All-Nearest-Neighbors Finding Based on the
Hilbert Curve:

Hue-Ling Chen' and Ye-In Chang

"Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan
Republic of China
{E-mail: chen.hueling@gmail.com}
{Tel: 886-3-4244395}
{Fax: 886-3-4245281}

Abstract

An all-nearest-neighbors (ANN) query retrieves all nearest neighbors to all query objects.
We may perform large number of one-nearest-neighbor queries to answer such an ANN
query. Due to no total ordering of spatial proximity among spatial objects, the Hilbert curve
approach has proposed to preserve the spatial locality. Chen and Chang have proposed
a neighbor finding strategy (denoted as the CCSF strategy) based on the Hilbert curve
to compute the absolute location of the neighboring blocks. However, it costs much time
during the transformation between the Hilbert curve and the Peano curve. On the other
hand, in the strategy based on R or R*-trees for an ANN query, large number of unnecessary
distance comparisons have to be done due to the problem of overlaps within the R-tree,
resulting in many redundant disk accesses. Therefore, in this paper, we first propose the
one-nearest-neighbor finding strategy directly based on the Hilbert curve (denoted as the
ONHC strategy) for a one-nearest-neighbor query. By relations among orientations, orders,
and quaternary numbers, we compute the relative locations of the query block and the
neighboring block in the Hilbert curve. Then, the nearest neighbor of one query point can
be found directly from these neighboring blocks. Next, by using our ONHC strategy, we
propose the all-nearest-neighbors finding strategy based on the Hilbert curve (denoted as
the ANHC strategy) for an ANN query. Finally, from the simulation result, we show that
our ONHC strategy needs less response time (the CPU-time and the I/O time) than the
CCSF strategy for the one-nearest-neighbor query. We also show that our ANHC strategy
needs less response time than the strategy based on R*-trees for an ANN query.

(Key Words: Hilbert curve, nearest neighbor queries, R-tree, space filling curves, spatial
index)

! This research was supported in part by the National Science Council of Republic of China under Grant
No. NSC-93-2213-E-110-027 and National Sun Yat-Sen University. The authors also like to thank “Aim
for Top University Plan” project of NSYSU and Ministry of Education, Taiwan, for partially supporting
the research.

1 Introduction

Given two datasets A and B which contain spatial objects, an all-nearest-neighbors (ANN)
query retrieves for each object in dataset A its nearest neighbor in dataset B. An ANN
query is often applied in applications including the sensor networks and urban planning
in the geographic information systems (GIS), the spatial data analysis and mining in the
spatial databases, and image processing in the multimedia databases [1, 15, 30, 31]. For
example, “to find the nearest parking lot or bus station for each high speed rail station” is
a common ANN query in the urban planning.

An ANN query can be considered as a hybrid spatial query of spatial joins and the
nearest neighbor queries [28, 31]. Take Figure 1 as an example. The result of the spatial
join on regions A and B in Figures 1-(a) and (b), respectively, is shown as region C' in
Figure 1-(c). Region C' contains two objects az and by which could be the nearest neighbor
to each other. However, the nearest neighbor of object a3 is object b; which is not in region
C. Thus, the nearest neighbor cannot be completely obtained by the spatial join. The
ANN query should consider not only the spatial predicate “the intersection” considered in
the spatial join, but the spatial predicate “the nearest neighbor” on pairs of spatial objects.

In addition, an ANN query between datasets A and B can be considered as large number
of the nearest neighbor query (denoted as the ONN query) for each spatial object in dataset
A where the nearest neighbor is found in dataset B, and vice versa. An ANN query
can be answered based on the neighbor finding for the ONN query. That is, when the
nearest neighbor could be efficiently found for the ONN query, the number of disk accesses
which results in the response time for the ANN query could be reduced. However, the
difficulty of the neighbor finding for the ONN query in the two-dimensional space is no total
ordering for spatial objects. In other words, it is difficult to preserve the spatial proximity
between the spatial objects. Many spatial data access methods [24] for the ONN query have
been proposed to provide access paths to the spatial objects. They focused on candidate
neighbors only and prune the objects which are too far from the query object. In general,
they used the spatial index as an accelerator and can be classified into two categories:
the space-based strategies and the object-based strategies [24]. The space-based strategies

have been designed based on the decomposition of the space, e.g., the strategy based on

(a) (b) (c)

Figure 1: An example of the spatial join: (a) dataset A; (b) dataset B; (3) the result in
the region C'.

the quadtree [10, 27]. They performed some rules on the subdivided space to find the
nearest neighbor, including the recursive tree-based and complicated bits-based rules. On
the other hand, the object-based strategies have been designed based on the distribution
of data objects, e.g., the strategy based on the R-tree or R*-tree [3, 7, 12, 22, 23, 31].
They required to traverse more than one path in the tree structure and accessed many
unnecessary partitions to find the nearest neighbor.

In order to preserve the spatial proximity, a space-filling curve has been proposed as
one total ordering which is a mapping between coordinates of spatial objects in the two-
dimensional space and sequence numbers in the one dimensional space [5, 6, 11, 13, 16, 20].
Then, spatial objects are stored in the disk according to sequence numbers. Some examples
of the space-filling curves are the Peano curve, the RBG curve and the Hilbert curve. The
Hilbert curve has the best clustering property among all curves, even better than the
quadtree [10] and the R-tree [20, 31]. The clustering means that spatial objects which
are close to each other in the two-dimensional space could be stored in adjacent blocks of
the disk. The number of disk accesses for the neighboring objects could be reduced by
sequentially accessing adjacent blocks. The Hilbert curve has been widely used in a variety
of fields including spatial databases [5, 14, 16, 20, 29], geographic information systems [11],
image processing and compression [8, 17], genome visualization [9] and scientific computing
[4, 6, 19]. Some neighbor finding strategies have been proposed based on the Hilbert curve
[2, 15, 18]. They performed the range query in the disk to search for the neighboring blocks

next to the query block in the two dimensional space. However, it may cost much time

to search for those neighboring blocks which may not stored in the adjacent blocks of the
disk. In Chen and Chang’s strategy [5] (denoted as the CCSF strategy), they computed
the absolute locations of neighboring blocks by binary bits of the coordinates. Then, the
neighboring blocks are directly accessed, whether they are in one or two-dimensional space.
However, it costs much time during the transformation between the Hilbert curve and the
Peano curve in the CCSF strategy, as shown in Figure 2-(a).

Therefore, in this paper, we propose the one-nearest-neighbor finding strategy directly
based on the Hilbert curve (denoted as the ONHC strategy), as shown in Figure 2-(b). We
assume that spatial objects are grouped into blocks based on the Hilbert curve and focus
on the neighboring blocks finding. We find the relations among the orientation, the order,
and the quaternary number of a block in the Hilbert curve. By these relations, we first
generate the direction sequence to store the orientation of the query block () in the Hilbert
curve of each order. Next, by direction sequences generation for block (), we obtain the
relative location of the block () and block NN in the curve of each order. Block NN is the
neighboring block of block () in one of eight directions. We compute the quaternary number
of block NN and obtain its sequence number by transformation of the quaternary number
from base four to ten. Then, we can sequentially and directly access these neighboring
blocks in the disk by their sequence numbers after sorting. Finally, we obtain the nearest
neighbor by distance comparisons in these neighboring blocks. As compared to the CCSF
strategy shown [5] in Figure 2-(a), our ONHC strategy needs less response time (the CPU
time and the I/O time) than the CCSF strategy for the ONN query. Since an ANN query
contains large number of the ONN queries, we also propose the all-nearest-neighbors finding
strategy based on the Hilbert curve (denoted as the ANHC strategy) by using our ONHC
strategy. As compared to the all-nearest neighbor finding strategy based on the R*-tree
(the variation of the R-tree) [7, 31], our ANHC strategy accesses the neighboring blocks
sequentially and directly by sorted sequence numbers in the Hilbert curve. Our ANHC
strategy does not access unnecessary and duplicated partitions like the strategy based on
the R*-tree. Therefore, our ANHC strategy needs less response time than the strategy
based on the R*-tree.

The rest of this paper is organized as follows. In Section 2, we briefly describe two

0: Query block Q based on 10: The NN block based on
the Hilbert Curve the Hilbert Curve

1: Bit Division in the Hilbert 9: Bit Concatenation in the
Curve Hilbert Curve

2: Reverse Rotation and Reflection 8: Rotation and Reflection
from order n to order 1 from order 1 to order n

3: Hilbert Curve to Peano 7: Peano to Hilbert Curve
Curve Transformation Transformation

4: Bit Concatenation in the 6: Bit Division in the
Peano Curve Peano Curve

Y !

‘ 5: Neighbor Finding based on the Paeno Curve ‘

(a)

0: Query block Q based on 4: The block NN based on

the Hilbert Curve the Hilbert Curve
1: Direction Sequences and Location 3: Direction Sequences Generation of
Generation of block Q from order 7 to / block NN from order m to n

! T

2: Location Finding for block NN from order »n to m and find in order m
(b)

Figure 2: The neighbor finding based on the Hilbert curve: (a) the CCSF strategy; (b) our
ONHC strategy.

neighbor finding strategies based on the R-tree and the Hilbert curve, respectively. In
Section 3, we present the ONHC strategy and the ANHC strategy based on the Hilbert
curve. In Section 4, we compare our ONHC strategy with the CCSF strategy in the
performance of the ONN query. We also compare our ANHC strategy with the strategy
based on the R*-tree (the variation of the R-tree) in the performance of the ANN query.

Finally, we give the conclusion.

2 Related Work

The neighbor finding can work efficiently by the strategy based on the spatial index. The
spatial index is used to well organize the spatial data and preserve the spatial proximity. In
this section, we briefly introduce two of well-known strategies for the one-nearest-neighbor

query based on two spatial indices, including the R-tree [12] and the Hilbert curve [5].

2.1 The R-tree

Existing strategies for the nearest neighbor query assume that the dataset is indexed by
an R-tree and use various metrics on mindist(q, M) to prune the search space. The metric
mindist(q, M) denotes the minimum distance between the query point ¢ and any point in
a minimum bounding rectangle (MBR) M [12, 22, 23, 24, 31]. Take Figure 3-(a) as an
example. The entries in Figure 3-(b), including intermediate and leaf entries, are sorted
by their mindist from the query point q. The neighbor finding process starts from the
root. Since MBR F; has the minimum mindist, the node of MBR F; in the R-tree is
visited first. Next, the node of MBR FEj in that of MBR Ej is visited. The first candidate
point m is retrieved from the leaf node of MBR F,. Then, the process should backtrack
to the previous level. Although the mindist of MBR FEj is larger than the one of MBR
E,, the node of MBR Ej5 has to be visited before backtracking again to the root level. The
candidate point d in MBR Ej5 replaces point m in MBR FE,, since the mindist of point
d is smaller than the mindist of point m. However, point d is the local optimal nearest
neighbor. The reason is that there exists an overlap between two MBR’s, E; and Fj,
respectively. It needs to search in another internal node of MBR FE, which is overlapped

with MBR FE;. Finally, after searching all paths in the R-tree, the global optimal nearest

Figure 3: An example of the R-tree: (a) points and MBR’s; (b) the structure of R-tree.

point h will be obtained in some node of MBR FE;. Consequently, it has to travel more
than one tree path and access many partitions of nodes to find the nearest neighbor to the
query point in the R-tree [12], and even in the R*-tree [3] which is a variation of the R-tree

to reduce overlaps.

2.2 The Hilbert Curve

Given a two-dimensional square space of size N x N, where N = 2" with order n > 0, the
Hilbert curve recursively divides the space into four equal-sized blocks. Each block is given
a sequence number which ranges from 0 to N? — 1. For example, Figure 4-(a) shows the
Hilbert curve of order n = 1 which linearly orders four blocks by four sequence numbers
ranged from 0 to 3. The total ordering of the Hilbert curve is that the adjacent blocks
in the two-dimensional space always correspond to the adjacent line intervals in the curve
[6, 19]. Figure 4-(b) shows the Hilbert curve of order n = 2 in which the sequence numbers
range from 0 to 15 (=(22)*-1). It is derived from the curve of order 1 in Figure 4-(a) with
the reflection and rotation on the first and last blocks of the curve of the previous order 1.
Then, the orientation (i.e., the traversal path) of these two blocks are changed to preserve
the spatial proximity of two adjacent blocks everywhere. Figure 4-(c) shows the Hilbert

curve of order n = 3 in which sequence numbers range from 0 to 63 (=(22)-1). It is derived

6

5 6 9 10 Eniinniinnils
1 2 Py v

Al el My e
A H e | Lige I hyr
3 2 13 |12y b — %3 s
| « HppuRppERp s
0 3 o __ 1] 14 15 iEniiasifnniine
- ol 3V iy | Iy

(a) (b) (c)

Figure 4: The Hilbert curve in two dimensional space: (a) order n = 1; (b) order n = 2;
(c) order n = 3.

from the curve of the previous order 2 after the similar reflection and rotation. Therefore,
the Hilbert curve has the better clustering property than the other curves, e.g., the Peano
curve [11, 13, 14, 16, 20]. Chen and Chang proposed the neighbor finding strategy based on
the Hilbert curve (denoted as the CCSF strategy [5]), where the process is shown in Figure
2. The CCSF strategy uses the bit shuffling property of the Peano curve on the coordinate

system and transformation rules between curves in the neighbor finding process.

3 The Neighbor Finding Based on the Hilbert Curve

Because the Hilbert curve has the good clustering property of preserving spatial proximity,
we propose the one-nearest-neighbor finding strategy and the all-nearest-neighbors finding
strategy based on the Hilbert curve. In Section 3.1, we describe the relations among the
orders, the orientations, and the quaternary numbers in the Hilbert curve. These relations
will be used in the process of the neighbor finding. In Section 3.2, we present the ONHC
strategy for the one-nearest-neighbor query. In Section 3.3, we present the ANHC strategy
by using our ONHC strategy for the all-nearest-neighbors query.

D1 2] L0 |
: oo : ¢, |
IRER I ~
ol 0 1 3 1y ol 2 1 3 1y
SW SE SwW SE

(a) (b)

Figure 5: The oriented numbers in the SW, NW, NE, and SE blocks of the center point P:
(a) 0,1,2,3; (b) 2,1,0,3.

3.1 Relations

3.1.1 Orientations and Direction Sequences

A Hilbert curve recursively divides the space into four equal-sized blocks due to the limit
of the block capacity. The Hilbert curve never maintains the same direction for more
than three consecutive blocks. Take the quaternary space in Figure 5 as an example. The
quaternary space is divided into four equal-sized blocks such that four blocks are in the
southwest (SW), northwest (NW), northeast (NE) and southeast (SE) directions of the
center point P. We call these blocks as the SW, NW, NE, and SE blocks. The orientation
is defined as the traversal path along the Hilbert curve for four consecutive blocks with
four oriented numbers 0, 1, 2, and 3, respectively. For example, the orientation of Figure
5-(a) or (b) is shown as the thick line.

However, in our strategy, we denote oriented number Orient which is the value in base
4 as the sequence number of the block in the orientation. We define the direction se-
quence DSQ = (Orientsy, Orient yw, Orient y g, Orientsy), where Orientgy, Orient vy,
Orientyg and Orientsp are denoted as the oriented numbers of the SW, NW, NE, and
SE blocks, respectively, in the quaternary space. For example, direction sequence DS(Q) of
Figure 5-(a) is (0,1,2,3) which sequentially follows the dotted line. By following the same
dotted line, direction sequence DS(Q) of Figure 5-(b) is (2,1,0,3).

r
' :
! '
: 1 2 |
|
! '
! '
| @ '
! '
|
|
: 8 ; | *: the changed oriented number.
6 - - ' _: the block number in the curve order n=1.
SW SE

~
jab}
~

108 |13 2
93122 31 3:9*
0 ° 3
V] 32*|33

[

o

<
*

(b) (c) (d)

Figure 6: Blocks in the Hilbert curve of order 1 and 2 : (a) four blocks in the curve of order
1; (b) four sub-blocks of block (0)4 in the curve of order 2; (¢) four sub-blocks of block (3)4
in the curve of order 2; (d) four sub-blocks of blocks (1) and (2), in the curve of order 2.

3.1.2 Quaternary Numbers, Orders, and Direction Sequences

In order to derive the Hilbert curve of the large order (i.e., the order n > 1), four blocks in
the Hilbert curve of the order n are replicated by the previous curve of the order (n — 1)
after the reflection and rotation [5]. Take Figure 6 as an example. While replicating by
the Hilbert curve of order 1 for block (0); in Figure 6-(a), the orientation is reflected
horizontally, rotated clockwise 90°, as shown in Figure 6-(b). The SW, NW, SE, and NE
sub-blocks in block (0)4 are linearly ordered by the Hilbert curve of order 2. The oriented
numbers of these four sub-blocks are 0, 3%, 2, and 1%, respectively, which are not underlined
in Figure 6-(b). The symbol **’ indicates the changed oriented number in Figure 6-(b) after
the reflection and rotation of the orientation in Figure 6-(a).

We concatenate each oriented number (d;), in the Hilbert curve of order i to obtain the

quaternary number (dids...d;...d,)s of the block in the Hilbert curve of order n, where

d; in {0,1,2,3}. The quaternary number has n oriented numbers which is related with the
order n. Take Figure 6-(b) as an example. Since block (0), is in the Hilbert curve of order
1, four quaternary numbers for its four sub-blocks, the SW, NW, NE, and SE blocks (00)4,
(03)4, (02)4 and (01)y, respectively. These four sub-blocks are ordered by the Hilbert curve
of order 2.

We use direction sequence DS@pq to store the orientation of the block b where the
sub-block bd locates in the curve of order n. The notation b is the quaternary number
(dydy...d;...d, 1) in the curve of order (n—1). The notation d is the oriented number in
the orientation of block b. For example, direction sequence DSQq of block (0)4 in Figure 6-
(a)is (0,1,2,3). Direction sequence DSQq; of sub-block (01), in Figure 6-(b) is (0, 3*,2,1*)
which can be derived from direction sequence DSQ)q after interchanging oriented numbers
1 and 3. Note that the symbol **’ indicates the changed oriented number. In the same way,
direction sequences DSQqo, DSQp2 and DSQy3 can be obtained as (0, 3%, 2, 1%).

For the orientation of block (3), in Figure 6-(c), it is obtained after the reflection horizon-
tal and the rotation anti-clockwise 90° of the orientation in Figure 6-(a). The quaternary
numbers for SW, NW, NE, and SE sub-blocks, respectively, in block (3)4 are (32)4, (31)4,
(30)4, and (33)4, respectively. Since direction sequence DSQ3 is (0, 1,2, 3), direction se-
quence DSQ3q of sub-block (30)4 is (2*, 1, 0%, 3) after interchanging oriented numbers 0 and
2 in direction sequence DS(@)3. In the same way, direction sequences DS@3;, DSQ3, and
DS(@Qs3 can be obtained as (2*,1,0, 3*).

For the orientation of block (1), or (2)4 in Figure 6-(d), it is the same as the orientation in
Figure 6-(a) without the reflection and rotation. Figure 6-(d) shows the quaternary numbers
for SW, NW, NE, and SE sub-blocks in blocks (1), or (2),. The direction sequences of four
sub-blocks in blocks (1), or (2)4 are the same as direction sequence DSQ = (0,1,2,3) or
DSQ, = (0,1,2,3). Moreover, we can transform the quaternary number (dids ... d;...d,),
into the decimal value of the sequence number in the curve of order n. For example,
quaternary number (32), in Figure 6-(c) can be transformed into sequence number 14
(= 4' % 3+ 4% % 2) in the curve of order 2 as shown in Figure 4-(b).

Therefore, we assume that the block (B), is the sub-block of block (A),. Blocks (A),

and (B), are ordered by the Hilbert curve of order a and b, respectively, where a > 0,

10

b — a = 1. That is, block numbers (A), and (B), are quaternary numbers which combine
the number of a and b oriented numbers, respectively. We conclude the following three
cases to derive the direction sequence DSQp from DS(Q 4 depending on the a'th oriented

number of block number (A),.

Case (C13. If the a'th oriented number in block number (A), is 0, then DSQp is derived

from DS(Q) 4 after interchanging oriented numbers 1 and 3.

Case C02. If the a'th oriented number in block number (A), is 3, then DSQp is derived

from DS(Q) 4 after interchanging oriented numbers 0 and 2.

Case C'11/C22. 1If the a'th oriented number in block number (A)4 is 1/2, then DSQp is
the same as DSQ) 4.

Take Figure 6-(d) as an example. Since direction sequences of four blocks in the Hilbert
curve of order 1 are (0,1,2,3), direction sequence DSQ3 of block (3), is (0,1,2,3). In
the Hilbert curve of order 2, the direction sequences for four sub-blocks in block (3), are
(2*,1,0*, 3) derived from direction sequence DSQ3 = (0, 1,2, 3) by Case C02. In the Hilbert
curve of order 3, the direction sequences for four sub-blocks in block (30)4 are (2,3*,0,1%)
derived from direction sequence DSQ3y = (2,1,0,3) by Case C13. Figure 7-(a) shows
all orientations of the Hilbert curve of order (n) 1, 2, and 3 which linearly order those
equal-sized blocks in Figures 7-(b), (c¢), and (d), respectively. The corresponding direction

sequence of each equal-sized block is shown blow the orientation in Figure 7-(a).

3.2 The ONHC Strategy

In the ONHC strategy, the query point is distributed in the query block which is linearly
ordered by the Hilbert curve of order n. There are two kinds of neighbors, inner neighbors
and outer neighbors, which will be found by the ONHC strategy. Assume that the query
block ¢ in the curve of order n locates in block), block) and block P are neighbors in the
curve of order n — 1. Inner neighbors are equal-sized neighbors in the same block () with
the query block ¢. Outer neighbors are not in block (). They are equal-sized neighbors in
block P, or they are larger-sized than the query block ¢q. Take block 50 in Figure 8 as an

11

3)
|
13 Cl1 7)) €02
3 —2 1—l2 l—00
oo—1 0 09 3 —>3
(0, 3% 2, 1*) (0, 0,1, 2, 3) 2% 1, 0% 3)

Cl13| C02| C22 C11] Cl13| Cl11 C22|CO0 Cl13 C11 C2ﬁ C22 Cl11 C13 CO

(0,1%,2,3%)(2%,3,0%,1) :_—I :_—I (0,;:,2,|1*) (2 1,0%,3) (0,3 * ,2,1%) (2%,1,0%,3) (2 3%,0, 1*) (0* 1,2%3)
(0,3,2,1)(0,3,2,1) (0,1,2,3)(0,1,2,3) (0,1,2,3) (0,1,2,3) (2,1,0,3) (2,1,0,3)
(a)
n=1 n=2 n=3
| | A
1 2 1 o) v o) \/ 2 1 el
oHIL T HTL
| Aol e lale
0)\ | 3 0 - © 3 0 N P .
- +o
o - e

(b) () (d)

C13: interchanging oriented numbers 1 and 3.
C02: interchanging oriented numbers 0 and 2.
C11/C22: no interchanging.

*: the changed oriented number after interchaing.

n=1

n=2

n=3

Figure 7: Orientations, direction sequences, and orders in the Hilbert curve: (a) all orien-
tations and direction sequences in the curve of order (n) 1, 2, and 3; (b) the orientation of
4 equal-sized blocks in the curve of order 1; (c¢) the orientation of 16 equal-sized blocks in
the curve of order 2; (d) the orientation of 64 equal-sized blocks in the curve of order 3.

12

21 | 22 é&@ 37 | 38 | 41 @

20 (23|24 /27136 | 39|40 43

19118129 (2835|3445 | 44

16 [17130 (31|32 |33 |46 |47

1512|1110l 53 52|51 | 48
1413 8 | 9 |54155(50) 49
\1> 2|7 161571566162
0l3|4|5]|58|59/60]63

) . .
uery block inner neighbor

outer neighbor

Figure 8: Example based on the Hilbert curve of order 3

example. Blocks 48, 49, and 51 are equal-sized inner neighbors, whereas blocks 52, 55, 56,
61 and 62 are equal-sized outer neighbors. Procedure One_Neighbor_Finding in Figure 9
shows the process of the ONHC strategy. In the initial state, we transform the sequence
number of the query block into the block number in base 4. That is the formation of
oriented numbers like (dids...d;...d,)s. Each d; represents the oriented number in the
Hilbert curve of order 7. By these oriented numbers, we can generate direction sequences
and obtain the locations in the Hilbert curve of different orders for the query block.

Take query block 50 in Figure 8 as an example. The process of the initial state is shown
in Figure 10-(a). First, we transform sequence number (50);, into block number (302), by
Function TransBasel0to4. The oriented numbers dy, ds, and ds are 3, 0, and 2, respectively.
Then, we generate the direction sequences in the curve of different orders by Function
DSQ_Generation. In the Hilbert curve of order 1, by oriented number d; = 3 in direction
sequence DSQ3 = (0,1,2,3), block (3)4 is the SE block of the whole space, as shown in
Figure 10-(b). We store the location of the query block in the curve of order i in array
L@QB[i]. That is, LQB[1] = ‘SE'. In the Hilbert curve of order 2, by oriented number
d; = 0 and Case C02, direction sequence DSQ30 = (2,1,0,3) is derived from direction

13

Procedure One_Neighbor_Finding (block number hjq, order n, direction DirN)

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

hy := TransBasel0to4(hio);
/* Initial State: hg := (didz...d;...dy)s, d;i € {0,1,2,3},1 < i < n;*/
DSQq4, =(0,1,2,3); LQBI[1] = Block_Location(d;, DSQa,);
For i =2 ton do begin
X = (d]dQ...di)4; Y = (dldQ...di,1)4;
DSQx = DSQ_Generation(d;_1,d;, DSQy);
L@ BJi] = Block_Location(d;, DSQx); end;
/* Local Finding */
/* Array LQB stores the location of the query block in the curve of each order. */
/* Array LN B stores the location of the neighboring block. */
/* Variable findN stores the latest checked order in the local finding. */
fndN =n; flag=‘False’; flag= Local_Finding(DirN, d,,, DSQn, n, LQB, LNB);
/* Upward Finding */ i = findN
While (flag=‘False’) and (i > 1) begin
flag= Local_Finding(DirN, d;,DSQx, i, LQB, LN B); findN=i; end;
/* Downward Finding */ i = findN;
While (flag=‘True’) and (i < n) begin
i=1i+1 LN B[i] = Neighbor_Location(LQBJi], Reverse(DirN)); end;
/* Block Number Generation */
If (flag= ‘True’) begin
X = (dids ... d;)a; Neighbor_Generation(DirN, X, DSQx, findN,n, LNB); end;
else print(‘No neighbor exist.’);

end Procedure

Figure 9: Procedure One_Neighbor_Finding

14

sequence DSQ3. By oriented number dy = 0 in direction sequence DSQ3y = (2,1,0, 3),
block (30)4 is the NE sub-block of block (3)4, i.e., LQB[2] = ‘NE', as shown in Figure
10-(c). In the Hilbert curve of order 3, by oriented number dy = 0 and Case C'13, direction
sequence DSQ302 = (2,3,0,1) is derived from direction sequence DSQ3. By oriented
number d3 = 2 in direction sequence DSQ3p2 = (2,3,0,1), block (302), is the SW sub-
block of block (30)4, i.e., LQB[3] = ‘SW’, as shown in Figure 10-(d).

After the initial state, we start to do neighbor finding in direction DirN. Let’s take the
north (DirN = ‘N’) neighbor finding of query block (302)4 as an example. The process
of the north neighbor finding is shown in Figure 10-(e). First, we find the north neighbor
of query block (302), in the Hilbert curve of order 3 by Function Local Finding. By array
LQB[3]='"SW’, we find the north neighbor which is the NW sub-block of block (30),, as
shown in Figure 10-(f). We also find another NE block which also in the north of block
(30)4. The NE block is the north west neighbor of the query block. We store the location
of these two neighbors in array LNB, i.e., LNB[3|[1]='NW’ and LNBI[3|[2]=NE’. At
this point, Function Local_Finding returns ‘True’. It means that we find two equal-sized
inner neighbors in the curve of order 3. Finally, we can generate their block numbers
by Procedure Neighbor_Generation. By array LN B[3][1]=‘"NW’ and LN B][3][2]=‘NE’, and
direction sequence DSQ307 = (2,3,0,1), two oriented numbers which represent the NW
and NE sub-blocks of block (30), are 3 and 0, respectively. Therefore, two inner neighbors
are blocks (303)4 and (300), which can be transformed into sequence numbers 51 and 48,
respectively, as shown in Figure 10-(g).

When we cannot find the inner neighbor in direction Dir N in the curve of order n, we
continue to find the outer neighbor in the block which locates in the curve of order n — 1
by checking the oriented number d,,_;. If the outer neighbor still can not be found by the
oriented number d,,_;, we continue to find it in the block which locates in the curve of order
n — i with increasing the value of variable i (i < n) by one. If we still cannot find the outer
neighbor in the block of the curve of order 1, it means that no neighbor exists in direction
DirN.

Take the south neighbor finding of query block (302), in Figure 10-(d) as an example.
By array LQB[3]=‘SW’ of query block (302),, the south neighbor can not be found in

15

the query block
(50),,=(d d,d),=(302),

the initial state

Y

Direction Sequences and
Location Generation

n=1
d1=3, DSQ3=(0’ 1 7233)

Case C02

n=2 v
d2=0, DSQ30=(2a 1 7973)

Case C13

n=3 Y
d,=2, DSQ ,,,=(2.3.0.1)

(a)

Co

(b)

1 0
Nt/
RS
(©)
9
S \29—'1

(d)

Local Finding

n=3,

sw-N Nw, NE
(findN=3, flag="True')

Neighbor
Generation

n=3

DSQ3OZ:(2’§’Q, 1)
NWNE
Z=3 | z=0

(303),=51),»
(300),=(48),;

(e)

()

5148

50

(2)

: query block
[]: inner neighbor

Figure 10: The initial state and north neighbor finding for block (50);9 = (302)4: (a) the
process of the initial state; (b) block (3), in the Hilbert curve of order 1; (c¢) block (30)4 in
the Hilbert curve of order 2; (d) block (302)4 in the Hilbert curve of order 3; (e) the process

of north neighbor finding; (f) locations in the curve of order 3; (g) sequence numbers in the

curve of order 3.

16

5 () 5
S

INWN
E

(a) (b) (c)

Figure 11: The south neighbor finding for block 501 = (302)4: (a) the local finding in the
curve of order 3; (b) the upward finding in the curve of order 2; (¢) the downward finding
in the curve of order 3.

the curve of order 3 and Function Local_finding returns ‘False’, as shown in Figure 11-
(a). Therefore, we do the upward finding by array LQB[2]=‘NE’, as shown in Procedure
One_Neighbor_Finding in Figure 9. That is, we perform Function Local_Finding in the
curve of order 2 to find the south neighbor of block (30)s, as shown in Figure 11-(b).
By LQB[2]='NE’, the south neighbor of block (30); can be found as the SE block, i.e.,
LN B[2]=‘SE’. At this point, Function Local_Finding returns ‘True’ which means the south
outer neighbor is found in the curve of order 2. Array LNB[1] = LQB[l] = ‘SE’. The
value of variable findN in Procedure One_Neighbor_Finding is equal to 1.

Next, we do the downward finding to find the south outer neighbor in the curve of the
same order with the query block, as shown in Procedure One_Neighbor_Finding in Figure
9. We start the downward finding in the curve of order equal to findN. Since the south
outer neighbor is found in the SE block in the curve of order 2, the south outer neighbor
would be in the north of SE block, as shown in Figure 11-(c). Therefore, we find the
location of the north outer neighbor in curve of order i (i > findN and i < n) by the
location of the query block in the curve of order i (LQBJi]) and the reverse of DirN (i.e.,
Reverse(DirN)). We can obtain the location of the south outer neighbor in the curve of
order 3 by LQBI[3] = ‘SW' and Reverse(DirN)=‘N’, i.e., LNB[3] = ‘NW’. We also find
another north west outer neighbor: NE sub-block in the curve of order 3 of the SE block
in the curve of order 2, i.e., LNB[3|[2] = ‘NE'.

17

Finally, we can generate block numbers of these two north outer neighbors by Proce-
dure Neighbor_Generation. By array LNB[1] = ‘SE’ and direction sequence DSQx =
(0,1,2,3), we know that oriented number 3 (= X)) represents the SE block in the curve of
order 1. Direction sequence DSQs3y = (2,1,0, 3) is derived from DS@Q3 by oriented number
3 and Case C02. By array LN B[2] = ‘SE’ and direction sequence DSQ3y = (2,1,0,3), we
know that oriented number 3 (= Y) represents the SE sub-block of block (3), in the curve
of order 2. Direction sequence DSQs37 = (0,1,2,3) is derived from DSQs3 by oriented
number 3 and Case C02. By array LNBI3|[1] = ‘NW', array LNB[3][2] = ‘NE’, and
direction sequence DSQ337 = (0,1,2,3), we know that oriented numbers 1 and 2 represent
the NW and NE sub-blocks of block (33), , respectively, in the curve of order 3. Two north
outer neighbors are blocks (331), and (332), and are transformed into sequence numbers
61 and 62, respectively, as shown in Figure 8.

Therefore, we can use the quaternary number of the query block and the direction
sequence to obtain the relative location of the neighbor in the curve of each order. There
are eight neighbors in eight directions to query block 50 in Figure 8. For the other query
blocks in Figure 8, the number of the neighbors is less than eight since they locate in the

side or corner of the space. For example, the number of neighbors of query block 42 is 3.

3.3 The ANHC Strategy

Let A and B be two spatial datasets and dist(a,b) be a distance metric. Then, the all-
nearest-neighbors query is defined as: ANN(A,B) = {< a;,b; >: Va; € A,3b; € B,—3b; €
B{dist(a;,b;) < dist(a;,b;)}} [31]. In other words, the query finds nearest neighbor(s) in
B for each object in A. We assume that two datasets A and B are in the data space of
the same range of the coordinate system. Because of different sizes of datasets A and B,
datasets A and B are organized by the Hilbert curve of orders n4 and np, respectively.
That is, for each data a; in dataset A (or b; in dataset B) has its hs (or hp) value in base
10 which is the sequence number in the Hilbert curve of order ny (or np).

Figure 12 shows our ANHC strategy. In the all-nearest-neighbors finding ANN(A, B),
we sort sequence numbers (h 4 values) in dataset A in Step 1 (Line 02 of Figure 12). In Step

2, for each query block with sequence number h 4, we discuss three conditions of ANN(A,

18

B) depending on two orders ny and ng as follows.

Condition 1. When order n,4 is equal to order np, it means that the size of the block
with sequence number h, in dataset A is equal to that with sequence number hp in
dataset B. We denote sequence number h¢ as the candidate value in the curve of order
ng. It is equal to sequence number h,. We use our ON HC strategy (i.e., Procedure
One_Neighbor_Finding) to find eight sequence numbers by sequence number h¢, order
npg, and direction Dir N in dataset B. These eight sequence numbers and sequence
number h¢ represents the candidate neighboring blocks in dataset B. We store these
candidate sequence number in dataset C NN Set. The corresponding process is shown

from Lines 09 to 13 of Figure 12.

Condition 2. When order n,4 is larger than order ng, it means that the size of the block
with sequence number h,4 in dataset A is smaller than that with sequence number hpg
in dataset B. We first transform sequence number h 4 value into sequence number h¢
by the equation he = h*4"8~ "4, Then, we use our ON HC strategy (i.e., Procedure
One_Neighbor_Finding) to find eight sequence numbers by sequence number h¢, order
npg, and direction Dir N in dataset B. These eight sequence numbers and sequence
number A represents the candidate neighboring blocks in dataset B. Finally, we
store these candidate sequence numbers in dataset C NN Set. The corresponding

process is shown from Lines 14 to 19 of Figure 12.

Condition 3. When order n4 is smaller than order n g, it means that the size of the block
with sequence number h, in dataset A is larger than that with sequence number hpg
in dataset B. We first use our ONHC strategy (One_Neighbor_Finding) to obtain
eight sequence numbers in dataset A and store them in dataset TempSet, includ-
ing sequence number hy. Then, we transform each sequence number h; in dataset
TempSet into sequence number he by equation he = hy x 4784 The number
of sequence number he for each sequence number h; is 4”574, Finally, we store
these candidate sequence numbers in dataset C NN Set. The corresponding process

is shown from Lines 20 to 29 of Figure 12.
In Step 3 (Line 30 of Figure 12), we sort sequence numbers in dataset C NN Set and

19

Procedure All_Nearest_Neighbors_Finding (DataSet A, DataSet B, Order n 4, Order ng)
01: begin

02: ANNSet :=¢; /* ANNSet is the result of ANN(A, B). */

03: Sorting sequence numbers h4 in dataset A; /* Step 1*/

04: /* Data a; locates at the block with sequence number h 4 in the curve of order n4.*/
05: For each data a; with sequence number h4 in dataset A do /* Step 2 */

06: begin

07: CNNSet := ¢;

08: /* CNNSet is the candidate set to store candidate neighbors in dataset B. */
09: if (na —np)=0then /* Condition 1 */

10: begin hc =hsa; CNNSet = CNNSet | {hc};

11: For each DirN € {‘S’)N’, ‘E’, ‘W’} do

12: CNNSet = CNNSet |J One_Neighbor_Finding (hc, ng, DirN);

13: end;

14: if (na —np)>0then /* Condition 2 */

15: begin hgo =ha x 487", CNNSet = CNNSet | {hc};

16: For each DirN € {‘S’)N’, ‘E’, ‘W’} do

17: CNNSet = CNNSet |J One_Neighbor_Finding (hc, ng, DirN);
19: end;

20: if (na —np) <0then /* Condition 3 */

21: begin

22: TempSet := {ha};

23: /* TempSet is the temporary set to store candidate neighbors in dataset A. */
24: For each DirN € {‘S’)N’, ‘E’, ‘W’} do

25: TempSet = TempSet |] One_Neighbor_Finding (ha, na, DirN);

26: For each h; € TempSet do

27: CNNSet = CNNSet |J

28: {hc | he ranges from he = hy x 47874 t0 he = hy x 4"B=nA L ynB-nA _ 13,
29: end;

30: Sorting and Filtering distinct sequence numbers h. in CN N Set; /* Step 3 */
31: For each he in CNN Set do

32: begin

33: if the block with sequence number h. has no data ;

34: else For each data b; in the block with sequence number hp in data set B do
35: NN := {b; : 3b; € B,~3b;, € B{dist(q,bx) < dist(q,b;)}}

36: end;

37 ANNSet := ANNSet|J{(a;, NN)};

38: end;

end procedure

Figure 12: Procedure All_Nearest_Neighbors_Finding

20

remove the duplicate sequence numbers. After sorting, we can retrieve the block from the
disk once by the sequence order. Then, from Lines 31 to 36 of Figure 12, we check the
block with each sequence number h¢ in dataset B. We access those blocks which has data
in dataset B and retrieve the data from them. Next, we make the comparison between
data a; in block h, in dataset A and data by in block hp in dataset B. Finally, we can
obtain the nearest neighbor b; in data set B for each a; in dataset A. The final result of
all-nearest-neighbors query ANN(A, B) is ANNSet which includes pairs of (a;, b;) (Line
37 of Figure 12).

Take Figure 13 as an example. Figure 13-(a) shows that two datasets A and B are
ordered by the Hilbert curve of order 2 (n4) and 3 (ng), respectively. The gray-colored
blocks shows that there exists the data points. In Step 1, we sort h, values in dataset
A. In step 2, since order n, is smaller than order npg, it is Condition 3 in our ANHC
strategy. Take query block 7 in Figure 13-(b) as an example. We use our ONHC strategy
to obtain sequence numbers of eight neighboring blocks, e.g., sequence number 2 of the
south neighbor. All sequence numbers of neighbors are stored as candidate neighbors (h,
values) in dataset TempSet. The number of neighbors for the different query block is
different depending on the location of query block. For example, query block 0 in Figure
13-(a) only has three neighbors, because it locates in the corner. Then, we transform each
sequence number in dataset TempSet into four candidate neighbors (he values) in dataset
CNNSet. For example, we transform sequence number 2 into four sequence numbers 8§,
9, 10 , and 11, respectively, by four equations 2 %« 462 2% 46-2 11 24462 £ 2 and
2% 46-2) 1.3 respectively, as shown in 13-(b). After sorting and filtering in Step 3, we need
the small number of disk access to retrieve the nearest neighbor from sequential ranges of
candidate neighbors (h¢ values) in dataset B. For example, the number of disk access for
query block 7 is twice which is derived from two ranges of he values. One ranges from 8
to 39, and another ranges from 52 to 55 in dataset B, as shown in Figure 13-(a).

For the all-nearest-neighbors finding of ANN(A, B) in Figure 14-(a), two datasets A
and B are ordered by the Hilbert curve of order 3 (n4) and 2 (np), respectively. In Step
1, we sort hg values in dataset B. In Step 2, since order ng is larger than order np, it is

Condition 2 in our ANHC strategy. Take query block 28 in Figure 14-(a) as an example.

21

the dataset A the dataset B

the query block
the dataset A order n=2 the dataset B order n=3
21| 22|25 | 2637|3841 |42 - 74 1 d, 29 |28
5 6 9 10 ain a0 | ay
2012324 | 27136 | 39]40 |43 {0,1,2,3}
i 19118129 |28 35|34]145 |44
4 8 11
16 /17130 | 3132|3346 47 [the south neighbor finding (ONHC) |
3 5 13 12 15112111053 |52] 51 | 48
11 |10
14| 13] 8 | 9 |54 |55]50 | 49 a 2*;‘%,61’
= m
1)2]7]6 |57 566162 0123y] 8 | 9
0 1 14 15
0|3 |45 58|59|60)|63

(a) (b)

Figure 13: An example of the ANN query, ANN(A, B), where n4 < ng: (a) two datasets
A and B; (b) the south neighbor finding by the ONHC strategy.

(2-3) and

We transform sequence number 28 into sequence number 7 by equation 28 x 4
store sequence number 7 in the dataset C NNSet. Then, we use our ONHC strategy to
obtain sequence numbers of eight neighboring blocks by sequence number 7. All sequence
numbers of neighbors are stored as candidate neighbors (he values) in dataset TempSet.
After sorting and filtering in Step 3, we only need the small number of disk access to retrieve
the nearest neighbor from sequential ranges of candidate neighbors (he values) in dataset
A. For example, the number of disk accesses for query block 28 is twice which is derived

from two ranges of he values. One ranges from 2 to 9, and another is 13 in dataset B, as

shown in Figure 14-(a).

4 The Performance Study

In this section, we make two comparisons. The first one is the comparison of our ONHC
strategy and the CCSF strategy [5] on the one-nearest-neighbor query. The second one is
the comparison of our ANHC strategy and the strategy based on R*-tree (the variation of
the R-tree) [3, 7, 31] on the all-nearest-neighbors query.

22

the dataset A the dataset B

the dataset A order n=3 the dataset B order n=2 the query block
""""""" [A] 28/4
212212526 |37|38 |41 |42 o8
5 6 g 10 7
2023 24|27 |36 |39|40 |43

1918129 2835 |34 | 45|44

4 7 8 11
16 | 17|30 | 31|32 |33 |46 | 47

[the south neighbor finding (ONHC) |

1512|1110 |53 |52 | 51|48

3 2 13 12
14 /13| 8 | 9 |54 55|50 |49

1,127 |6 |57 |56|61|62
0| 3|4|558|59|60]|63

2

0 1 14 15

(a) (b)

Figure 14: An example of the ANN query, ANN(A, B), where ny > np: (a) two datasets
A and B; (b) the south neighbor finding by the ONHC strategy.

4.1 The Performance Model

Our simulation is implemented in Java and the experiments are executed using a PC with a
Pentium M 735 processor, 256 MB DDR, 7200 rpm IBM Hard Disk, and running Windows
XP. We consider the CPU time and the I/O time as our performance measures. The CPU
time means the time to compute the location of the nearest neighbor. The I/O time, which
means the time to access a block, consists of two parts: positioning time (PT) and transfer
time (TT) [26]. The positioning time is the time to move to the right position in the disk,
which includes the seek time and rotational delays. The transfer time is simply the time
to transfer the requested block from the disk into main memory.

We focus on the point data and the experimental analysis is carried out on six distinct
spatial datasets. Figure 15 shows these six cases of data distribution which are described

as follows [25].

(a) Uniform Distribution: The data objects are uniformly distributed in the overall

data space.

(b) Centralized Distribution: Most of the data objects are centralized in a small region.

23

(c) Diagonal Distribution: The data objects follow a uniform distribution along the

main diagonal.

(d) X-parallel Distribution: Most of the data objects are located on a line which is
parallel to the X-axis.

(e) Sine Distribution: The data objects follow a sine curve.

(f) Real Dataset: The data objects of 30674 streets and 17790 utility network elements

are download from R-tree Portal (http:www.rtreeportal.org).

Each dataset contains 10000 data points in the 2 D-space which is 10000 10000. For each
dataset in Figures 15-(a) to (e), 100 files of 10000 query points are randomly generated to
make the nearest neighbor queries. In the following comparisons, for the strategy based on
the Hilbert curve, data points are assigned to the corresponding disk block by their h-values.
The points in the same disk block are linked. The capacity of each disk block, denoted
as block_capacity, is assigned to be 10 points. Because of the limitation of block_capacity,
a Hilbert curve of different order p (p > 1) is needed for the different datasets, as shown
in the second row of Table 16. For example, for the uniform data distribution in Figure
15-(a), the Hilbert curve of order 5 is needed to order 10000 data points. The reason is
that we use 1024 (= 25 x 2°) disk blocks to store these points such that each disk block
contains 10 points on the average. For the X-parallel, diagonal, centralization, and sine
data distributions in Figures 15-(b), (¢), (d), and (e), respectively, most of their data points
are distributed in the certain region or near the certain line. Because of the limitation of
block_capacity, the Hilbert curve of order (5 or 6 or 7) is needed for each of these datasets.
For two real datasets like Figure 15-(f), the Hilbert curve of order 6 is used for them.

For the strategy based on the R*-tree, the capacity of the node is assigned to be 10
points. Each leaf node entry contains the coordinates of a point. Since the sequence of
inserting data points affects the structure of the R*-tree, we sort and group the data points
by using the Hilbert curve on building and processing an R*-tree for datasets and use the
pruning metrics in [7, 31]. We take the average of the CPU-time and the 1/O time of the
ANN query for each dataset as shown in Figure 15.

24

Figure 15: Five cases of data distribution: (a) uniform; (b) centralized; (c) diagonal; (d)
X-parallel;(e) sine; (f) real dataset.

25

Measure —Rata Distribution | (7pform Centralized Diagonal X-Parallel Sine
CPU time CCSF 1034 1291 1805 1032 1792
ONHC 175 214 291 179 273

Figure 16: A comparison of our ONHC strategy and the CCSF strategy (milliseconds)

4.2 Simulation Results

In the first comparison of our ONHC strategy and the CCSF strategy [5], the result is shown
in Table 16. Our strategy needs less CPU time than the CCSF strategy for all different
datasets. The reason is that our strategy computes the sequence numbers of the eight
neighboring blocks directly based on Hilbert curve. It is different from the CCSF strategy
which takes most of the CPU-time on the complicated transformation rules between the
Peano curve and the Hilbert curve to obtain the eight neighboring blocks.

After obtaining the sequence numbers of eight neighboring blocks, our strategy can di-
rectly access these blocks. The 1/O time can be reduced without accessing the unnecessary
blocks. Since it is more efficient to fetch a set of consecutive disk blocks than a randomly
scattered set, the additional positioning time [5, 14, 16, 21, 20] can be reduced based on
the good clustering property of the Hilbert curve. Since our ONHC strategy and CCSF
strategy are both based on the Hilbert curve, both I/O time of our ONHC strategy and
CCSF strategy for each one of five data distributions are always equal to (4*PT+8*TT).

In the second comparison, we consider two variables: the data count and the data
distribution, which affect the performance of the ANN query. Since the ANN query of
dataset A is performed on dataset B, we evaluate the performance of the ANN query in
four cases, as shown in Figure 17. For the parameter of the data count, the symbol “*1’
denotes the variable data count and the blank denotes the static data count. The data
count ranges from 10® to 10* data points. For the parameter of the data distribution, the
symbol *2’ denotes the variable data distribution and the blank denotes the uniform data
distribution. Take Case C1 as an example. The data count of dataset A is variable, whereas
the data count of dataset B is static. Datasets A and B are both created in the uniform
distribution.

Figure 18 shows the result of Case C1. Our ANHC strategy needs less I/O time and
CPU time than the strategy based on the R*-tree as the data count of dataset A increases,

26

arameter Data Count Data Distribution
Case A B A B

Cl1 *1

C2 *]

C3 *7

C4 2

C5 *3 *4

Co6 *4 *3

*1: the variable data count.

*2: the variable data distribution.
*3: the real dataset of 30674 objects.
*4: the real dataset of 17790 objects.

Figure 17: Five cases (C1, C2, C3, C4, C5) of the comparison on the ANN query for
datasets A and B

as shown in Figures 18-(a) and (b). The reason is that large number of nodes in the R*
have to be compared and accessed to obtain the actual nearest neighbor of one point. On
the other hand, in our ANHC strategy, the 1000 data points, 2000 to 9000 data points,
and 10000 data points are distributed in 4%, 45, and 4% sequence numbers, respectively,
because of limitation of block_capacity. These sequence numbers are linearly ordered by
the Hilbert curve of order 4, 5, and 6, respectively. Our ANHC strategy directly computes
eight sequence numbers of neighboring blocks next to one query block (). Therefore, the
I/O time and CPU time of our ANHC strategy are related with the number of sequence
numbers, instead of the data count. Because the order N4 of dataset A is smaller than or
equal to the one Np of dataset B, 8 x 4(VB=N4) peighboring blocks in dataset B are needed
to be found for the query block in dataset A. Based on the good clustering property of
the Hilbert curve, these 4(N8=N4) peighboring blocks in one of eight direction are linearly
ordered in the disk. Therefore, the I/O time can be reduced by accessing these blocks once.
Moreover, our strategy directly accesses these eight neighboring blocks next to the query
block () to compare the distance between data points. Once the nearest neighbor of the
query block @ is found in these eight neighboring blocks, our ANHC strategy stops finding
the other neighboring blocks which are larger than the size of these eight neighboring blocks.

27

1400 1400
—+ R*-Tree
1200 1200 | “@ ANHC
g 1000 £ 1000 |
s 8
] 3
& 800 2 800
E E
‘& 600 | 2 600
£ £
= =
o)
QO 400 a 400
= o
200 200
0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Data Count (points) Data Count (points)

(a) (b)
Figure 18: A comparison of Case C1: (a) I/O time; (b) CPU Time.

Figure 19 shows the result of Case C2. Our ANHC strategy needs less 1/O time and
CPU time than the strategy based on the R*-tree as the data count of dataset B increases,
as shown in Figures 19-(a) and (b). The reason is that the R*-trees with different height
are built for the increasing data count of dataset B. The tree heights to build R*-trees for
1000 points, 2000 to 5000 points, 6000 to 10000 points are 4, 5, and 6, respectively. The
performance of the same query count of dataset A is affected by the tree height of R*-tree.
It means that the increasing number of nodes in the R*-tree have to be compared and
accessed to obtain the actual nearest neighbor of one query point as the height increases.
Then, the I/O time and CPU time increase. On the other hand, the I/O time and CPU
time of our ANHC strategy are related with the number of the sequence numbers for the
neighboring blocks, instead of the data count. Although the order Np of dataset B is
smaller than or equal to the one N4 of dataset A, the number of neighboring blocks in
dataset B for the query block in the dataset A remains eight. Therefore, the 1/O time and
CPU time of our ANHC strategy increases a little, because the number of data points in
one block increases as the data count of dataset B increases.

Figure 20 shows the result of Case C3. Our ANHC strategy needs less I/O time and
CPU time than the one based on the R*-tree for different kinds of data distribution. The
reason is that the skew data distribution of dataset A, as shown in Figures 15-(b) to (e),

affects the height and the number of nodes in the R*-tree for dataset A. Although dateset

28

1400

1400
- R*-Tree

1200 |- ANHC 1200

1000 |- 1000 -

o]
=3
o

800

(o2}
o
o

600

1/0 Time (milliseconds)
CPU Time (milliseconds)

'S
o
o

400 -

200 Wl

0

n
o
o

o

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Data Count (points) Data Count (points)

(a) (b)
Figure 19: A comparison of Case C2: (a) I/O time; (b) CPU Time.

Measure —2ata Distribution | {765y Centralized Diagonal X-Parallel Sine

/O time R-tree 8732 9375 10795 8877 8240
ANHC 235 64 110 45 73

CPU time R-tree 2939 3216 3872 3222 2752
ANHC 64 48 48 44 46

Figure 20: A comparison of Case C3 (milliseconds)

B is uniformly distributed, as shown in Figure 15-(a), large number of nodes are needed
to be compared and accessed to obtain the actual nearest neighbor of one query point.
On the other hand, in our ANHC strategy, datasets A and B which have the same data
count are both distributed in blocks of 4% sequence numbers. These sequence numbers are
linearly order by the Hilbert curve of order 6. Our ANHC strategy can directly compute
and access eight neighboring blocks in dataset B next to the query block () in dataset A.
Figure 21 shows the result of Case C4. Our ANHC strategy needs less /O time and CPU
time than the strategy based on the R*-tree for the different data distribution. The reason
is the same as that for the result of case C3. In addition, our strategy directly accesses at
least one neighboring blocks in dataset B next to the query block @) in dataset A. Figure
22 shows the result of Cases C5 and C6. Our ANHC strategy needs less I/O time and CPU
time than the strategy based on the R*-tree for two real datasets. The reason is the same
as that for the result of cases C1 and C2.

Therefore, our ANHC strategy can directly compute and access eight neighboring blocks

29

Measure—Lata Distribution [{jp;form Centralized Diagonal X-Parallel Sine
0 tme|_Retree 8732 1358 6115 3852 3633
ANHC 235 668 422 707 579
R-tree 2939 291 2108 1453 1154

CPU i
Utime I SHC 64 291 82 118 168

Figure 21: A comparison of Case C4 (milliseconds)

Case

Measure C5 C6
O time | Retree 15063 9890
¢ [TANHC 4641 4547
. R-tree 10377 7064
CPUtime = NHc 3627 3668

Figure 22: A comparison of Cases C5 and C6 (milliseconds)

next to the query block, instead of unnecessary nodes accessing by the strategy based R*-
tree. No matter whether the data count or the data distribution is variable, our strategy
based on the Hilbert curve needs less I/O and CPU time than the strategy based on the
R*-tree.

5 Conclusion

In this paper, we have presented the ONHC strategy to answer the ONN query. We first
generated direction sequences to store the orientations of the query block in the Hilbert
curve of different orders. By using quaternary numbers and direction sequences of the
query block, we obtained the relative locations of the neighboring blocks and computed
their quaternary numbers. Finally, we can directly access the neighboring blocks by their
sequence numbers which is the transformation of the quaternary numbers from base four
to ten. The nearest neighbor can be obtained by comparisons in these blocks. Then, we
have presented the ANHC strategy to answer the all-nearest-neighbors query by using our
ONHC strategy. Finally, we have compared our ONHC strategy and ANHC strategy with
the CCSF strategy and the strategy based on R-tress, respectively. In the performance of
the response time (CPU time and I/O time), our ONHC strategy needs less time than the
CCSF strategy for the one-nearest neighbor query. Our ANHC strategy needs less time

than the strategy based on R-trees for the all-nearest neighbors query.

30

References

[1]

2]

7]

8]

J. M. Bahi and A. Mostefaoui, “Locational and Coverage for High Density Sensor
Networks,” Computer Communications, Vol. 31, No. 4, pp. 770-781, March 2008.

J. J. Bartholdi and P. Goldsman, “Vertex-Labeling Algorithms for the Hilbert Space-
filling Curve,” Software-Practice and Ezperience, Vol. 31, No. 5, pp. 395-408, Apirl
2001.

N. Beckmann, H. P. Kriegel, R. Schneider and B. Seeger, “The R*-tree: An Efficient
and Robust Access Method for Points and Rectangles,” Proc. of ACM SIGMOD Int.
Conf. on Management of Data, pp. 322—-331, 1990.

J. Castro, M. Georgiopoulos, R. Demara and A. Gonzalez, “Data-Partitioning Us-
ing the Hilbert Space Filling Curves: Effect on the Speed of Convergence of Fuzzy
ARTMAP for Large Database Problems,” Neural Networks, Vol. 18, No. 7, pp. 967—
984, Sept. 2005.

H. L. Chen and Y. I. Chang, “Neighbor Finding Based on Space Filling Curves,”
Information Systems, Vol. 30, No. 3, pp. 205-226, May 2005.

N. Chen, N. Wang and B. Shi, “A New Algorithm for Encoding and Decoding the
Hilbert Order,” Software-Practice and Fxperience, Vol. 37 No. 8, pp. 897-908, July
2007.

Y. Chen and J. M. Patel, “Efficient Evaluation of All-Nearest-Neighbor Queries,” Proc.
of the 23rd Int. Conf. on Data Eng., pp. 1056-1065, 2007.

K. L. Chung, Y. L. Huang and Y. W. Liu, “Efficient Algorithms for Coding Hilbert
Curve of Arbitrary-sized Image and Application to Window Query,” Information Sci-
ences, Vol. 177, No. 10, pp. 2130-2151, May 2007.

X. Deng, S. Reyner, X. Liu, Q. Zhang, Y. Yang and N. Li, “DHPC: A New Tool to
Express Genome Structural Features,” Genomics, Vol. 91, No. 5, pp. 476-483, May
2008.

31

[10]

[11]

[12]

[13]

[14]

[15]

18]

[19]

[20]

S. F. Frisken and R. N. Perry, “Simple and Efficient Traversal Methods for Quadtrees
and Octrees,” Journal of Graphics Tools, Vol. 7, No. 3, pp. 1-11, 2002.

D. Guo and M. Gahegan, “Spatial Ordering and Encoding for Geographic Data Mining
and Visualization,” Journal of Intelligent Information Systems, Vol. 27, No. 3, pp. 243—
266, Nov. 2006.

A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. of
ACM SIGMOD Int. Conf. on Management of Data, pp. 47-57, 1984.

H. V. Jagadish, “Linear Clustering of Objects with Multiple Attributes,” Proc. of
ACM SIGMOD Int. Conf. on Management of Data, Vol. 19, No. 2, pp. 332-342, 1990.

H. V. Jagadish, “Analysis of the Hilbert Curve for Representing Two-Dimensional
Space,” Information Processing Letters, Vol. 62, No. 1, pp. 17-22, April 1997.

N. Koudas, “Indexing Support for Sptial Joins,” Data and Knowledge Eng., Vol. 34,
No. 1, pp. 99-124, 2000.

J. K. Lawder and P. J. H. King, “Quering Multi-dimensional Data Indexed Using the
Hilbert Space-Filling Curve,” ACM SIGMOD Record, Vol. 30, No. 1, pp. 19-24, 2001.

J. Y. Liang, C. S. Chen, C. H. Huang and L. Liu, “Lossless Compression of Medical

Images Using Space-Filling Curves,”

Vol. 32, No. 3, pp. 174-182, April 2008.

Computerized Medical Imaging and Graphics,

S. Liao, M. A. Lopez, and S. T. Leutenegger, “High Dimensional Similarity Search
with Space-Filling Curves,” Proc. of Int. Conf. on Data Eng., pp. 615622, 2001.

X. Liu and G. Schrack, “Encoding and Decoding the Hilbert Order,” Software-Practice
and Ezperience, Vol. 26, No. 12, pp. 1335-1346, Dec. 1996.

M. F. Mokbel, W. G. Aref and I. Kamel, “Analysis of Multi-Dimensional Space-Filling
Curves,” Geoinformatica, Vol. 7, No. 3, pp. 179-209, Sept. 2003.

32

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

B. Moon, H. V. Jagadish, C. Faloutsos and J. H. Saltz, “Analysis of the Clustering
Properties of the Hilbert Space-Filling Curve,” IEEE Trans. on Knowledge and Data
FEng., Vol. 13, No. 1, pp. 124-141, Jan./Feb. 2001.

A. Papadopoulos and Y. Manolopoulos, “Performance of Nearest Neighbor Queries in

R-Trees,” Proc. of the 6th Int. Conf. on Database Theory, pp. 394—408, 1997.

N. Roussopoulos, S. Kelley and F. Vincent, “Nearest Neighbor Queries,” Proc. of ACM
SIGMOD Int. Conf. on Management of Data, pp. 71-79, 1995.

H. Samet, “Object-based and Image-based Object Representations,” ACM Computing
Surveys, Vol. 36, No. 2, pp. 159-217, June 2004.

B. Seeger and H. P. Kriegel, “The Buddy-Tree: An Efficient and Robust Access Men-
thod for Spatial Data Base Systems,” Proc. of the 16th Conf. on VLDB, pp. 590-601,
1990.

B. Seeger, P. A. Larson, and R. McFadyen, “Reading a Set of Disk Pages,” Proc. of
the 19th Conf. on VLDB, pp. 592-603, 1993.

J. Voros, “A Strategy for Repetitive Neighbor Finding in Images Represented by
Quadtrees,” Pattern Recognition Letters, Vol. 18, No. 10, pp. 955-962, Oct. 1997.

R. C. W. Wong, Y. Tao, A. Fu, and X. Xiao, “On Efficient Spatial Matching,” Proc.
of the 33rd Int. Conf. On VLDB, pp. 579-590, 2007.

M. L. Yiu, Y. Tao and N. Mamoulis, “The Bdual-Tree: Indexing Moving Objects by
Space Filling Curves in the Dual Space,” The VLDB Journal, Vol. 17, No. 3, pp. 379—
400, May 2008.

J. Zhang, M. Zhu, D. Papadias, Y. Tao and D. L. Lee, “Location-based Spatial
Queries,” Proc. of ACM SIGMOD Int. Conf. on Management of Data, pp. 443-454,
2003.

33

[31] J. Zhang, N. Mamoulis, D. Papadias and Y. Tao, “All-Nearest-Neighbors Queries in
Spatial Databases,” Proc. of the 16th Int. Conf. on Scientific and Statistical Database
Management, pp. 297-306, 2004.

34

