

A Novel Approach for Mining High-Average Utility

Itemsets on Incremental Database

Ye-In Chang

Department of Computer Science and

Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan

changyi@mail.cse.nsysu.edu.tw

Chen-Chang Wu

Department of Biotechnology and

Green Industry

Fooyin University

Kaohsiung, Taiwan

pt335@fy.edu.tw

Hsiang-En Kuo

Department of Computer Science and

Engineering

National Sun Yat-sen University

Kaohsiung, Taiwan
anderson40205@gmail.com

Abstract—High-Utility Itemset (HUI) mining is a data

mining technique that identifies meaningful itemsets by

integrating factors such as profits, weights, and item quantities.

However, traditional HUI mining algorithms often overestimate

utility, particularly for longer itemsets, leading to biased results.

To address this limitation, High Average-Utility Itemset (HAUI)

mining has been proposed, which normalizes utility by

considering the length of itemsets, thereby reducing the

excessive favoritism toward long itemsets. Despite this

advancement, a critical challenge remains that the inherent

variability in the value and importance of individual items

makes it inappropriate to apply a uniform threshold for

identifying HAUI. To tackle this issue, recent research has

focused on High Average-Utility Itemset Mining with Multiple

Minimum Utility Thresholds, aiming to develop more flexible

and accurate methods for utility evaluation. This emerging

approach seeks to enhance the relevance and precision of

itemset mining by accommodating the diverse significance of

items within a dataset. Among the existing approaches, Sethi et

al. proposed the GHAIM algorithm, which utilizes a list

structure, enforces strict upper bounds, and demonstrates

strong performance. However, the GHAIM algorithm requires

scanning the database twice and is limited to static databases.

To address these limitations, this paper introduces a novel

approach designed to scan the database only once, constructing

a tree structure to store all transactions efficiently, and enable

rapid retrieval of specific itemsets from the tree. Compared to

the list structure used in GHAIM, our tree-based approach not

only reduces storage space but also eliminates the need for time-

consuming item join operations. Furthermore, the proposed

approach incorporates several pruning strategies. To handle

incremental database environments, our approach employs

additional data structures to store HAUI and candidate itemsets,

avoiding the need for re-scanning the database when new data

is inserted. Performance evaluations demonstrate that the

proposed algorithm outperforms the GHAIM algorithm in

terms of efficiency.

Keywords—Data Mining, High Average Utility Itemset

Mining, Incremental Mining, Multiple Minimum Utility

Thresholds

I. INTRODUCTION

High Utility Pattern Mining (HUPM) is widely applied in
areas such as stock market analysis, commodity market
evaluation, and medical data processing. Unlike traditional
Frequent Itemset Mining (FIM), which considers only
frequency, HUPM incorporates both quantity and profit.
However, it does not account for pattern length, which can
lead to misleading results.

For example, in a store where most customers buy pencils,
erasers, and rulers, a wealthy customer making a large
purchase that includes apples and milk could distort the results.
Since this transaction has high utility, HUPM may incorrectly

classify the entire itemset as meaningful. However, the key
pattern should consist only of pencils, erasers, and rulers, as
they are commonly bought together. High Average Utility
Pattern Mining (HAUPM) addresses this issue by refining
meaningful pattern detection.

Despite its benefits, HAUPM has a major limitation: it
applies a single minimum high-utility threshold to all items,
which is problematic due to the diversity in product attributes.
In retail, items vary in price (e.g., diamonds vs. ceramics),
purchase frequency (e.g., milk vs. refrigerators), and profit
margin (e.g., gold vs. clothes). Using a single threshold may
lead to biased evaluations—if set too high, important patterns
may be missed; if too low, too many irrelevant patterns may
be found. Integrating HAUPM with multiple Minimum
Average Utility Threshold Values (MATV) can improve
decision-making in pricing, promotions, and product
placement.

Several algorithms [1, 2, 3] have been developed for
mining high-average utility patterns, but they rely on user-
defined thresholds, which can affect performance and
accuracy. Some approaches [4, 5, 6, 7] introduce multiple
utility thresholds to handle item diversity. However, existing
algorithms often sort thresholds and Average-Utility Upper
Bound (AUUB) values inconsistently, leading to
inefficiencies. The GHAIM algorithm [7] addresses this by
introducing Suffix Minimum Average Utility (SMAU) and
tighter upper bounds but is limited to static databases and
requires multiple scans.

To overcome these issues, we proposes a novel algorithm
that scans the database once and constructs a TUR-Tree
structure for efficient storage and retrieval of transactions. By
leveraging bit strings, the algorithm quickly identifies itemsets
without extra item-joining operations. Additionally, we
introduce a tighter upper bound than the eubr value used in
GHAIM [7], enhancing pruning efficiency.

For incremental databases, re-scanning data is costly. Our
method maintains HAUI and Non-HAUI candidate lists to
track promising patterns dynamically. Experimental results
show that our proposed approach is more efficient than
GHAIM, making it a superior solution for high-average utility
pattern mining.

The remainder of this paper is structured as follows:
Section 2 provides a review of high-average utility pattern
mining algorithms and multiple minimum threshold
approaches applied to HAUPM. Section 3 introduces the
proposed algorithm in detail. Section 4 presents performance
evaluations and comparisons with the GHAIM algorithm [7].
Finally, Section 5 concludes the paper.

II. A SURVEY OF ALGORITHMS FOR MINING HIGH

AVERAGE UTILITY ITEMSETS WITH MULTIPLE MINIMUM

UTILITY THRESHOLDS

Numerous algorithms have been developed for mining
High Average Utility Itemsets (HAUIs). However, most
existing methods in this field do not take multiple minimum
thresholds into account. This section provides an overview of
key algorithms designed for discovering high-average utility
itemsets, as well as those incorporating multiple minimum
utility thresholds for high-utility itemset mining. The
algorithms are presented in chronological order based on their
publication dates.

A. The TUB-HAUPM Algorithm

 The TUB-HAUPM algorithm [2], proposed by Wu et al.,
aims to reduce the search space in high-average utility pattern
mining by employing upper-bound constraints. Traditionally,
three common upper bounds are used: the average utility
upper bound, a looser upper bound, and a revised tighter upper
bound. However, this algorithm introduces two even tighter
upper bounds Maximum Following Utility Upper-Bound
(mfuub) and Top-k Transaction-Maximum Utility Upper-
Bound (krtmuub) to efficiently prune unpromising itemsets at
an early stage.

In the first database scan, the algorithm computes the auub
for each item. Items with auub values below the threshold are
eliminated. The second database scan then sorts transactions
in ascending order based on auub values. During the
exploration stage, the Transaction-Rival Tight Upper-Bound
(trtub) is determined as the minimum of mfuub and krtmuub.
If trtub falls below the threshold, its supersets are not further
explored. This process continues until all HAUIs are
identified..

B. The MEMU Algorithm

The MEMU algorithm [6], proposed by Lin et al.,
addresses the limitations of the HUIM-MMAU algorithm [5],
which requires multiple database scans and generates an
excessive number of candidate itemsets. To enhance
efficiency in discovering HAUIs, MEMU utilizes the Compact
Average-Utility List (CAU-list) and the Estimated Average-
Utility Matrix (EAUM) structure.

The algorithm consists of three main stages. In the first
stage, the database is scanned once to compute auub values.
The Multiple Minimum High Average-Utility Table
(MAUTable) is then checked, and the smallest threshold is
identified as the Least Minimum High Average-Utility Count
(LMAU). Items with auub values below LMAU are removed
from the database. A second scan updates auub values and
sorts the database in ascending order based on thresholds. The
second stage begins the mining process, where EAUM is
applied as a pruning strategy. If the EAUM value of an itemset
exceeds LMAU, the algorithm proceeds to generate three-
itemsets and constructs the CAU-list. In the final stage, the
CAU-list is further refined, and the LA pruning strategy is
applied to eliminate unpromising candidates early. This
process continues until all HAUIs are efficiently identified.

C. The GHAIM Algorithm

The GHAIM algorithm [7], proposed by Sethi et al.,
addresses the limitations of previous approaches in high-
average utility pattern mining. The MEMU algorithm [6]
improved upon HUIM-MMAU [5] by reducing database scans
and candidate generation. Meanwhile, the MHUI algorithm [4]

introduced generalized pruning techniques for the multiple
minimum threshold method without sorting user-defined
thresholds. However, MHUI focused on High Utility Patterns
(HUPs) rather than High Average Utility Itemsets (HAUIs).
GHAIM effectively overcomes the challenges faced by these
earlier strategies [4, 6].

In the first database scan, GHAIM computes auub values
for each item and sorts them in ascending order of auub values.
A second scan updates auub values, and items with auub
values below the Suffix Minimum Average-Utility (SMAU)
threshold are removed, applying the auub pruning strategy.
After this step, two key data structures are created: the Revised
Average Utility List (RAUL) and the Estimated Average-
Utility Co-occurrence Matrix (EACM), both based on the
sorted revised database.

During the mining phase, GHAIM calculates an efficient
upper-bound utility using remu(eubr), a tighter bound that
helps reduce the search space. In the construction phase, each
itemset stores necessary information in the RAUL structure,
including the SMAU value, and applies LA pruning to optimize
the mining process. Through these enhancements, GHAIM
improves efficiency in discovering HAUIs.

III. MY PROPOSED ALGORITHM

In this section, we introduce a tree-based algorithm
designed to minimize database scans while eliminating the
additional time required for the join process. Moreover, this
algorithm efficiently mines HAUIs in continuously growing
databases with multiple minimum thresholds.

A. Basic Ideas

Fig.1 illustrates database DB, which is used in our example.
The notation Q(I, Tn) represents the quantity of item I in
transaction Tn. For instance, for item b in transaction T5, we
have Q(b, T5) = 2. The profit of an item I is denoted as Pr(I).
As shown in Fig.2, the profit table indicates Pr(a) = 3. Using
this, we can compute the utility of an item I in a transaction Tn,
represented as uti(I, Tn). For an itemset, the total utility is the
sum of the individual item utilities.

Fig. 1. The example database DB

Fig. 2. The example of the profit table

Unlike traditional utility, average utility considers the
length of the itemset. When evaluating a single item I, its
average utility per transaction is simply its utility:

𝑎𝑢𝑡𝑖(𝐼, 𝑇𝑛) =
𝑢𝑡𝑖(𝐼, 𝑇𝑛)

1
= 𝑢𝑡𝑖(𝐼, 𝑇𝑛)

For an itemset X, the real length of X is considered, and the
average utility is calculated as:

𝑎𝑢𝑡(𝐼, 𝑇𝑛) =
𝑢𝑡𝑖(𝑋, 𝑇𝑛)

|𝑋|

To determine the total average utility across the entire
database, we sum the average utility values from all
transactions where the item or itemset appears. For example,
for item a, we compute:

𝑎𝑢𝐷(𝑎) = 𝑎𝑢𝑡𝑖(𝑎, 𝑇1) + 𝑎𝑢𝑡𝑖(𝑎, 𝑇2) + 𝑎𝑢𝑡𝑖(𝑎, 𝑇4) + 𝑎𝑢𝑡𝑖(𝑎, 𝑇5)

Similarly, for itemset ab:

𝑎𝑢𝐷(𝑎𝑏) = 𝑎𝑢𝑡𝑖(𝑎𝑏, 𝑇1) + 𝑎𝑢𝑡𝑖(𝑎𝑏, 𝑇5)

To determine whether an item or itemset qualifies as a HAUI, we
compare its total average utility (auD) with its corresponding
threshold from the Multiple Average-Utility Threshold Value
(MATV) table, shown in Fig.3.

Fig. 3. The minimum utility threshold (MATV) of each item

For example, given MATV(a) = 7 and auD(a) = 30, itemset {a} (a
1-itemset) is classified as a HAUI. For itemset {ab}, the threshold is
calculated as the average of the individual MATV values:

MATV(ab) =
𝑀𝐴𝑇𝑉(𝑎) + 𝑀𝐴𝑇𝑉(𝑏)

2
=
7 + 6

2
= 6.5

Since auD(ab) = 12.5 is greater than MATV(ab) = 6.5, itemset {ab}
is also considered a HAUI.

During the mining process of HAUIs, an upper bound is defined
to reduce the search space. The most commonly used upper bound is
auub values. It is calculated by summing the Transaction Maximum
Utility (tmu) values of all transactions where the itemset X appears.
Note that Fig.4 displays all the auub values used in our database DB.
Here, tmu represents the highest utility value within a given
transaction Tn. This upper bound helps eliminate unpromising
itemsets early, improving mining efficiency.

Fig. 4. The auub value of each item

After calculating the auub for all items, we first create a sorted
item list in descending order based on their auub values. This sorting
ensures that items with higher upper bounds are prioritized during the
mining process. Next, our algorithm constructs a TUR-Tree
following the order defined by the sorted item list. The TUR-Tree
structure efficiently organizes transaction data, reducing the search
space and improving mining performance.

In the TUR-Tree structure, the Remaining Maximum Utility
Excluding itemset X (rmue) represents the highest utility among all
items in a transaction, excluding those in itemset X. For example, in
transaction T2, after sorting, we have T2 = (d, e, a, f). The rmue of
itemset {d, e} in T2 is calculated as:

𝑟𝑚𝑢𝑒(𝑑𝑒, 𝑇2) = 𝑚𝑎𝑥(𝑢𝑡𝑖(𝑎), 𝑢𝑡𝑖(𝑓)) = max(6,2) = 6

Another important function is the Suffix Minimum
Average-Utility (smau), which sets a minimum threshold by
comparing MATV values of itemsets and their succeeding
items in the sorted order. If we compute smau(ba), we
consider the MATV values of b, a, and any items appearing
after itemset {b, a}, which is only item f.

𝑠𝑚𝑎𝑢(𝑏𝑎) = 𝑚𝑖𝑛(𝑀𝐴𝑇𝑉(𝑏),𝑀𝐴𝑇𝑉(𝑎),𝑀𝐴𝑇𝑉(𝑓)) = min(6,7,8) = 6

B. Data Structures

Based on three input datasets that include database DB, the
profit table, and the MATV table (Fig.1, 2, and 3, respectively),
we propose six key data structures for the mining process.
These include: (1) the item-based table, (2) the transaction set
table, (3) the auub table, (4) the sorted item list, (5) the SMAU
table, and (6) the EMURUM table.

1) The Item-Based Table

The item-based table is implemented using a HashMap, a
data structure in Java [8]. When constructing the TUR-Tree,
items, tid (transaction ID), utility, and rmue are inserted
sequentially based on the sorted item list, eliminating the need
for re-sorting. Unlike the GHAIM algorithm, which requires a
sorting step, our approach streamlines the process.

As shown in Fig.5, the item-based table stores the utility

of each item (itemₖ) in each transaction (Tᵢ). For instance, the
utility of item a in transaction T1 is 15. This table also helps
construct the transaction set table and remains permanently in
use. In an incremental mining process, if new data changes the
item order, the item-based table is essential for reconstructing
the TUR-Tree. It efficiently stores utility values for each item
within specific transactions (Tₙ).

Fig. 5. The item-based table (IBT)

2) The Transaction Set Table

The transaction set table, shown in Fig.6, is derived from
the item-based table. It records the transactions in which each
item appears based on its utility value. If an item's utility is
greater than 0, it means the item is present in that transaction,
and its tid will be included in the set. Conversely, if the utility
value is 0, the item does not exist in that transaction and will
not appear in the set.

The primary function of the transaction set table is to
quickly locate transactions containing specific itemsets. It also
plays a crucial role in the pruning strategy, as an empty
transaction set indicates that the corresponding itemset is no
longer relevant for further searching. The detailed process of
utilizing the transaction set table in mining will be discussed
later.

Fig. 6. The Transaction Set Table (TST)

C. The Construction of the TUR-Tree

The TUR-Tree is built from the item-based table by inserting
items in the order of the sorted item list. During insertion, items are
added following the sorted order of auub values, maintaining the
same transaction within the same path. As shown in Fig.7, the TUR-
Tree consists of four types of links:

 Child link – Connects a parent node to its child nodes.

 Parent link – Establishes the hierarchical structure.

 Next link – Helps locate the next occurrence of the same
item for mining.

 Header table link – Serves as the starting point for the
mining process.

Fig. 7. The TUR-Tree after the insertion of sorted transactions

During insertion, items are added following the sorted order of
auub values, maintaining the same transaction within the same path.
Fig.7 shows the construction of the TUR-Tree after the insertion of
sorted transactions.

D. Pruning Strategies

Our algorithm incorporates multiple pruning strategies to
enhance efficiency, including:

 AUUB Pruning Strategy [7] – Eliminates itemsets
whose auub values fall below the smau value.

 Transaction Set Pruning Strategy – Uses the transaction
set table to quickly determine if an itemset is empty,
avoiding unnecessary searches.

 TURUB Pruning Strategy [7, 2] – Applies the
Transaction-Rival Upper Bound (TURUB) to discard
unpromising candidates early.

 EMURUM Pruning Strategy [6, 7] – Utilizes the

Estimated Maximum between Utility and Remaining
Utility Matrix (EMURUM) to further reduce the
search space.

By integrating these strategies, our algorithm efficiently
identifies HAUIs while minimizing computation.

E. The Mining Process for the Static Database

In Fig.8, we present the flowchart of the static database
mining step. Our approach begins with a depth-first search
(DFS) following the ascending order of auub values.

Fig. 8. The flowchart of the static database mining step

Using database DB (Fig.1) as an example, we analyze
itemset daf. The processing order is [b, d, e, a, f] since item c
has been pruned using the auub pruning strategy. First, we
examine the tid check set to determine whether it is empty. If
it were empty, the transaction set pruning strategy would
allow us to skip searching the TUR-Tree. However, since tid
check set = {T2, T4, T5}, we proceed with mining. We begin
by locating item d in the header table and follow its link to find
the first node where d appears. The matching tids are {T2, T5},
indicating a non-empty intersection. We then accumulate the
utility of itemset daf for T2 and T5. Next, using the parent link,
we locate nodes a and f, continuing the accumulation.

The last visited node is f, where we compute rmue for T2
and T5, both of which are 0. Since f is the last item in daf, we
backtrack to find the next d node. After processing T2 and T5,
we remove them from the tid check set and verify if it is empty.
Next, we continue searching for item d in the next link that
intersects with our tid check set. We find tid = 4 in node d and
follow the parent link to locate nodes a and f for tid = 4. After
processing, we remove T4 from the tid check set, which now
becomes empty. Since there are no remaining tids to process,
we stop searching for further d nodes.

Now, we compute the TURUB value for itemset daf. Since
item f is the last item in daf and has the largest auub in the
sorted list, its rmue is 0. Therefore, rmue(daf, T2) = 0,
rmue(daf, T4) = 0, rmue(daf, T5) = 0, leading to TURUB(daf)
= 0.

F. The Mining Process of the Incremental Database

In incremental mining, two possible scenarios can occur:
unchanged order and changed order. Before discussing these
cases, we first define two special item types: revealed items
and skippable items. A revealed item was previously pruned
due to the auub pruning strategy, but as new data increases its
auub value, it is no longer pruned and is removed from the
promising item list. A skippable item was present in the
original dataset but does not appear in the updated data. In
certain cases, this allows us to skip the item during depth-first
search, optimizing the mining process.

When the item order remains unchanged, only certain data
structures need to be updated, including the item-based table,
auub table, HAUI List, Non-HAUI Candidate List, TURUB
List, and EMURUM. In this case, the TUR-Tree remains
unaffected, which significantly improves efficiency.
Compared to situations where the order changes, much of the
previously created data can still be used, leading to faster
performance.

When the item order changes, more data structures are
affected, requiring significant updates. In this case, the
TURUB List becomes unusable, and the TUR-Tree must be
reconstructed to reflect the new order. Since the previous
mining structure is no longer valid, the system must rebuild
key data structures, leading to a higher computational cost
compared to the unchanged order scenario. Despite this,
updating the item-based table, auub table, HAUI List, Non-
HAUI Candidate List, and EMURUM table remains essential
for accurate incremental mining.

Fig. 9. The Flowchart to determine whether an itemset is in the HAUI List,

the Non-HAUI Candidate List, or not in the above two lists

When the order changes, the originally stored TURUB List
becomes invalid because modifying its values directly would
lead to incorrect results. As a result, the TURUB List cannot
be used, and the TUR-Tree must be reconstructed to match the

new order. After updating the necessary data structures—
including the item-based table, auub table, HAUI List, Non-
HAUI Candidate List, and EMURUM table—the mining
process can begin. The steps for mining remain similar to
those in static database mining, with one key difference:
determining HAUI must follow the process outlined in Fig. 9.
This is because the HAUI List and Non-HAUI Candidate List
already contain values from previous mining iterations.

IV. PERFORMANCE

This study evaluates the performance of the proposed
TURHAIM algorithm in comparison with the GHAIM
algorithm [7] using both synthetic and real-world datasets.

A. Synthetic Datasets

In the synthetic dataset, the profit values and quantities of
items were randomly assigned within the range of 1 to 15. The
dataset was generated based on three key parameters: (1) NIT
(Number of Different Items), (2) TN (Total Number of
Transactions) and (3) MT (Maximum Number of Items per
Transaction). By adjusting these parameters, we controlled
the dataset’s density.

To evaluate the efficiency of the proposed TURHAIM
algorithm, we compare its running time with the GHAIM
algorithm using synthetic datasets. Specifically, we conduct
experiments on the datasets: NIT200TN100000MT15. Fig. 10
shows that TURHAIM outperforms GHAIM in running time
on a static synthetic database, demonstrating higher efficiency.

Fig. 10. A comparison of the running time between our algorithm and the

GHAIM algorithm based on different data sizes using the synthetic data
of NIT200TN100000MT15

Fig. 11. A comparison of the performance between our algorithm and the

GHAIM algorithm in terms of processing time by using synthetic data

of NIT200TN100000MT15 under varying values of the inserted TN

Next, we analyze the performance of
NIT200TN100000MT15 in an incremental database setting.
We examine how running time changes with variations in the
inserted T N parameter. Fig.11 shows the processing time of
our algorithm is consistently lower than that of the GHAIM
algorithm.

B. Real Datasets

To further evaluate the robustness of the TURHAIM
algorithm, experiments were conducted on one real-world
datasets: Connect [4]. Fig. 12 demonstrates this trend in the
connect real database, where our algorithm consistently
outperforms the GHAIM algorithm in running time. The
performance gap widens as the data size increases.

Fig. 12. A comparison of the running time between our algorithm and the
GHAIM algorithm based on different data sizes using the real data of

connect

Next, we analyze the performance of the connect dataset
under the incremental database. As shown in Fig.13, our
algorithm consistently outperforms the GHAIM algorithm in
terms of running time.

Fig. 13. A comparison of the running time between our algorithm and the
GHAIM algorithm using the real data of connect under varying values

of the inserted TN

V. CONCLUSION

In this paper, we present a TURHAIM algorithm designed
to discover high average utility itemsets with multiple
minimum thresholds in an incremental database. Our
approach requires only a single database scan. When new data
is inserted, provided the order remains unchanged, we need to
scan only the updated portion of the database, rather than the
entire dataset. We compare the performance of our TURHAIM
algorithm with the GHAIM algorithm under both static and
incremental database conditions. Experimental results show
that our algorithm outperforms GHAIM in terms of efficiency.

ACKNOWLEDGMENT

This research was supported in part by the Office of
Research and Development, National Sun Yat-sen University
under Grant No. 14DS02.

REFERENCES

[1] M.-J. Gao, J.-X. Lin, and J.-W. Wu, “An Efficient Algorithm for High

Average Utility Itemset Mining with Buffered Average Utility-List,”
Proc. of 2020 7th International Conference on Information Science and
Control Engineering (ICISCE), pp. 224–228, 2020.

[2] J. M.-T. Wu, J. C.-W. Lin, M. Pirouz, and P. Fournier-Viger, “TUB-
HAUPM: Tighter Upper Bound for Mining High Average-Utility
Patterns,” IEEE Access, Vol. 6, pp. 18655–18669, April 2018.

[3] U. Yun, H. Nam, J. Kim, H. Kim, Y. Baek, J. Lee, E. Yoon, T. Truong,
B. Vo, and W. Pedrycz, “Efficient Transaction Deleting Approach of
Pre-Large Based High Utility Pattern Mining in Dynamic Databases,”
Future Generation Computer Systems, Vol. 103, pp. 58–78, February
2020

[4] S. Krishnamoorthy, “Mining Top-k High Utility Itemsets with
Effective Threshold Raising Strategies,” Expert Systems with
Applications, Vol. 117, pp. 148–165, March 2019.

[5] S. Krishnamoorthy, “Efficient Mining of High Utility Itemsets with
Multiple Minimum Utility Thresholds,” Engineering Applications of
Artificial Intelligence, Vol. 69, pp. 112–126, March 2018.

[6] J. C.-W. Lin, S. Ren, and P. Fournier-Viger, “MEMU: More Efficient
Algorithm to Mine High Average-Utility Patterns with Multiple
Minimum Average-Utility Thresholds,” IEEE Access, Vol. 6, pp.
7593–7609, March 2018.

[7] K. K. Sethi and D. Ramesh, “High Average-Utility Itemset Mining
with Multiple Minimum Utility Threshold: A Generalized Approach,”
Engineering Applications of Artificial Intelligence, Vol. 96, pp.
103933–103948, November 2020.

[8] E. Sciore, Sciore, and Gennick, Java Program Design. Springer, 2019.

[9] P. Fournier-Viger, C. W. Lin, A. Gomariz, T. Gueniche, Z. D. A.
Soltani, and H. T. Lam, “The Spmf Open-Source Data Mining Library
Version 2,” Proc. 19th European Conf. on Principles of Data Mining
and Knowledge Discovery (PKDD 2016) Part III, pp. 36–40, 2016.

