 
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level-j relative overlay box Bj[a1, a2, …, ad] is said to 
cover a cell (x1, x2,..., xd) in array A, if the cell falls 
within the boundaries of the level-j relative overlay 
box, i.e., if  Each 
level-j relative overlay box corresponds to an area of 
array A of size (rj * rj+1 * … * rk)d cells, for j  {1, 
2, ..., k}. 

We take an 8 x 8 array A in Figure 2 as an 
example to illustrate a recursive relative prefix sum 
method with 2-levels as follows. Each level-2 relative 
overlay box in Figure 3 is bounded by bold lines is of 
size 2x2, i.e., r2 = 2. The total number of level-2 
relative overlay boxes is       = (8/2)2 = 16. The 
boxes are anchored at cells (0,0), (0,2), (0,4), (0,6), 
(2,0), (2,2), (2,4), (2,6), (4,0), (4,2), (4,4), (4,6), (6,0), 
(6,2), (6, 4), and (6, 6). Each level-2 relative overlay 
box covers 22 = 4 cells of array A. In Figure 4, each 
level-1 overlay box which is bounded by bold lines is 
of size 4x4, i.e., r1r2 = 4 and r1 = 2. The total number 
of level-1 relative overlay boxes is          = 
(8/4)2 = 4. The boxes are anchored at cells (0,0), (0,4), 
(4,0), and (4,4). Each level-1 relative overlay box 
covers (r1r2)2 = 16 cells of array A and r1

2 = 4 level-2 
relative overlay boxes. 
 
 
 
 
 
 
 
 

Figure 4: The level-1 relative overlay array of the 
data cube A 

 
Each level-j relative overlay box stores an 

anchor value Vj, plus                border 
values. The other cells covered by the level-j relative 
overlay box are not needed in the level-j overlay, and 
would not be stored. Values stored in a level-j relative 
overlay box provide sums of regions outside the box, 
but within its level-(j - 1) relative overlay box, for j 

 {1, 2, .. ., k}. Note theat j = 1, level-0 means the 
region of entire A. The anchor value of a level-j 
relative overlay box is the sum of all cells in A up, 
but not including, the cell under Vj within its level-(j - 
1) relative overlay box. 

For example, there are 16 level-2 relative 
overlay boxes of size 2 x 2 in Figure 3. The anchor 
value at cell (6, 6) and the border values at cells (6, 7) 
and (7, 6) are stored in one of the level-2 relative 
overlay boxes. In Figure 4, there are 4 level-1 relative 
overlay boxes of size 4x4. The anchor value at cell (4, 
4) and the border values at cells (4, 5), (4, 6), (4, 7), 
(5,4), (6,4), and (7, 4) are stored in one of the level-1 

relative overlay boxes. 
The relative prefix array (RP) has the same size 

as array A. It is partitioned into regions of cells that 
correspond to level-k relative overlay boxes. A cell 
RP[x1,x2, …,xd] = Sum(A[b1,b2, …, bd] : A[x1, x2, …, 
xd]) is covered by a level-2 relative overlay box B2, 
where (b1, b2, …, bd) is the lowest index of a cell at 
each dimension. Each region in RP contains prefix 
sums that are relative to the area enclosed by the 
level-fc relative overlay box. Each region of RP is 
independent of other regions. 

Figure 5 shows a relative prefix array RP, where 
r2 = 2 and the shaded area denotes the difference 
between the proposed approach and the relative 
prefix sum method. Take Figure 2 as an example. 
RP[4,7] = Sum(A[4, 6] : A[4, 7]) = A[4, 6] + A[4, 7] = 
3 + 4 = 7, RP[5, 6] = Sum(A[4, 6] : A[5, 6]) = A[4, 6] 
+ A[5, 6] = 3 + 8 = 11 and RP[5, 7] = Sum(A[4, 6] : 
A[5, 7]) = A[4, 6] + A[4, 7] + A[5, 6] + A[5, 7] = 
3+4+8+3 = 18. The lowest index of a cell at each 
dimension in the level-2 relative overlay box which 
contains these cells is cell (4, 6). 

Now we give a formal definition of anchor value 
and border value as follows. Let (b1, b2, .. ., bd) be the  

 
 
 
 
 
 
 
 
 

Figure 5: The relative prefix array RP of the data 
cube A 

 
lowest index of a cell at each dimension in a level-2 
relative overlay box B2, and (a1, a2,. .., ad) be the 
lowest index of a cell at each dimension in a level-1 
relative overlay box B1. The variable V2 is denoted as 
the level-2 anchor value, where V2[b1, b2, …, bd] = 
Sum(A[a1, a2, …, ad] : A[b1,b2, …, bd] – A[b1, b2, …, 
bd], and B2 is covered by B1. Take Figure 3 as an 
example. The cell [4, 6] is one of the lowest index of 
a cell at each dimension in the level-2 relative 
overlay box. Then, V2[4, 6] = Sum(A[4, 4] : A[4, 6]) - 
A[4, 6] = A[4, 4]+,4[4, 5]+,4[4, 6]-A[4, 6] = 2+2+3-3 
= 4. The level-2 border value contained in cell (x1, 
x2, .. ., xd) is equal to 

 
 

where V2 is the anchor value of the level-2 relative 
overlay box, RP[x1, x2,. .., xd] is the value of this cell 
in array RP, and (a1, a2,. .., ad) is the lowest index of a 
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cell at each dimension in a level-1 relative overlay 
box which covers this level-2 relative overlay box. 
Take Figure 3 as example. The level-2 border value 
contained in cell (5, 6) is equal to Sum(A[4,4] : A[5,6]) 
- RP[5, 6] - V2 = Sum(A[4,4] : A[5,6]) - (Sum(A[4,6] : 
A[5,6]) - ((Sum(A[4, 4] : A[4, 6]) - A[4, 6]) = Sum(A[5, 
4] : A[5, 5]) = 9. The level-2 border value at the row 
dimension can be computed similarly. 

The level-1 relative overlay box anchored at (ai, 
a2, .. ., ad) has a level-1 anchor value Vi[a1, a2,. .., ad] 
= Sum(A[0, 0,. .., 0] : A[a1,a2,. .. ,ad]) - A[a1,a2,. .. ,ad]. 
And the level-1 border value contained in cell (y1, 
y2, …, yd) is equal to 

 
 

where V1 is the anchor value of the level-1 relative 
overlay box. Figure 6 shows a level-1 relative overlay 
box superimposed on array A. Similarly, the level-1 
anchor value of the level-1 relative overlay box is 
equal to the sum of the shaded region in array A. 
Figure 7 shows the calculation of level-1 border 
values. The level-1 border values are equal to the sum 
of the associated shaded regions of array A. 

Take Figure 4 as an example. The cell [4,4] is 
one of the lowest index of a cell at each dimension in  
 
 
 
 
 
 
 
 

Figure 6: Array A showing calculation of a level-1 
relative overlay box anchor value 

 
a level-1 relative overlay box. Then, Vi[4,4] = 
Sum(A[0,0] : A[4,4]) - A[4,4] = 81. The level-1 
border value Y1 contained in cell (4, 5) is equal to 
Sum(A[0, 0] : A[4, 5]) - Sum(A[4, 4] : A[4, 5]) - V1 = 
20. The level-1 border value Y2 contained in cell (4,6) 
is equal to Sum(A[0,0] : A[4, 6]) - Sum(A[4, 4] : A[4, 
6]) - V1 = Y1 + Sum(A[0,6] : A[3,6]) = 41. The level-1 
border value Y3 contained in cell (4,7) is equal to 
Sum(A[0,0] : A[A,7]) - Sum(A[4,4] : A[4,7]) - V1 =Y2 
+ Sum(A[0, 7] : A[3, 7]) = 55. The level-1 border 
values X1, X2, and X3 at the column dimension can be 
computed similarly. 
 
3.2 Range Sum Queries and Updates 

According to Figure 1, Figure 8 shows the con-
struction of a complete region sum using the recur-
sive relative prefix sum method with 2-levels. In 
Figure 8, * denotes an arbitrary cell in array A at cell 
(3, 7), as shown in 2. For reference, the level-1 

relative overlay box and level-2 relative overlay box 
covering this cell have been superimposed on array A. 
The level-1 anchor and level-1 border values from the 
level-1 relative overlay box provide the sum of the 
portion of the light-dark region outside the level-1 
relative overlay box. The level-2 anchor and level-2 
border values from the level-2 relative overlay box 
provide the sum of the portion of the diagonal region 
between the level-1 relative overlay box and the 
level-2 relative overlay box. The cell * in RP 
provides the sum of the portion of the deep-dark 
region within the level-2 relative overlay box. Sum of 
these three shaded regions together yields the sum of 
all cells in array A that fall within the shaded region. 
Following this manner, any region sum rooted at 
A[0,0,..., 0] could be generated, and it is sufficient to 
provide the region sums required by the method 
illustrated in Figure 1. 

Take Figure 2 as an example. Suppose a range 
sum query is given which ranges from cell .A[0,0] to 
cell A[3,7] in array A.  We find that cell [3, 7] is 
covered by the level-1 relative overlay box anchored 
at cell [0,4] in Figure 4 and level-2 relative overlay 
box anchored at cell [2, 6] in 3. First, we calculate the 
sum of the area that falls outside the level-1 relative  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 7: Array A showing calculation of level-1 
relative overlay box border values: (a) level-1 border 
values X1 and Y1; (b) level-1 border values X2 and Y2; 

(c) level-1 border values X3 and Y3. 
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Figure 8: Construction of complete region sum from 
level-1 relative overlay, level-2 relative overlay and 

RP 
 
overlay box, which is the sum of a level-1 anchor 
value and two level-1 border values. The level-1 
anchor value of the level-1 relative overlay box 
which is anchored at cell (0, 4) is 14. Since cell (3, 7) 
is three cells to the right of, and three cells down 
from the level-1 anchor cell, there are two level-1 
border values X3 and Y3 which are 41 and 0, 
respectively. Therefore, the area outside the level-1 
relative overlay box has a value equal to 14+41+0. 
Then, we calculate the sum of the area that falls 
between the level-1 relative overlay box and the 
level-2 relative overlay box, which is the sum of a 
level-2 anchor value and two level-2 border values. 
The level-2 anchor value of the level-2 relative 
overlay box which is anchored at cell (2, 6) is 36. 
Since cell (3, 7) is one cell to the right of, and one 
cell down from the level-2 anchor cell, there are two 
level-2 border values which are 12 and 7, respectively. 
Therefore, the area between the level-1 relative 
overlay box and the level-2 relative overlay box has a 
value equal to 36 + 12 + 7. Finally, we calculate the 
sum of the cells inside the level-2 relative box which 
is anchored at cell (2,6). This sum is stored in RP[3, 7] 
as shown in Figure 5, and its value is 17. Thus, the 
complete range sum for the region A[0, 0] : A[3, 7] is 
14 + 41 + 0 + 36 + 12 + 7 + 17 = 127. 
 
3.2.1 Updates 

Assume that a cell in the data cube has been 
updated. Updating this cell requires updates to the 
data structures. Updates in RP are constrained to a 
region covered by one level-2 relative overlay box. In 
other words, every cell in the level-2 relative overlay 
box whose index is larger than the index of the 
updated cell will be updated. Then, we update the 
content of the level-2 relative overlay boxes covered 
by a level-1 relative overlay box in which the updated 
cell is contained. That is, we update the level-2 
border values and level-2 anchor values of some 
level-2 relative overlay boxes within the level-1 
relative overlay box. For example, as shown in Figure 
9, * denotes the location of the changed cell. The 
shaded region to the right of the changed cell shows 
the level-2 relative overlay box whose border values 
in the first dimension will be affected by the update. 
In this example, only level-2 relative overlay cell (2,1) 

will be updated. The shaded region below the 
changed cell shows the level-2 relative overlay box 
whose border values in the second dimension will be 
affected by the update. In this example, level-2 
relative overlay cell (1, 2) will be updated. Every 
level-2 anchor value whose index is larger than the 
changed cell will be affected by the update, too.  In 
this case, level-2 relative overlay cell (2, 2) will be 
affected. 

Finally, the content of every level-1 relative 
overlay box whose cells' lowest index is larger than 
the lowest index of cells within the level-1 relative 
overlay box covering the changed cell must be 
updated; i.e., we update the level-1 border values and 
level-1 anchor values of some level-1 relative overlay 
boxes. For example, as shown in Figure 10, * denotes 
the location of the changed cell. The shaded region to 
the right of the changed cell shows the level-1 
relative overlay box whose border values in the first 
dimension will be affected by the update. In this 
example, level-1 relative overlay cells (4,1), (4, 2),  
 
 
 
 
 
 
 
 

Figure 9: An update example of level-2 relative 
overlay array 

 
 
 
 
 
 
 
 
 

Figure 10: An update example of level-1 relative 
overlay array 

 
and (4,3) will be updated. The shaded region below 
the changed cell shows the level-1 relative overlay 
box whose border values in the second dimension 
will be affected by the update. In this example, 
level-1 relative overlay cell (1,4), (2,4), and (3,4) will 
be updated. Every level-1 anchor value whose index 
is larger than the changed cell will be affected by the 
update, too. In this case, level-1 anchor cell (4, 4) will 
be affected. 

Algorithms for query and update operations in 
the recursive relative prefix sum method with more 
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than 2-levels are similar to those in the recursive 
relative prefix method with 2-levels. So we do not 
describe the algorithms further. By recursively 
creating boundaries with appropriate k levels, we can 
get the sum of each region in constant time. 

 
4. Performance Study 

In this section, we study the performance of our 
proposed recursive relative prefix sum method for the 
range sum query problem, and make a comparison 
with other range sum query strategies, including the 
prefix sum method [3], the relative prefix sum method 
[1], the double relative prefix sum method [4], and the 
dynamic data cube method (DDC) [2]. 
 
4.1 Performance Analysis 

In the recursive relative prefix sum method with 
2-levels, choosing different values of r1 and r2 can 
make quite different update costs, where r2 is the 
length of the level-2 relative overlay box in each 
dimension and r1 means a level-1 relative overlay box 
covering r1 level-2 relative overlay boxes in each 
dimension. When the values of r1 and r2 are smaller, 
fewer cells in RP will be updated, but more cells in 
the level-2 and level-1 relative overlay arrays will be 
updated, which would result in a larger total number 
of affected cells. When the values of r1 and r2 are 
larger, fewer cells in the level-2 and level-1 relative 
overlay arrays will be updated; however, more cells 
in RP will be updated. This may lead to a larger total 
number of affected cells. We make different 
combination of values of r1 and r2. Then, we observe 
that update costs would be smallest when we choose 
r1 = r2 = 16. 
For the the recursive relative prefix sum method with 
2-levels, each level-2 relative overlay box is of size r2 
and each level-1 relative overlay box covers (r1r2)d 
cells of array A and level-2 relative overlay boxes. 
Let U = (u1, u2, …, ud) be the updated cell, B2 be the 
level-2 relative overlay box anchored at (b1, b2, …, bd) 
that covers U and B1 be the level-1 relative overlay 
box anchored at (a1, a2, …, ad) that covers #2. The cost 
of updating U requires updates to the overlay cells and 
RP. Updates in RP are constrained to a region covered 
by level-2 relative overlay box #2. In the worst case, 
the cost of updating RP is Next, we describe which 
level-2 relative overlay cells and level-1 relative 
overlay cells need to be updated. Generally speaking, 
these are all level-2 relative overlay cells and level-1 
relative overlay cells that include U in their 
aggregation. Let Mi denote the coordinates of the 
anchors of the affected level-1 relative overlay boxes 
in the i-dimension. Thus, we have Mi = {ai+r1r2; 
ai+2r1r2; ai+3r1r2, …, n-r1r2}. Let Ni denote the 
coordinates of the affected level-1 relative overlay 
cells inside a certain level-1 relative overlay box in the 
i-dimension. Then, we have Ni = {ui; ui+1; ui+2; …,  
ai+(r1 r2-1}}. Let P = (p1, p2, …, pd) denote the level-1 

relative overlay cells that need to be updated. These 
level-1 relative overlay cells satisfy 
 
 
 
and do not belong to level-1 relative overlay box B1. 
When we choose ui ≠ ai and ui as small as possible 
(the smaller ui, the smaller dj, i.e., the more elements 
in Mi), the largest number of affected level-1 relative 
overlay cells would be obtained. Therefore, in the 
worst case, Mi has at most n / r1r2 - 1 elements, and 
Ni has up to r1r2 - 1 elements. Consequently, there are 
at most (n / r1r2 - 1 + r1r2 - 1) = (n / r1r2 + r1r2 - 2) 
possible values for each dimension, and there are at 
most (n / r1r2 + r1r2 - 2)d level-1 relative overlay cells 
that satisfy the above formula. Within these cells, 
(r1r2 — l)d cells fall into level-1 relative overlay box 
B\. In the worst case, (n / r1r2 + r1r2 - 2)d - (r1r2 - 1)d 
level-1 relative overlay cells must be updated. 
 
 
 
 
 
 
 
 

Figure 11: The level-1 relative overlay array of the 
data cube A 

 
For example, as shown in Figure 11, we assume 

that cell (1,1)(= U) is updated. Then, we have Mx = 
{4}, Nx = {1;2;3}, My = {4}, and Ny = {1;2;3}. The 
affected level-1 relative overlay cells are all cells (px , 
py) where px {1;2;3;4} and py {1;2;3;4}, minus 
(1,1), (1, 2), (1, 3), (2,1), (2, 2), (2, 3), (3,1), (3, 2) 
and (3, 3) which fall into the same level-1 relative 
overlay box as (1,1). Thus, in this worst case, (n / r1r2 
+ r1r2 - 2)d - (r1r2 - l)d = (8/4 + 4 -2)2 - (4 - l)2 = 7 
level-1 relative overlay cells must be updated. 

Next, we discuss which level-2 relative overlay 
cells need to be updated. Let Si denote the coordi-
nates of the anchors of the affected level-2 relative 
overlay boxes in the i-dimension. Thus, we have Si = 
{bi + r2; bi + 2r2; bi + 3r2 , …, bi + r1r2 -r2}. Let Ti 
denote the coordinates of the affected level-2 relative 
overlay cells inside a certain level-2 relative overlay 
box in the i-dimension. Then, we have Ti = {ui, ui + 1; 
ui + 2; …, bi + (r2 - 1)}. Let Q = (q1, q2,. .., qd) 
denote the level-2 relative overlay cells that need to 
be updated. These level-2 relative overlay cells 
satisfy 
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and do not belong to level-2 relative overlay box B2. 
Similarly, when we choose ui ≠ bi and Ui as small 
as possible, the largest number of affected level-2 
relative overlay cells would be obtained. Therefore, 
in the worst case, Si has at most r1 –1 elements, and 
Ti has up to r2 - 1 elements. Consequently, there are at 
most (r1 - 1 + r2 - 1) = (r1 + r2 - 2) possible values for 
each dimension, and there are at most (r1 + r2 - 2)d 
level-2 relative overlay cells that satisfy the above 
formula. Within these cells, (r2 - 1)d cells fall into 
level-2 relative overlay box B2. In the worst case, (r1 
+ r2 - 2)d - (r2 - 1)d level-2 relative overlay cells must 
be updated. 

For example, as shown in Figure 12, we assume 
that cell (1,1)(= U) is updated. Then, we have Sx = 
{2}, Nx = {1}, My = {2}, and Ny = {1}. The affected 
level-2 relative overlay cells are all cells (qx , qy) 
where qx  {1; 2} and qy  {1; 2}, minus (1,1) 
which fall into the level-2 relative overlay box. In this 
worst  
 
 
 
 
 
 
 
 

Figure 12: The level-2 relative overlay array of the 
data cube A 

 
case, (r1 +r2 - 2)d - (r2 - 1)d = (2 + 2 - 2)2 - (2 - l)2 = 3 
level-2 relative overlay cells must be updated. 

Therefore, the worst update cost is obtained, 
when cell (1,1,..., 1) is updated, resulting in a cost of 
 
 
 
 
 
 
 
 
 
This value is minimized for r1 = r2 = 

Similarly, in the recursive method with 3-levels, 
the worst update cost could be obtained, when cell 
(1,1,..., 1) is updated, resulting in a cost of 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
And this value is minimized for r1 = r2 = r3 =  
 
4.2 Simulation Study 

 For a given data cube, we assume that each 
range query takes time tq and each update takes time 
tu . Both tq and tu are the time in the worst case. For a 
given time window, we assume that the average 
numbers of range sum queries and updates to a data 
cube are known in advance. Thus, if there are nq 
queries and nu updates during the given time window, 
the total time used for both range queries and updates 
is nqtq + nutu [4]. We consider not only in the worst 
case but also in the general case. Let c = nq / nu which  

 

Table 1: Parameters used in the simulation 

n length of each dimension 

ri
length of the level-i relative overlay box of 
recursive relative prefix sum method in each 
dimension

c ration of the times of query and update 

k recursive relative prefix sum method with 
k-levels

 
is the ratio of query and update. Thus, nqtq + nutu = 
nu(ctq + tu), since nq = cnu. In the general case, we 
take the average of ctq + tu as our average cost, and 
both tq and tu are the time on average here. We 
assume that the time of accessing a cell is the same 
regardless of query or update. Thus, tq and tu are 
equal to how many cells they access on average. The 
parameters used in our simulation are shown in Table 
1. 

If we could reduce the dependencies between 
border values of level-1 relative overlay boxes, the 
update cost can be significantly improved. Therefore, 
We apply the Cumulative B Tree (Bc tree) [2] to 
reduce the cascading update that occurs when an 
individual row sum is updated. There will be a 
separate Bc tree for each set of level-i border values, 
where i {1,2, ..., k - 1}, in the recursive relative 
prefix sum method with fc-levels. 

Figure 13 shows a Bc tree for one set of border 
values in a level-i relative overlay box. The Bc tree 
modifies the standard S-tree in two ways. The first 
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modification is with regard to keys. Each leaf of the 
Bc tree corresponds to one border value cell in a 
level-i relative overlay box. The key for each leaf is 
not equal to the data value in the cell, but rather is 
equal to the index of the cell in the one-dimensional 
array of level-i border values. Thus, the leaves of the 
Bc tree are in the same order as the border value cells 
in the level-i relative overlay box. The first leaf in the 
figure corresponds to the first border value cell of the 
level-i relative overlay box. Its key is thus 1, and it 
stores the value 8, which is the sum of all cells in the 
column above the first border value cell of the level-1 
relative overlay box. The second leaf correspond to 
the second border value cell; its key is thus 2, and its 
value is (14 - 8 = 6), which is the sum of all cells in 
the column above the second border value cell of the 
level-i relative overlay box. A Bc tree also augments 
the standard B-tree by storing additional values in 
interior nodes. For each node entry, the subtree sum 
(STS) stores the sum of the subtree found by 
following the left branch associated with the entry. 
The fanout of the tree in the figure is three, so there 
are at most two STS values in each node. However, 
for fanout f, there are (f - 1) STSs. In this example, 
the root stores an STS of 23, which represents the 
sum of the leaf values in the left subtree below the  

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: One set of border values stored in a Bc tree 

 
root (8 + 6 + 9 = 23). The interior node with key 6 
has an STS of 7, which represents the sum of the leaf 
values in its left subtree (7). 

A border value is obtained from the Bc tree in 
O(log r) steps, where r is the number of border values 
in the level-i relative overlay box. For example, as 
shown in Figure 13, we wish to find the value of 
border value cell 5 in the level-i relative overlay box. 
We start at the root, using 5 as the key. 5 is in the 
right subtree of the root. The STS of 23 precedes it, 
so we add 23 to our total and descend to the right 
child of the root. 5 is in the middle subtree of this 
node. The node has two STSs, 11 and 7. The STS 11 
precedes the subtree we will descend, so we add it to 

our total. The STS 7 is after the subtree we will 
descend, so we ignore it. We descend to the leaf, 
which contains the value 7, and add it to our total, 
producing 23 + 11 + 7 = 41. In the worst case, the 
query time of the Bc tree requires O(log r). 

Similarly, as shown in Figure 13, we suppose an 
update to the data cube causes the border value cell 3 
to change from 9 to 12. To update the Bc tree to 
reflect this change, we will use a bottom-up method. 
We begin by traversing down the tree to the leaf, 
where we note that the difference between the old 
and new value is +3. After we update the value of cell 
3 with the new value, we will return up the tree and 
update one STS value per visited node with the 
difference, when appropriate. In this case, we first 
ascend to the node with key 3 in tree level 1. We do 
not update the STS value of this node because the 
changed cell does not fall in its left subtree. We next 
ascend to the root, we update the STS value in the 
root with the difference, producing 23 + 3 = 26. At 
most one STS value will be modified per visited node 
during the update process. Thus, updating the Bc tree 
requires O(log r). 

The Bc tree breaks the barrier to efficient updates 
of border values in one dimension. Now, let us 
consider the general case, where the dimensionality 
of the data cube is greater than two. In general, a 
level-i relative overlay box of d dimensions has d 
groups of border values, and each group is (d - 1) 
dimensional. Thus, the level-i relative overlay box 
values of a d-dimensional data cube can be stored as 
(d - l)-dimensional data cubes, recursively; when d = 
2, we use the Bc tree to store the border values. 
Algorithms for query and update are as described 
before, except that border values of level-i relative 
overlay are not accessed directly from arrays; rather, 
they are obtained from secondary trees. In the recur-
sive relative prefix sum method with 2-levels, the 
worst update case will affect                 
border cells of level-1 relative overlay originally, and 
therefore, we could reduce affected level-1 border 
cells to                Thus, in the worst update 
case, an update to the data cube will affect (r2 - 1)d 
cells in the RP array +          border cells of 
level-2 relative overlay + (r1 - 1)d level-2 anchor cells 
+             border cells of level-1 relative 
overlay +           level-1 anchor cells. This 
formula can be reasonably approximated as 

 
 

By using approximation, we find that the cost is 
minimized when r1 = r2 =  and the time for 
the worst update cost therefore is O(nd/3). 

Since we apply the Bc tree to the border val¬ues 
of level-i relative overlay boxes, the query time time 
is not a constant time anymore. In the re¬cursive 
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relative prefix sum method with 2-levels, calculating 
each region sum requires adding one level-1 anchor 
value, d level-1 border values, one level-2 anchor 
value, d level-2 border values, and one value from RP. 
Thus, when r1 = r2 =  the query time is 
O(logn). Table 2 presents the performance 
complexities of various methods of computing range 
sum queries. 

Similarly, the parameters used in our simulation 
are like previous subsection. But here, we apply the 
Bc tree structure to the border values of level-1 
relative overlay boxes in the recursive relative prefix 
sum method with 2-levels, and the border values of 
level-1, level-2 relative overlay boxes in the recursive 
relative prefix sum method with 3-levels. The details 
of the comparison for the average cost is summarized 
in Table 3. From Table 3, we observe that the average 
cost of our proposed method is better than the others. 
When we consider the ratio c of the times of query 
and updates, Figure 14 shows the result of the 
simulation. As c increases gradually, the average cost 
of our proposed method increases gently, and has 
better average cost performance than the others. 

 
5. Conclusion 

For large data cubes in OLAP that are updated 
weekly or daily, effective performances for both 
range query time and update time are essential. In this 
paper, we have proposed a new method called 
recursive relative prefix sum method with fc-levels 
which creates boundaries recursively that limit 
cascading updates to distinguished cells. From our 
performance study, we have shown that the update 
cost of our method is always less than that of the 
prefix sum method. Our recursive relative prefix sum 
method has a reasonable response time for ad hoc 
range queries on the data cube and greatly reduces 
the update cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2: Performance complexities of various 
methods 

Method Query Update Time for q 
queries and 
p updates 

Native O(nd) O(l) O(p + qnd) 

Prefix sum O(l) O(nd) O(pnd + q) 

Relative 
prefix sum

O(l) O(nd/2) O(pnd/2 + q)

Double 
relative 
prefix sum

O(n1/3) O(nd/3) O(pnd/3 + 
qn1/3) 

DDC O(logdn) O(logd n) O(plogdn 
+qlogdn) 

Recursive 
relative 
prefix sum
method 
with 
2-levels 

O(log n) O(nd/3) O(pnd/3 + q 
log n) 
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