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Abstract—High-Utility Itemset (HUI) mining is a data 

mining technique that identifies meaningful itemsets by 

integrating factors such as profits, weights, and item quantities. 

However, traditional HUI mining algorithms often overestimate 

utility, particularly for longer itemsets, leading to biased results. 

To address this limitation, High Average-Utility Itemset (HAUI) 

mining has been proposed, which normalizes utility by 

considering the length of itemsets, thereby reducing the 

excessive favoritism toward long itemsets. Despite this 

advancement, a critical challenge remains that the inherent 

variability in the value and importance of individual items 

makes it inappropriate to apply a uniform threshold for 

identifying HAUI. To tackle this issue, recent research has 

focused on High Average-Utility Itemset Mining with Multiple 

Minimum Utility Thresholds, aiming to develop more flexible 

and accurate methods for utility evaluation. This emerging 

approach seeks to enhance the relevance and precision of 

itemset mining by accommodating the diverse significance of 

items within a dataset. Among the existing approaches, Sethi et 

al. proposed the GHAIM algorithm, which utilizes a list 

structure, enforces strict upper bounds, and demonstrates 

strong performance. However, the GHAIM algorithm requires 

scanning the database twice and is limited to static databases. 

To address these limitations, this paper introduces a novel 

approach designed to scan the database only once, constructing 

a tree structure to store all transactions efficiently, and enable 

rapid retrieval of specific itemsets from the tree. Compared to 

the list structure used in GHAIM, our tree-based approach not 

only reduces storage space but also eliminates the need for time-

consuming item join operations. Furthermore, the proposed 

approach incorporates several pruning strategies. To handle 

incremental database environments, our approach employs 

additional data structures to store HAUI and candidate itemsets, 

avoiding the need for re-scanning the database when new data 

is inserted. Performance evaluations demonstrate that the 

proposed algorithm outperforms the GHAIM algorithm in 

terms of efficiency. 
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I. INTRODUCTION 

High Utility Pattern Mining (HUPM) is widely applied in 
areas such as stock market analysis, commodity market 
evaluation, and medical data processing. Unlike traditional 
Frequent Itemset Mining (FIM), which considers only 
frequency, HUPM incorporates both quantity and profit. 
However, it does not account for pattern length, which can 
lead to misleading results. 

For example, in a store where most customers buy pencils, 
erasers, and rulers, a wealthy customer making a large 
purchase that includes apples and milk could distort the results. 
Since this transaction has high utility, HUPM may incorrectly 

classify the entire itemset as meaningful. However, the key 
pattern should consist only of pencils, erasers, and rulers, as 
they are commonly bought together. High Average Utility 
Pattern Mining (HAUPM) addresses this issue by refining 
meaningful pattern detection. 

Despite its benefits, HAUPM has a major limitation: it 
applies a single minimum high-utility threshold to all items, 
which is problematic due to the diversity in product attributes. 
In retail, items vary in price (e.g., diamonds vs. ceramics), 
purchase frequency (e.g., milk vs. refrigerators), and profit 
margin (e.g., gold vs. clothes). Using a single threshold may 
lead to biased evaluations—if set too high, important patterns 
may be missed; if too low, too many irrelevant patterns may 
be found. Integrating HAUPM with multiple Minimum 
Average Utility Threshold Values (MATV) can improve 
decision-making in pricing, promotions, and product 
placement. 

Several algorithms [1, 2, 3] have been developed for 
mining high-average utility patterns, but they rely on user-
defined thresholds, which can affect performance and 
accuracy. Some approaches [4, 5, 6, 7] introduce multiple 
utility thresholds to handle item diversity. However, existing 
algorithms often sort thresholds and Average-Utility Upper 
Bound (AUUB) values inconsistently, leading to 
inefficiencies. The GHAIM algorithm [7] addresses this by 
introducing Suffix Minimum Average Utility (SMAU) and 
tighter upper bounds but is limited to static databases and 
requires multiple scans. 

To overcome these issues, we proposes a novel algorithm 
that scans the database once and constructs a TUR-Tree 
structure for efficient storage and retrieval of transactions. By 
leveraging bit strings, the algorithm quickly identifies itemsets 
without extra item-joining operations. Additionally, we 
introduce a tighter upper bound than the eubr value used in 
GHAIM [7], enhancing pruning efficiency. 

For incremental databases, re-scanning data is costly. Our 
method maintains HAUI and Non-HAUI candidate lists to 
track promising patterns dynamically. Experimental results 
show that our proposed approach is more efficient than 
GHAIM, making it a superior solution for high-average utility 
pattern mining. 

The remainder of this paper is structured as follows: 
Section 2 provides a review of high-average utility pattern 
mining algorithms and multiple minimum threshold 
approaches applied to HAUPM. Section 3 introduces the 
proposed algorithm in detail. Section 4 presents performance 
evaluations and comparisons with the GHAIM algorithm [7]. 
Finally, Section 5 concludes the paper. 

 



II. A SURVEY OF ALGORITHMS FOR MINING HIGH 

AVERAGE UTILITY ITEMSETS WITH MULTIPLE MINIMUM 

UTILITY THRESHOLDS 

Numerous algorithms have been developed for mining 
High Average Utility Itemsets (HAUIs). However, most 
existing methods in this field do not take multiple minimum 
thresholds into account. This section provides an overview of 
key algorithms designed for discovering high-average utility 
itemsets, as well as those incorporating multiple minimum 
utility thresholds for high-utility itemset mining. The 
algorithms are presented in chronological order based on their 
publication dates. 

A. The TUB-HAUPM Algorithm 

 The TUB-HAUPM algorithm [2], proposed by Wu et al., 
aims to reduce the search space in high-average utility pattern 
mining by employing upper-bound constraints. Traditionally, 
three common upper bounds are used: the average utility 
upper bound, a looser upper bound, and a revised tighter upper 
bound. However, this algorithm introduces two even tighter 
upper bounds Maximum Following Utility Upper-Bound 
(mfuub) and Top-k Transaction-Maximum Utility Upper-
Bound (krtmuub) to efficiently prune unpromising itemsets at 
an early stage. 

In the first database scan, the algorithm computes the auub 
for each item. Items with auub values below the threshold are 
eliminated. The second database scan then sorts transactions 
in ascending order based on auub values. During the 
exploration stage, the Transaction-Rival Tight Upper-Bound 
(trtub) is determined as the minimum of mfuub and krtmuub. 
If trtub falls below the threshold, its supersets are not further 
explored. This process continues until all HAUIs are 
identified.. 

B. The MEMU Algorithm  

The MEMU algorithm [6], proposed by Lin et al., 
addresses the limitations of the HUIM-MMAU algorithm [5], 
which requires multiple database scans and generates an 
excessive number of candidate itemsets. To enhance 
efficiency in discovering HAUIs, MEMU utilizes the Compact 
Average-Utility List (CAU-list) and the Estimated Average-
Utility Matrix (EAUM) structure. 

The algorithm consists of three main stages. In the first 
stage, the database is scanned once to compute auub values. 
The Multiple Minimum High Average-Utility Table 
(MAUTable) is then checked, and the smallest threshold is 
identified as the Least Minimum High Average-Utility Count 
(LMAU). Items with auub values below LMAU are removed 
from the database. A second scan updates auub values and 
sorts the database in ascending order based on thresholds. The 
second stage begins the mining process, where EAUM is 
applied as a pruning strategy. If the EAUM value of an itemset 
exceeds LMAU, the algorithm proceeds to generate three-
itemsets and constructs the CAU-list. In the final stage, the 
CAU-list is further refined, and the LA pruning strategy is 
applied to eliminate unpromising candidates early. This 
process continues until all HAUIs are efficiently identified. 

C. The GHAIM Algorithm 

The GHAIM algorithm [7], proposed by Sethi et al., 
addresses the limitations of previous approaches in high-
average utility pattern mining. The MEMU algorithm [6] 
improved upon HUIM-MMAU [5] by reducing database scans 
and candidate generation. Meanwhile, the MHUI algorithm [4] 

introduced generalized pruning techniques for the multiple 
minimum threshold method without sorting user-defined 
thresholds. However, MHUI focused on High Utility Patterns 
(HUPs) rather than High Average Utility Itemsets (HAUIs). 
GHAIM effectively overcomes the challenges faced by these 
earlier strategies [4, 6]. 

In the first database scan, GHAIM computes auub values 
for each item and sorts them in ascending order of auub values. 
A second scan updates auub values, and items with auub 
values below the Suffix Minimum Average-Utility (SMAU) 
threshold are removed, applying the auub pruning strategy. 
After this step, two key data structures are created: the Revised 
Average Utility List (RAUL) and the Estimated Average-
Utility Co-occurrence Matrix (EACM), both based on the 
sorted revised database. 

During the mining phase, GHAIM calculates an efficient 
upper-bound utility using remu(eubr), a tighter bound that 
helps reduce the search space. In the construction phase, each 
itemset stores necessary information in the RAUL structure, 
including the SMAU value, and applies LA pruning to optimize 
the mining process. Through these enhancements, GHAIM 
improves efficiency in discovering HAUIs. 

III. MY PROPOSED ALGORITHM 

In this section, we introduce a tree-based algorithm 
designed to minimize database scans while eliminating the 
additional time required for the join process. Moreover, this 
algorithm efficiently mines HAUIs in continuously growing 
databases with multiple minimum thresholds.  

A. Basic Ideas  

Fig.1 illustrates database DB, which is used in our example. 
The notation Q(I, Tn) represents the quantity of item I in 
transaction Tn. For instance, for item b in transaction T5, we 
have Q(b, T5) = 2. The profit of an item I is denoted as Pr(I). 
As shown in Fig.2, the profit table indicates Pr(a) = 3. Using 
this, we can compute the utility of an item I in a transaction Tn, 
represented as uti(I, Tn). For an itemset, the total utility is the 
sum of the individual item utilities.  

 

Fig. 1. The example database DB 

 

Fig. 2. The example of the profit table 

Unlike traditional utility, average utility considers the 
length of the itemset. When evaluating a single item I, its 
average utility per transaction is simply its utility: 



𝑎𝑢𝑡𝑖(𝐼, 𝑇𝑛) =
𝑢𝑡𝑖(𝐼, 𝑇𝑛)

1
= 𝑢𝑡𝑖(𝐼, 𝑇𝑛) 

For an itemset X, the real length of X is considered, and the 
average utility is calculated as: 

𝑎𝑢𝑡(𝐼, 𝑇𝑛) =
𝑢𝑡𝑖(𝑋, 𝑇𝑛)

|𝑋|
 

To determine the total average utility across the entire 
database, we sum the average utility values from all 
transactions where the item or itemset appears. For example, 
for item a, we compute: 

𝑎𝑢𝐷(𝑎) = 𝑎𝑢𝑡𝑖(𝑎, 𝑇1) + 𝑎𝑢𝑡𝑖(𝑎, 𝑇2) + 𝑎𝑢𝑡𝑖(𝑎, 𝑇4) + 𝑎𝑢𝑡𝑖(𝑎, 𝑇5) 

Similarly, for itemset ab: 

𝑎𝑢𝐷(𝑎𝑏) = 𝑎𝑢𝑡𝑖(𝑎𝑏, 𝑇1) + 𝑎𝑢𝑡𝑖(𝑎𝑏, 𝑇5) 

To determine whether an item or itemset qualifies as a HAUI, we 
compare its total average utility (auD) with its corresponding 
threshold from the Multiple Average-Utility Threshold Value 
(MATV) table, shown in Fig.3. 

 

Fig. 3. The minimum utility threshold (MATV) of each item 

For example, given MATV(a) = 7 and auD(a) = 30, itemset {a} (a 
1-itemset) is classified as a HAUI. For itemset {ab}, the threshold is 
calculated as the average of the individual MATV values: 

MATV(ab) =
𝑀𝐴𝑇𝑉(𝑎) + 𝑀𝐴𝑇𝑉(𝑏)

2
=
7 + 6

2
= 6.5 

Since auD(ab) = 12.5 is greater than MATV(ab) = 6.5, itemset {ab} 
is also considered a HAUI. 

During the mining process of HAUIs, an upper bound is defined 
to reduce the search space. The most commonly used upper bound is 
auub values. It is calculated by summing the Transaction Maximum 
Utility (tmu) values of all transactions where the itemset X appears. 
Note that Fig.4 displays all the auub values used in our database DB. 
Here, tmu represents the highest utility value within a given 
transaction Tn. This upper bound helps eliminate unpromising 
itemsets early, improving mining efficiency.  

 

Fig. 4. The auub value of each item 

After calculating the auub for all items, we first create a sorted 
item list in descending order based on their auub values. This sorting 
ensures that items with higher upper bounds are prioritized during the 
mining process. Next, our algorithm constructs a TUR-Tree 
following the order defined by the sorted item list. The TUR-Tree 
structure efficiently organizes transaction data, reducing the search 
space and improving mining performance.  

In the TUR-Tree structure, the Remaining Maximum Utility 
Excluding itemset X (rmue) represents the highest utility among all 
items in a transaction, excluding those in itemset X. For example, in 
transaction T2, after sorting, we have T2 = (d, e, a, f). The rmue of 
itemset {d, e} in T2 is calculated as: 

𝑟𝑚𝑢𝑒(𝑑𝑒, 𝑇2) = 𝑚𝑎𝑥(𝑢𝑡𝑖(𝑎), 𝑢𝑡𝑖(𝑓)) = max(6,2) = 6 

Another important function is the Suffix Minimum 
Average-Utility (smau), which sets a minimum threshold by 
comparing MATV values of itemsets and their succeeding 
items in the sorted order. If we compute smau(ba), we 
consider the MATV values of b, a, and any items appearing 
after itemset {b, a}, which is only item f. 

𝑠𝑚𝑎𝑢(𝑏𝑎) = 𝑚𝑖𝑛(𝑀𝐴𝑇𝑉(𝑏),𝑀𝐴𝑇𝑉(𝑎),𝑀𝐴𝑇𝑉(𝑓)) = min(6,7,8) = 6 

B. Data Structures  

Based on three input datasets that include database DB, the 
profit table, and the MATV table (Fig.1, 2, and 3, respectively), 
we propose six key data structures for the mining process. 
These include: (1) the item-based table, (2) the transaction set 
table, (3) the auub table, (4) the sorted item list, (5) the SMAU 
table, and (6) the EMURUM table. 

1) The Item-Based Table 

The item-based table is implemented using a HashMap, a 
data structure in Java [8]. When constructing the TUR-Tree, 
items, tid (transaction ID), utility, and rmue are inserted 
sequentially based on the sorted item list, eliminating the need 
for re-sorting. Unlike the GHAIM algorithm, which requires a 
sorting step, our approach streamlines the process. 

As shown in Fig.5, the item-based table stores the utility 

of each item (itemₖ) in each transaction (Tᵢ). For instance, the 
utility of item a in transaction T1 is 15. This table also helps 
construct the transaction set table and remains permanently in 
use. In an incremental mining process, if new data changes the 
item order, the item-based table is essential for reconstructing 
the TUR-Tree. It efficiently stores utility values for each item 
within specific transactions (Tₙ). 

 

Fig. 5. The item-based table (IBT) 

2) The Transaction Set Table 

The transaction set table, shown in Fig.6, is derived from 
the item-based table. It records the transactions in which each 
item appears based on its utility value. If an item's utility is 
greater than 0, it means the item is present in that transaction, 
and its tid will be included in the set. Conversely, if the utility 
value is 0, the item does not exist in that transaction and will 
not appear in the set. 

The primary function of the transaction set table is to 
quickly locate transactions containing specific itemsets. It also 
plays a crucial role in the pruning strategy, as an empty 
transaction set indicates that the corresponding itemset is no 
longer relevant for further searching. The detailed process of 
utilizing the transaction set table in mining will be discussed 
later. 



 
Fig. 6. The Transaction Set Table (TST) 

C. The Construction of the TUR-Tree 

The TUR-Tree is built from the item-based table by inserting 
items in the order of the sorted item list. During insertion, items are 
added following the sorted order of auub values, maintaining the 
same transaction within the same path. As shown in Fig.7, the TUR-
Tree consists of four types of links: 

 Child link – Connects a parent node to its child nodes. 

 Parent link – Establishes the hierarchical structure. 

 Next link – Helps locate the next occurrence of the same 
item for mining. 

 Header table link – Serves as the starting point for the 
mining process. 

 

Fig. 7. The TUR-Tree after the insertion of sorted transactions 

During insertion, items are added following the sorted order of 
auub values, maintaining the same transaction within the same path. 
Fig.7 shows the construction of the TUR-Tree after the insertion of 
sorted transactions. 

D. Pruning Strategies 

Our algorithm incorporates multiple pruning strategies to 
enhance efficiency, including: 

 AUUB Pruning Strategy [7] – Eliminates itemsets 
whose auub values fall below the smau value. 

 Transaction Set Pruning Strategy – Uses the transaction 
set table to quickly determine if an itemset is empty, 
avoiding unnecessary searches. 

 TURUB Pruning Strategy [7, 2] – Applies the 
Transaction-Rival Upper Bound (TURUB) to discard 
unpromising candidates early. 

 EMURUM Pruning Strategy [6, 7] – Utilizes the 

Estimated Maximum between Utility and Remaining 
Utility Matrix (EMURUM) to further reduce the 
search space. 

By integrating these strategies, our algorithm efficiently 
identifies HAUIs while minimizing computation. 

E. The Mining Process for the Static Database  

In Fig.8, we present the flowchart of the static database 
mining step. Our approach begins with a depth-first search 
(DFS) following the ascending order of auub values. 

 

Fig. 8. The flowchart of the static database mining step 

Using database DB (Fig.1) as an example, we analyze 
itemset daf. The processing order is [b, d, e, a, f] since item c 
has been pruned using the auub pruning strategy. First, we 
examine the tid check set to determine whether it is empty. If 
it were empty, the transaction set pruning strategy would 
allow us to skip searching the TUR-Tree. However, since tid 
check set = {T2, T4, T5}, we proceed with mining. We begin 
by locating item d in the header table and follow its link to find 
the first node where d appears. The matching tids are {T2, T5}, 
indicating a non-empty intersection. We then accumulate the 
utility of itemset daf for T2 and T5. Next, using the parent link, 
we locate nodes a and f, continuing the accumulation.  

The last visited node is f, where we compute rmue for T2 
and T5, both of which are 0. Since f is the last item in daf, we 
backtrack to find the next d node. After processing T2 and T5, 
we remove them from the tid check set and verify if it is empty. 
Next, we continue searching for item d in the next link that 
intersects with our tid check set. We find tid = 4 in node d and 
follow the parent link to locate nodes a and f for tid = 4. After 
processing, we remove T4 from the tid check set, which now 
becomes empty. Since there are no remaining tids to process, 
we stop searching for further d nodes. 

Now, we compute the TURUB value for itemset daf. Since 
item f is the last item in daf and has the largest auub in the 
sorted list, its rmue is 0. Therefore, rmue(daf, T2) = 0, 
rmue(daf, T4) = 0, rmue(daf, T5) = 0, leading to TURUB(daf) 
= 0. 



F. The Mining Process of the Incremental Database 

In incremental mining, two possible scenarios can occur: 
unchanged order and changed order. Before discussing these 
cases, we first define two special item types: revealed items 
and skippable items. A revealed item was previously pruned 
due to the auub pruning strategy, but as new data increases its 
auub value, it is no longer pruned and is removed from the 
promising item list. A skippable item was present in the 
original dataset but does not appear in the updated data. In 
certain cases, this allows us to skip the item during depth-first 
search, optimizing the mining process. 

When the item order remains unchanged, only certain data 
structures need to be updated, including the item-based table, 
auub table, HAUI List, Non-HAUI Candidate List, TURUB 
List, and EMURUM. In this case, the TUR-Tree remains 
unaffected, which significantly improves efficiency. 
Compared to situations where the order changes, much of the 
previously created data can still be used, leading to faster 
performance. 

When the item order changes, more data structures are 
affected, requiring significant updates. In this case, the 
TURUB List becomes unusable, and the TUR-Tree must be 
reconstructed to reflect the new order. Since the previous 
mining structure is no longer valid, the system must rebuild 
key data structures, leading to a higher computational cost 
compared to the unchanged order scenario. Despite this, 
updating the item-based table, auub table, HAUI List, Non-
HAUI Candidate List, and EMURUM table remains essential 
for accurate incremental mining. 

 

Fig. 9. The Flowchart to determine whether an itemset is in the HAUI List, 

the Non-HAUI Candidate List, or not in the above two lists 

When the order changes, the originally stored TURUB List 
becomes invalid because modifying its values directly would 
lead to incorrect results. As a result, the TURUB List cannot 
be used, and the TUR-Tree must be reconstructed to match the 

new order. After updating the necessary data structures—
including the item-based table, auub table, HAUI List, Non-
HAUI Candidate List, and EMURUM table—the mining 
process can begin. The steps for mining remain similar to 
those in static database mining, with one key difference: 
determining HAUI must follow the process outlined in Fig. 9. 
This is because the HAUI List and Non-HAUI Candidate List 
already contain values from previous mining iterations. 

IV. PERFORMANCE  

This study evaluates the performance of the proposed 
TURHAIM algorithm in comparison with the GHAIM 
algorithm [7] using both synthetic and real-world datasets.  

A. Synthetic Datasets 

In the synthetic dataset, the profit values and quantities of 
items were randomly assigned within the range of 1 to 15. The 
dataset was generated based on three key parameters: (1) NIT 
(Number of Different Items), (2) TN (Total Number of 
Transactions) and (3) MT (Maximum Number of Items per 
Transaction). By adjusting these parameters, we controlled 
the dataset’s density.  

To evaluate the efficiency of the proposed TURHAIM 
algorithm, we compare its running time with the GHAIM 
algorithm using synthetic datasets. Specifically, we conduct 
experiments on the datasets: NIT200TN100000MT15. Fig. 10 
shows that TURHAIM outperforms GHAIM in running time 
on a static synthetic database, demonstrating higher efficiency. 

 

Fig. 10. A comparison of the running time between our algorithm and the 

GHAIM algorithm based on different data sizes using the synthetic data 
of NIT200TN100000MT15 

 

Fig. 11. A comparison of the performance between our algorithm and the 

GHAIM algorithm in terms of processing time by using synthetic data 

of NIT200TN100000MT15 under varying values of the inserted TN 

Next, we analyze the performance of 
NIT200TN100000MT15 in an incremental database setting. 
We examine how running time changes with variations in the 
inserted T N parameter. Fig.11 shows the processing time of 
our algorithm is consistently lower than that of the GHAIM 
algorithm. 



B. Real Datasets 

To further evaluate the robustness of the TURHAIM 
algorithm, experiments were conducted on one real-world 
datasets: Connect [4]. Fig. 12 demonstrates this trend in the 
connect real database, where our algorithm consistently 
outperforms the GHAIM algorithm in running time. The 
performance gap widens as the data size increases. 

 

Fig. 12. A comparison of the running time between our algorithm and the 
GHAIM algorithm based on different data sizes using the real data of 

connect 

Next, we analyze the performance of the connect dataset 
under the incremental database. As shown in Fig.13, our 
algorithm consistently outperforms the GHAIM algorithm in 
terms of running time. 

 

Fig. 13. A comparison of the running time between our algorithm and the 
GHAIM algorithm using the real data of connect under varying values 

of the inserted TN 

V. CONCLUSION  

In this paper, we present a TURHAIM algorithm designed 
to discover high average utility itemsets with multiple 
minimum thresholds in an incremental database. Our 
approach requires only a single database scan. When new data 
is inserted, provided the order remains unchanged, we need to 
scan only the updated portion of the database, rather than the 
entire dataset. We compare the performance of our TURHAIM 
algorithm with the GHAIM algorithm under both static and 
incremental database conditions. Experimental results show 
that our algorithm outperforms GHAIM in terms of efficiency. 
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