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Abstract

In this paper, we propose an efficient iconic indexing strategy called Bit-Pattern-based
matriz (BP matrix) for symbolic pictures, in which each spatial relationship between any
two objects along the z-axis (or y-axis) is represented as a binary-bit pattern, and is
recorded in a matrix. There are 12 bits in each bit pattern. When the bits in a certain
subset of those 12 bits are set to 1, they denote a certain spatial relationship. Bit-wise-
and/bit-wise-or operations are used for query processing; therefore, they are efficient enough
as compared to the previous approaches. From our simulation, we show that the proposed
BP matrix strategy requires shorter time for query processing than the Generalized Prime-
Number-based (GPN) matrix strategy.
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1 Introduction

In the Intelligent Image Database System (IIDS) proposed by S. K. Chang et al. [3, 4],
they provided a high-level object-oriented search capability for spatial reasoning, where
spatial reasoning means the inference of a consistent set of spatial relationships among the
objects in an image. The IIDS is based on a pictorial data structure, called 2D string, for
indexing iconic spatial objects. However, the representation of 2D strings is not sufficient
enough to describe pictures of arbitrary complexity completely [11], for example, pictures
with (partly or completely) overlapping objects. For this reason, Lee and Hsu [11] proposed
a 2D C-string representation strategy. On the other hand, C. C. Chang et al. [5] proposed
a nine direction lower-triangular (9DLT) matriz. In [8], Y. I. Chang et al. proposed a
Generalized Prime-Number-based matrix strategy (denoted as the GPN matrix strategy),
which combines the advantages of the 2D-C string and 9DLT matrix strategies and is an
improved version of the Prime-Number-based matrix strategy [7]. In this GPN matrix
strategy, each spatial relationship between any two objects is represented as a product
of some prime numbers from a set of 12 prime numbers and is recorded in a matrix,
and a module-based operation is used for the query processing. In recent years, a lot
of new approaches focused on spatial relationship of similarity retrieval were published
1, 2,9, 10, 13].

Although the GPN matrix strategy has improved the performance (in terms of query
processing time) of the 2D C-string strategy, the GPN matrix strategy still requires a
module-based operation to perform query processing. In this paper, we propose an efficient
iconic indexing strategy called Bit-Pattern-based matriz (BP matrix) for symbolic pictures,
in which each spatial relationship between any two objects along the z-axis (or y-axis) is
represented as a binary-bit pattern, and is recorded in a matrix. There are 12 bits in each
bit pattern. When the bits in a certain subset of those 12 bits are set to 1, they denote
a certain spatial relationship. An efficient bit-wise-and/bit-wise-or operation is used to
support spatial reasoning and similarity retrieval. From our simulation, we show that the
proposed BP matrix strategy requires shorter time for query processing than the GPN
matrix strategy.

The rest of the paper is organized as follows. Section 2 gives a brief description about



Table 1: Definitions of Lee’s spatial operators (adapted from Ref. [12] )

Notation Condition Meaning

A<B end(A) < begin (B) A disoinsB

A=B begin(A) = begin(B) A isthesameasB
end(A) = end(B)

A|B end(A) = begin(B) A isedgeto edge with B

A%B begin(A) < begin(B) A contains B and they
end(A) > end(B) have not the same bound

A[B begin(A) = begin(B) A contains B and they
end(A) > end(B) have the same begin bound

AlB begin(A) < begin(B) A contains B and they
end(A) = end(B) have the same end bound

AlB begin(A) < begin(B) A ispartly overlapping
<end(A) < end(B) with B

the 169 spatial relationships. Section 3 presents the proposed strategy. Section 4 shows

the performance. Finally, Section 5 gives a conclusion.

2 Background

In Lee and Hsu’s 2D C-sting [12], they presented the formal definition of the set of spatial
operators as shown in Table 1, where the notation "begin(A)” denotes the value of begin-
bound of object A and "end(A)” denotes the value of end-bound of object A [12]. According
to the begin-bound and end-bound of the picture objects, spatial relationships between two
enclosing rectangles along the x-axis (or y-axis) can be categorized into 13 types ignoring
their length. Therefore, There are 169 types of spatial relationships between two rectangles
in 2D space, as shown in Figure 1, where operator® denotes the inverse operator of the

related operator, for example, A < B implying B <* A .

3 The BP Matrix Strategy

By observing the 169 spatial relationships in Figure 1, we can classify them into five spatial
categories: disjoin, join, contain, belong and part_overlap, as shown in Figure 2, 3, 4, 5 and
6, respectively. Based on some observations from those tables, we design Bit-Pattern-based

category rules.
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Figure 1: The 169 spatial relationship types of two objects (adapted from Ref. [12])
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Figure 2: The 48 spatial relationships of category disjoin
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Figure 3: The 40 spatial relationships of category join
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Figure 4: The 50 spatial relationships of category part_ovip
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Figure 5: The 16 spatial relationships of category contain

3.1 Assignments of Spatial-Operator-Bit-Patterns (SOBP) for 13
Spatial Operators

Suppose A and B are two objects in a picture f, and the spatial relationship between them
in terms of x-axis and y-axis is (Arf§ pB, Ar% zB), where 1% 5 and 1% p are the spatial
operators in Table 1. The characteristics of those five spatial categories are described as
follows.

1. Disjoin: One or both the r} g, ’I"Z’B spatial operators are in { <, <* }.

2. Join: (a) Nome of the 79 5, %) ; spatial operators is in { <, <* }. And, (b) one or both the
4.8 % 5 spatial operators are in { |,|* }.

3. Contain: Both the r§ 5, ’I"Z’B spatial operators are in { =, %, ],[ }.
4. Belong: Both the 74 p, r} 5 spatial operators are in { =, %", ]*, [* }.

5. Part_overlap: (a) One of the r§ p, ’I"Z’B spatial operators is in { /, /* } and the other is in
{%,[,],/,=,%",[*,]*, /" }. Or (b) one of the r} 4, T%,B spatial operators is in { %, ],[ } and
the other is in { %*,]*,[* }.

[
[ =%*| 1*= 1*%* | %*= | %*%*| [*= [* %*
-
=1* =[* 1*1* 1*[* %*1* | %*[* [*1* [*[*

Figure 6: The 16 spatial relationships of category belong
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Figure 7: Meaning of those 12 bits

Based on the above observation, we can support efficient spatial reasoning by making
use of the Bit-Pattern-based matrix representation. The major step is to assign each
spatial operator a unique bit string (by1b10b9bgb7bsbsbsb3b2b1by) according to these five spatial
categories. Figure 7 shows the meaning of those 12 bits. Suppose r is a spatial operator in
theset R = {<,<* |, [,[%],]% %, %*, /, /*,=} and A, B are two objects in the symbolic
picture. We define sobp(r) as the spatial-operator-bit-pattern of r with an initial value
000000000000. Here comes the steps of assignments.

(1) To classify the disjoin category, bit 0 is set. That is,

sobp(r) := sobp(r) | 000000000001, Vre{<, <"}

Therefore, the Disjoin category rule shown in Figure 8 can determine whether one or
both the 7% 5, 1% p spatial operators are in the set { <, <* }.

(2) To classify the join category, bit 1 is set. That is,

sobp(r) := sobp(r) | 000000000010, vre{|,|"}

This bit can be used to determine whether one or both the 74 4, r% 5 spatial operators
are in the set { |,[* }. Moreover, none of the r% 5, 1% p spatial operator should be in the
set { <,<*}, so bit 2 is used. (In other words, both r% 5, % 5 spatial operators should be
in the set of R \ { <, <* }.) That is,

sobp(r) := sobp(r) | 000000000100, Vre R\ { <, <* }.
Therefore, the Join category rule shown in Figure 8 can determine the join category.
(3) To classify the contain category, bit 3 is set. That is,

sobp(r) := sobp(r) | 000000001000, vre{=%]1}

Therefore, the Contain category rule shown in Figure 8 can determine whether both
the 14 p, 1% p spatial operators are in the set { =,%,], [ }.

(4) To classify the belong category, bit 4 is set. That is,



Disjoin if ((sobp(r% p) | sobp(r% p)) & 000000000001) == 000000000001.

Join if (((sobp(r%, ) & sobp(ry ) & 000000000100) |

((s0bp(r ) | s0bp(r% 5)) & 000000000010)) == 000000000110.
Contain if ((sobp(ry p) & sobp(rf z)) & 000000001000) == 000000001000.
Belong if ((sobp(r% ) & sobp(r} ) & 000000010000) == 000000010000.

Part_overlap if ((((sobp(r% g) | sobp(r}) z)) & 000000100000) |
((s0bp(r% ) & sobp(r% )} & 000001000000)) == 000001100000
(* case (a) *)
or (((sobp(r% ) | sobp(r% 5)) & 000110000000) == 000110000000).
(* case (b) *)

Figure 8: Bit-Pattern-based category rules

sobp(r) := sobp(r) | 000000010000, Vre {=%]["}

Therefore, the Belong category rule shown in Figure 8 can determine whether both the
4.5, Ta,p Spatial operators are in the set { =, %*, |, [* }.

(5) To classify the part_overlap category, let’s consider the following two cases stated
before. First, to determine whether one of the r% 5, 7% 5 spatial operators is in the set
{/./*}, and the other is in the set { %,[,],/,=, %* [*,]*,/* }, bit 5 and bit 6 are used,
respectively. That is,

sobp(r) := sobp(r) | 000000100000, vre{/,/*} =KL
sobp(r) := sobp(r) | 000001000000, vred{%,[,],/,= %]/} = K2.

Therefore, the first test (before the "or” statement) of the Part_overlap category rule
shown in Figure 8 can determine whether one of the 7% p, 7  spatial operators is in the set
{/,/*}, and the other is in the set { %, [, ], /, =, %", %", [*,]*, /* }. Note that whenever bit 5
of r% 5 (or %) is set to 1, bit 6 of 7% 5 (or r% ) is also set to 1 due to K1 C K2. Therefore,
we have to carefully eliminate the case that only one of 1%, and 7%, is in K1 while the
other operator is not in K2. Table 2 shows all possible test results of bit 5 and bit 6 of 1%
and 7Y% 5, where ”*” denotes the special cases which we must be careful. (Note that the bit
pattern 701" for bgbs is impossible due to K1 C K2.) For those special cases, for example,
when bgbs in 7% is 11 and bgbs in r¥ is 00, the final test result should be false. That is why
the pattern for the test of bit 6 should be ((sobp(r% z) & sobp(r z)) & 000001000000).

6



Table 2: The test results of bit 5 and bit 6

v rY testl := test2 1= (testl | test2)
(b(; b5) (b(; b5) (Tw | Ty) & 01 (Tw & Ty) & 10 ==11
11 11 01 10 T
11 10 01 10 T
11 00 01 00 *F
10 11 01 10 T
10 10 00 10 F
10 00 00 00 F
00 11 01 00 *F
00 10 00 00 F
00 00 00 00 F

Similarly, we should be careful for the case in which bgbs in 7% is 00 and bgbs in ¥ is 11.

Second, to determine whether one of the %4 , 7% p spatial operators is in the set
{%,],] }, and the other is in the set { %*,|*,[* }, bit 7 and bit 8 are used, respectively.
That is,

sobp(r) := sobp(r) | 000010000000, vre{ %]}
sobp(r) := sobp(r) | 000100000000, vre { %)% }-

Therefore, the second test (after the "or” statement) of the Part_overlap category rule
shown in Figure 8 can determine whether one of the r% g, 7”2173 spatial operators is in the
set { %,],[ }, and the other is in the set { %*, [*,]* }.

According to the above descriptions, we have assigned each spatial operator a bit pat-
tern which can be used to determine different spatial categories efficiently. However, in
order to determine the spatial relationships between any two objects efficiently, we have
to make each of the spatial-operator-bit-pattern unique. Therefore, we have to use more
bits to distinguish those spatial operators which are in the same category. For the spatial
operators in the disjoin category, we turn on bits 9 and 10 for spatial operators “<” and
“<*” respectively. Similarly, for the spatial operators in the join category, we turn on
bits 9 and 10 for spatial operators “|” and “|*”, respectively. In the same way, for the spa-
tial operators in the part_overlap category, we turn on bits 9 and 10 for spatial operators
“/” and “/*”] respectively. Moreover, for the spatial operators in the contain category,
we turn on bits 9, 10 and 11 for spatial operators “%”, “[” and “|”, respectively. Note

that when all those bit 9, bit 10 and bit 11 are 0, it implies the case of spatial operator



< : 001000000001 <* : 010000000001
| : 001000000110 [*  : 010000000110
% : 001011001100 %* : 001101010100
[ :010011001100 [* :010101010100
] : 100011001100 I* : 100101010100
/001001100100 /* : 010001100100
= : (000001011100

Figure 9: The assignments of those 13 spatial operators
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Figure 10: An example: (a) an image; (b) its corresponding symbolic representation.

“w_»

=". Finally, for the spatial operators in the belong category, we turn on bits 9, 10 and
11 for spatial operators “%*”, “[*” and “|*”, respectively. Therefore, the assignments of

spatial-operator-bit-pattern for these 13 spatial operators are shown in Figure 9.

3.2 Spatial Reasoning

For the symbolic picture shown in Figure 10, the corresponding spatial matriz S is shown as

follows, where the spatial relationship between A and B along the z-axis (y-axis) is A < B

(A|B):

A B C D E

AlO0O | % % /*
g Bl< 0 < % <*
T Cl< | 0 %/
D|<* < < 0 |
E|%* [ < < 0

According to the assignments of spatial-operator-bit-pattern values for those 13 spatial
operators described before, we can transform the spatial matrix S of f into a BP matrix T

by replacing each spatial operator with its unique spatial-operator-bit-pattern as follows.



(Note that the size of the 2-dimension matrix is based on the number of objects shown in

the corresponding picture.)

HoQW

A

0
001000000001
001000000001
010000000001
001101010100

B
001000000110
0
001000000110
010000000001
010001100100

c
001011001100
010000000001

0
010000000001
010000000001

D
001101010100
001101010100
001101010100

0
001000000001

E
010001100100
010000000001
010001100100
010011001100

0

Based on the BP matrix, it is easy to retrieve the spatial relationships of each pair
of objects along the x-axis and y-axis straightforwardly, since this information is recorded
directly in the matrix. Moreover, the category of each pair of objects can be inferred by
following the Bit-Pattern-based category rules as shown in Figure 8, in which only bit

operations on the sobp value (the spatial-operator-bit-pattern) are needed.

3.3 Similarity Retrieval

The target of similarity retrieval is to retrieve the images that are similar to the query

image.

Definition 1 Picture f' is a type-i unit picture of f, if (1) all objects shown in f'" must
be shown in f, and (2) f' contains the two objects A and B, represented as x: Arf{yBB, y:
AT%:BB, A and B are also contained in f and the relationships between A and B in [ are

represented as wv: Arfy pB, and y: ArY pB, then,

(type-0): C’ategory(rﬁ,B,riB) = C’ategory(rﬁ,B,rg,B);
(type-1): (type-0) and (% =4 5 or vy 5 =1 p);
(type-2): Tfl,B = Tfll,B and T%,B = TZ;,B;
where Category(ry z,7% z) denotes the relationship category of the spatial relationship as

shown in Table 1 [11, 12].

For example, in Figure 11, f; is a type-0 subpicture of f, f; is a type-1 subpicture of
f, f2 is a type-2 subpicture of f.

Definition 2 C' is defined as follows.

Clij] = 1, if (T[] | T[,i]) & 000000000001) == 000000000001;
Clij] = 2, if ((T[Lj] | T[,i]) & 000000000010) | ((T[i, j] & T[j, i]) & 000000000100))
== 000000000110;
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Figure 11: similarity

Cli, j] = 3, if ((T[i,j] & T[j,i]) & 000000001000) == 000000001000;
Cli, j| = 4, if ((T[i,j] & T[j,i]) & 000000010000) == 000000010000;
Cli, j| = 5, if (((T[i, ] i

| T[j, i]) & 000000100000) | ((T[i,j] & T[j,i]) & 000001000000))
== 000001100000, or ((T[i,j] | T[j,i]) & 000110000000) == 000110000000,
1<:<m,1 <5 <.

That is, C[i, j] = 1, 2, 3, 4, 5 if the relationship between objects v; and v; is of the
disjoin, join, contain, belong and part_overlap categories, respectively, by following the

Bit-Pattern-based category rules.

The following three algorithms, type-0, type-1, type-2 are used to determine whether
two pictures are of type-0, type-1, type-2 similarity, respectively, given two BP matrix 7}
and T,. (Note that before we do the similarity retrieval with the query picture T5, we
extract the sub-matrix 77 from the related matrix of compared picture in the database
with the same 2-dimension size as the query matrix 75. Then, we can use the following
algorithm to do the similarity retrieval.)

Algorithm (type-0)

(1) Following the Bit-Pattern-based category rules, find the category matrix C; and Cy repre-
senting the two pictures f; and f2, respectively.

(2) C = Cy — Cy. If C is zero in the lower triangular matrix, these two pictures are of type-0
similarity; otherwise, there is no match.

Algorithm (type-1)
(1) Algorithm (type-0) passed.
©2) T=T —T.
(3) T* = T(i,§) x T(j,1) V 1<i<m1<j<i.

If T* is zero in the lower triangular matrix (which implies that at least one of the spatial
relationship along z-axis or y-axis is the same), these two pictures are of type-1 similarity;
otherwise, there is no match.

10



Table 3: A comparison of the query processing time

GPN | BP
type-0 | 0.105 | 0.070
type-1 | 0.106 | 0.070
type-2 | 0.010 | 0.005

Algorithm (type-2)

(1) T =T, — Ty. If T is zero, these two pictures are of type-2 similarity; otherwise, there is no
match.

4 Simulation Study

In our simulation study, we consider the performance of query processing (of type-i simi-
larity, 0< ¢ < 2) for the GPN matrix and the proposed BP matrix strategies. To simplify
our simulation, we let the maximum number of different objects appearing in the database
be 20. For each object, it can appear in a picture with 100000 * 100000 points. We prepare
2000 pictures represented in the GPN matrix and the BP matrix representation in the
database in advance, respectively. We consider case of 15 different objects appearing in
each picture. For the query of type-i similarity, 0 < ¢ < 2, we compare one input query
picture represented in the GPN matrix (or the BP matrix) with each of those prepared
2000 pictures in the database, respectively. Table 3 shows the simulation result (in terms
of millisecond).

From this table, we observe that the proposed BP matrix strategy requires shorter time
to process any of those kinds of queries than the GPN matrix strategy. This is because the
GPN matrix strategy applies some module-based operations, it takes longer time than the
bit-wise -and/bit-wise-or operations used in the BP matrix strategy.

For both of the strategies, to answer the type-2 query takes shorter time than to answer
the type-0 query, since the algorithm to decide the category in the type-0 query is based
on the spatial reasoning which is concerned in the type-2 query. Moreover, to answer the
type-1 query may take a little longer time than to answer the type-0 query, since to satisfy
the type-1 similarity must pass the test of type-0 similarity first.

There is another hash-table-based approach to similarity retrieval, for example, Chang

11



Table 4: A comparison of three strategies

Proposed | C. C. Chang [6] | Sabharwal [14]
representation matrix hash table hash table
spatial relationships 169 9 9
maintenance of database updates | incremental | reconstruction | reconstruction
similarity types type-0, 1, 2 type-2 type-2

and Lee’s strategy [6], and Sabharwal and Bhatia’s strategy [14]. These two hash-table-
based strategies perform well with complexity O(n? x logl) when the database is never
changed, where [ is the number of pictures shown in database, and n is the number of
objects shown in a query picture. However, when the data insertion/deletion occurs, these
two hash-table-based strategies need to reconstruct the whole hash tables; while our pro-
posed strategy only needs incremental update to the database. Note that in our proposed
strategy, we just add the corresponding matrix to the image database, when there is a new
image added to the database. That is, the maintenance of the update to the database
is incremental based on our strategy. However, under the same situation, these two hash-
table-based strategies must destroy the hash tables, recalculate the associated value for each
object, and then reconstruct the hash tables, resulting in a large update cost. Moreover,
our strategy can distinguish up to 169 spatial relationships, while the other two strategies
can classify only 9 spatial relationships. Finally, our strategy can distinguish three levels
of similarity retrieval, whereas the other two strategies can only support the exact match
similarity retrieval which is the same as type-2 similarity. A summary of the comparison

of our strategy with these two strategies is shown in Table 4.

5 Conclusion

In this paper, we have focused on the spatial relationship feature and have proposed an
efficient iconic indexing strategy called Bit-Pattern-based matriz (BP matrix) for symbolic
pictures, which combines the advantages of the 2D C-string and the 9DLT matriz. In the
proposed strategy, we have designed each spatial operator a unique binary-bit pattern, and

derived five Bit-Pattern-based category rules. Since those Bit-Pattern-based category rules

12



are bit-wise operations, they are efficient enough as compared to the previous approaches.

From our simulation, we have shown that the proposed BP matrix strategy has better

performance than the GPN matrix strategy.
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