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Abstract

In the problem ok-mutual exclusion, concurrent access to shared resource or the critical section (CS) must be synchronized
such that at any time at mogt processes can access the CS. In this paper, we propagmeralized grid quorum
strategy fork-mutual exclusion, which imposes a logical grid structure on the network. The quorum size is always equal to
[((M+1)/(k+ 1] x [(N+1)/2], whereM is the number of rows and/ is the number of columns in a grid. From our
performance study, we show that the generalized grid quorum strategy can provide a good performance in terms of the quorum
size and the availabilityl 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction the k-mutual exclusion problem arises in several in-
teresting applications. For example, it could be used
A distributed system consists of a collection of geo- to monitor the number of processes in distributed sys-
graphically dispersed autonomous nodes connected bytems that are allowed to perform a certain action, such
a communication network. The nodes have no sharedas issuing broadcast messages. In such a case, the sys-
memory, no global clock, and communicated with one tem may restrict the number of broadcasting processes
another by passing messages. Message propagatioso as to control the level of congestion. Another ap-
delay is finite but unpredictable. plication is in the context of replicated databases that
The mutual exclusion problem was originally con- allow bounded ignorancg3]; i.e., transactions may
sidered in centralized systems for the synchronization specify that they do not need to be aware ofkimeost
of exclusive access to the shared resource. In the prob-recent updates to the database.
lem of k-mutual exclusion, concurrentaccess to shared To make distributed-mutual exclusion protocols
resource or the critical section (CS) must be synchro- fault-tolerant to node and communication failures,
nized such that at any time, at mdsprocesses can  many protocols based on the replica control strategies,
access the CS, wherde> 1. In distributed systems, for examplegcoterig have been proposed. In [6], they
extended themajority quorumstrategy tok-majority
* Corresponding author. quorumstrategy; any permission frorf(total 4+ 1)/
E-mail addresschangyi@cse.nsysu.edu.tw (Y.-l. Chang). (k +1)7] (= W) nodes would form a quorum for
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k-mutual exclusion, whetotal is the number of nodes  Definition 1. A k-coterie C is a family of non-
in the system, and the following conditions must be empty subsets of an underlying s&t which is a

satisfied:k x W < total and(k + 1) x W > total [8]. set containing all system nodes2....,total. Each
In [5], they proposed &ohort quorumfor k-mutual memberQ in C is called a quorum, and the following
exclusion based on a&ohort structure Coh(k, (), properties should hold for the quorums [6]:
which has! pairwise disjoint cohorts with the first (1) The non-intersection propertyror any h(< k)
cohort havinge members and the others having more pairwise disjoint quorumgs, ..., Qj, in C, there
than (2k — 2) members. This strategy may arrange exists one quorun®@y1 in C such thatQy, ...,
nodes according to their up-probabilities, which suits Qn+1 are pairwise disjoint.
the heterogeneous system that has nodes of different(2) The intersection propertyThere are na:, m > k,
up-probabilities. In [1], they partitiortotal nodes pairwise disjoint quorums i€ (i.e., there are at
into k classes with each class using any traditional ~ MOStk pairwise disjoint quorums ig’).
approach to enforce 1-mutual exclusion. When the (3) The minimality propertyThere are no two quo-
traditional approach is the majority quorum strategy, rums Q; and Q; in C such thatQ; is a super set
the constructed quorums will be callBaV of majority of 0 wherei # ;.
quorums.

To reduce the overhead of achievingmutual By the non-intersection property, if there exists one

exclusion while supporting fault tolerance, in this Unoccupied entry of the critical section, then some
paper, we propose a strategy callgeheralized grid node that Waits for ent_ering the critical section can
quorum for k-mutual exclusion, which imposes a proceed. The intersection property assures that no
logical grid structure [2] on the network. The quorum More thark nodes can form quorums simultaneously,
size constructed from this strategy is always equal to S0 no more thak nodes can access the critical section

[(M + 1)/(k + 1)] x [(N + 1)/2] where M is the at the same time. Again, the minimality property for
number of rows andV is the number of columns in  hek-coterie is for the enhancement of efficiency. For

a grid (i.e.,total = M x N). From our performance example, {{1,2}, {3,4}, {1, 3}, {2.4}} is a 2-coterie

study, we show that the generalized grid quorum underl/ ={1,2,3, 4}.
strategy can provide a good performance in terms of
the quorum size and the availability.

The rest of the paper is organized as follows.
Section 2 describes the background in this paper. In
Section 3, we present the generalized grid quorums. In
Section 4, we make a comparison of the generalized
grid quorum strategy with thie-majority, cohorts, and
DIV strategies. Finally, Section 5 gives a conclusion.

3. Generalized grid quorums

In this section, we presentgeneralized grid quo-
rum for k-mutual exclusion based ongaid M x N
structure imposed in the system. Between rows, we
apply thek-majority strategy, and inside each row, we
apply the majority strategy.

3.1. Definition
2. Background In this section, we give the definition of the gener-
alized grid quorums.

A distributed system is a collection of nodes that

may communicate with each other by exchanging Definition 2 (A generalized grid quorun The gen-
messages.k-mutual exclusion strategies concern eralized grid quorum strategy logically organizes the
themselves with controlling the nodes such that at nodes in a system as @f x N (= total) grid struc-
mostk nodes can simultaneously access their critical ture, whereM andN denote the number of nodes in a
sections. Such strategies can be used to coordinate theow and column, respectivelyy > k andN > 1. We
sharing of a resource that can be allocated to no morenumber the rows and columns of the grid structure as
thank nodes at a time [1,5,6,8]. 0,12,.....\M—Dand12,...,N,respectively. For
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Fig. 1. A 4x 3 grid for 2-mutual exclusion witkotal = 12.

the nodesin eachromw;, 0<i < (M —1), letR; be
any one of the majority quorums for 1-mutual exclu-
sion. A generalized grid quorum (for k-mutual ex-
clusion) contains any(M + 1)/(k + 1) (= W) quo-
rums fromRg, Ry, ..., andRy_1, wherek x W < M
and(k+1) x W > M.

Examplel. Fora4x 3 grid as shown in Fig. 1, the set
R of generalized grid quorums for 2-mutual exclusion
is as follows:

R = {{1, 2,4,5},{1,2,4,6},{1,2,5,6},{1,2,7, 8},
{1,2,7,9},{1,2,8,9}, {1, 2,10,11}, {1, 2, 10, 12},
{1,2,11,12},{1,3,4,5}, {1, 3,4,6}, {1, 3,5, 6},
{1,3,7,8},{1,3,7,9}, {1, 3,8,9}, {1, 3,10, 11},
{1,3,10,12},{1,3,11,12}, {2,3,4,5},{2, 3,4, 6},
{2,3,5,6},{2,3,7,8},{2,3,7,9},{2,3,8,9},
{2,3,10,11}, {2, 3,10,12},{2,3,11,12}, {4,5,7, 8},
{4,5,7,9},{4,5,8,9},{4,5,10, 11}, {4, 5, 10, 12},
{4,5,11,12},{4,6,7,8},{4,6,7,9}, {4,6, 8, 9},
{4,6,10, 11}, {4,6,10,12}, {4,6,11, 12}, {5,6,7, 8},
{5,6,7,9},1{5,6,8,9}, {5, 6,10, 11},
{5,6,10,12}, {5,6,11,12}, {7,8,10, 11},
{7,8,10,12},{7,8,11,12},{7,9, 10, 11},
{7,9,10,12},{7,9,11,12}, {8,9,10, 11},
{8.9.10,12},{8,9,11,12}}.

Totally, R contains 54= 632, where 6= C (4, [(4+

1)/2+D1),3=C3E, [(3+1D)/21),2=[(4+1)/(2+
1)] and
JX(=-Dx---x(—i+1

CU. = Ix2x---X%1i )
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guorums. Note that, in this example, evé@ycontains
any two nodes in rowi, 0 < i < 3; a generalized
grid quorum contains any(4 + 1)/(2+ 1)1 =2
(= W) quorums fromRg, R1, R2 and R3. Moreover,
it satisfies the conditiong x W =2x 2<4 (= M)
andk+1) x W=3x2=6>4(=M).

3.2. Correctness

In this section, we prove that the set of the gen-
eralized grid quorums fok-mutual exclusion is &-
coterie. Here, we will refer to suchacoterie as the
generalized grid coterie.

Lemma 1. The set of thek-majority quorums is a
k-coterie [6,8].

Lemma 2. The set of the majority quorums is a
1-coterie[6].

Lemma 3. Let U1 and Uz be two nonempty sets of
nodes such that/y N U =@, andx € U1. LetU =
(U1 — x) U Ua. The coterie join operatiom, [7] is
defined as

Z=X®,Y={CT:«(X,Y)|XeX, YeY},

where X is a k-coterie underUs, Y is a 1-coterie
underU», and

(X —{xhuy
CT,(X,Y)=
X otherwise

if x € X,

Then,Z is ak-coterie undet [4].

Theorem 1. The set of the generalized grid quorums
for k-mutual exclusion is &-coterie.

Proof. Let row; be the set of nodes in row and
R; be any one of the majority quorums undew;,
0<i < (M —1). (Forthe example shown in Fig. Ry
can be{1, 2}, or {1, 3}, or {2, 3}.) A generalized grid
quorum@ contains any[(M + 1)/(k + 1)1 quorums
from Ro, R1, ..., Ry—1. LetU1 ={go, g1, ..., gm—1}
and Ui nrow; =@, 0<i < (M —1). (Note that
here, we consider the wholew; as a new element
gi, for example,go = {1, 2, 3} in Fig. 1; therefore,
{go} Nrowg = {{1,2,3}}N{1,2,3} =9.) Let X be the
set of thek-majority quorums undet/1, the quorum
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size of X is [(M + 1)/(k + 1)]. (For the example
shown in Fig. 1{go, g1} is one of the elements ik for
k = 2.) Moreover, letr = go € Uz, Uz = rowp, andY
be the set of the majority quorums undewg. (For the
example shown in Fig. Iy = {{1, 2}, {1, 3}, {2, 3}}.)
Based on Lemma 3, we have thatis a k-coterie
underU = (Uy — {go}) U rowp, sinceX is ak-coterie
based on Lemma 1, and is a 1-coterie based on
Lemma 2. (For the example shown in Fig.Zjs a 2-
coterie undel/ = {go, g1, g2, g3} — {go} U {1, 2,3} =
{1,2,3, g1, g2, g3}, and one of the elements i@
is {go, g1} — {80} U {1,2} = {1,2 g1}.) Therefore,
Y(Qy € X underU; and go € Q,), we have a new
quorum(Ro U (Qx — {go})) € Z under(U1 — {go}) U
rowp. Thatis, a quorum itx under(U1 — {go}) Urowp,
contains any[(M + 1)/(k + 1)] subsets fromRg,
g1, ...,andgy—1. Inthe same way, we can replalie
with everyrow;, where 1< i < (M — 1). Therefore,
a quorum inZ underrowg U rowy U --- U oWy _1
(=((U1—{g0,81,---,gm-1) UrowgUrowy U - - - U
rowy—1)), contains any[(M + 1)/(k + 1)] subsets
from R, R1, ..., andRy 1. Consequently, the set of
generalized grid quorums fd-mutual exclusion is a
k-coterie. O

Note that from this proof, we can show that, in fact,

the proposed strategy can be considered as a speci

case of a hybrid strategy based on thmajority and
the majority strategies. That is, for a system with
M x N nodes, we first divide them intdf sets with
each selv nodes. Inside each sedf M sets, we apply
the majority quorums strategy for 1-mutual exclusion
for those N nodes, which results iR;, where 0<

i < (M —1). Between thos@/ sets, we apply thé-
majority strategy.

3.3. Availability of the generalized grid quorums

In this section, we first analyze the availability of the
majority quorums for 1-mutual exclusion [6] and then
the generalized grid quorums férmutual exclusion.
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simultaneously, and (j, i) = £XU=1DxxU=i4D pype.

Ix2x---xi

tion AVM(;j) has the following condition:

J

2

i=[(j+1)/2]

Next, for the availability of the generalized grid
guorum strategy, letk, [)-availability, 1</ < k, be
the probability that pairwise disjoint quorums of a
k-coterie can be formed successfully; it is used as
a measure for the fault-tolerant ability of a solution
using ak-coterie.

Let AVG(]) be the function evaluating the probabil-
ity that/ pairwise disjoint quorums under grid can be
formed simultaneously. The functiodvG(/) has the
following two boundary conditions:

AVM(j) = C(j,i)yx p' x (1—p)/~".

J

A= > CGixp'x@-p)T. (1)
i=[(j+1)/2]
M .
AVE]) = > C(M, i) x AVM(N)!
i=Ix[(M+1)/(k+1)]
x (L= AVYM(V)Y L (2)

al

4. A comparison

In this section, we make a comparison of the gener-
alized grid quorumi-majority, cohorts, and DIV quo-
rum strategies in terms of the quorum size and the
availability, where we assume that the system has a
fully connected network topology and no communi-
cation failure will occur. However, a node failure can
occur. (Note that, here, we assume that a failed node
simply stops execution (i.e., a fail-stop system). That
is, no Byzantine failure occurs.)

The number of messages required to construct
a quorum is proportional to the quorum size. The
quorum size of the generalized grid quorum strategy is
equalto[(M + 1)/(k +1)] x [(N + 1)/2], whereM

Here, we assume that all the nodes have the same upis the number of row and’ is the number of columns

probability p, which is the probability that a single
node is up operational.

For the availability of the majority strategy, let
AVM(j) be the function evaluating the probability that
the majority quorums can be formed with nodes

in a grid. Note that, in the generalized grid quorum
strategyiotal nodes are divided intd/ rows. Between
rows, we apply thé-majority strategy, and inside each
row, we apply the majority strategy. Therefore, in each
row, the quorum size is equal {oN + 1)/2], and the
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Table 1
A comparison of the quorum size:= 4
Case total DIV k-majority G-Grid Cohorts
(=M xN) [k qtoabdy Ay N (otal= Y |Gy
1 81 11 17 10(*) 12(**)
(=9%x9) (=4+47x11)
2 95 13 20 12(%) 14(*)
(=19x 5) (=44+7x13
3 99 13 20(*%) 12(%) 14
(=9x 11 (=4+7x9+8x4)
4 154 20 31(% 18(%) 22
(=14 x 11 (=4+7x18+8x3)
5 132 17(%) 27 17(%) 19
(=4 x 33 (=44+7x16+8x2)
6 252 32(%) 51 32(%) 37(*%)
(=4 x 63 (=4+7x 36
7 44 6(*) 9(*) 6(*) 6
(=4x 11) (=4+8x5)
8 84 11(%) 17(*) 11(*) 12
(=4x2D (=4+7x8+8x3)
5A 132 17(%) 27 18(%) 19
(=44x3)
6A 252 32(%) 51 34(%) 37(*%)
(=84x3)
1A 81 11 17 12 12(*)
(=27x3)
3A 99 13 20(*) 14 14
(=33x%x3)
5B 132 17(%) 27 18 20
(=12x 11)

(*) the case of x/y] =x/y.
(**) the case ofl = (total — k)/(2k — 1) + 1.

guorum size of the generalized grid quorum strategy is size of the DIV strategy is equal {@total+ k) /2k7 [1].

equaltof(M +1)/(k+1)] x [(N +1)/2].

For example, when there are2 3,4, 5, 6 nodes in

The quorum size of thek-majority strategy is the system and we divided nodes into two classes,
equal to [(total + 1)/(k + 1)] [6,8]. For example, (1,2,3) and (4,5, 6), the setR of DIV of major-
when there are ,R, 3,4 nodes in the system, the ity quorums for 2-mutual exclusion is as follows:
set R of 2-majority quorums is as followsR =
{{1,2},{1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}. The quorum hort structureCoh(k, ) has! pairwise disjoint co-

R =1{1,2},{1,3},{2, 3}, {4,5}, {4, 6}, {5,6}}. A co-
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Table 2
A comparison of the quorum size= 3
Case total DIV k-majority G-Grid Cohorts
(=M xN) gk ol My N gotal= Y 16D

1 133 23 34 20(*%) 27(*%)
(=19x7) (=3+5x26)
(=7x19

2 203 35 51 30(*%) 41(**)
(=7x%29) (=3+5x 40

3 35 7 9(*) 6(*) 7
(=7x5) (=34+5x4+6x2)

4 143 25 36(*) 21(%) 29(**)

(=11x 13 (=3+5x28

5 63 11(%) 16(*) 10(*) 13(*)

6 45 8(*) 12 8(*) 9
(=3x15 (=3+5x6+6x2)
(=15x% 3)

7 93 16(%) 24 16(*) 19(*)
(=3x3) (=3+5x18
(=31x3)

8 15 3(*) 4(*) 3(%) 3
(=3x5) (=34+6x2)

9 123 21(%) 31(%) 21(%) 25(**)
(=3x41 (=3+5x29

5A 63 11(%) 16(*) 12 13(*)
(=9x%7)

6A 45 8(*) 12 9 9

(=9x5)

(*) the case offx/y] =x/y.
(**) the case ofl = (total — k)/(2k — 1) + 1.

horts with the first cohort having members and the  {3,5}, 03 ={4,5}, Q4 =1{1,3}, 05 ={1,4}, Qs =
other cohorts having more tha@k — 2) members. {1,5}, 07=1{2,3}, Qg =1{2,4},andQg = {2, 5} [5].

The quorum size of the cohorts strategy varies from 2 Since the quorum size of the cohorts strategy is
(whenk = 1) ork (whenk > 1)tol = —k)/s + 1, variable depending on the given cohort structure, in
for a cohort structur€Coh(k,l) = (k,s,...,s), I > this comparison, we consider the cohort structure as
s [5]. In fact, the upper bound of the quorum size of (1) (k,2k—1,...,2k—1), when (otal— k) mod(2k —

the cohorts strategy depends on the structure of co-1) =0, 0r (2)(k,2k—1,...,2k—1, 2%, ..., 2k), when
horts. For example, the following sets are quorums un- (total — k) mod (2k — 1) # 0. In this case, the range
derCoh(2,2) = ({1, 2},{3,4,5}): 01 ={3,4}, Q2 = of the quorum size of the cohort coterie 1Goh(k, I)
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changes front (= (2k — 1) — (k — 1)) tol. Tables 1

Table 3
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and 2 show a comparison of quorum size of those A comparison of the availabilitytotal = 4 x 33=132,k = 4

strategies fork = 4 and 3, respectively, where the
generalized grid quorum strategy is denoted as G-
Grid. Note that the case marked with (*) in the DIV,
k-majority and G-Grid strategies meahs/y] = x/y,
i.e.,x mody = 0. While the mark (**) attached with

[ in the cohorts strategy denotes the casétatal —

k) mod(2k — 1) =0.

In Table 1, wherk = 4, for cases 1-4, the quorum
size of the G-Grid strategy is smaller than that of
the DIV andk-majority strategies. For cases 5-8, the
guorum size of the G-Grid strategy is the same as that
of the DIV strategy, and is smaller than that of the
majority strategy. For cases 1-8, the quorum size of
the G-Grid strategy is smaller than or equal to the level
(=1) of the cohorts strategy. For the other cases (5A,
6A, 1A, 3A and 5B), the quorum size of the G-Grid
strategy is larger than that of the DIV strategy, smaller
than that of thét-majority strategy, and is smaller than
or equal to the level=[) of the cohorts strategy. Note
that for cases 5 and 5A, both satisfy(y] =x/y) in
the G-Grid strategy, but they provide different quorum
size.

Similarly, in Table 2, wherk = 3, for cases 1-5,

l

p

The availability

1

N

N

0<p<0.55
0.55< p<0.65
065<p<1

0<p<03
03<p<05
05<p<07

07<p<1

O0<p<04
0.4 < p<0.65
0.65< p<0.7

07<p<1

0<p<02
02<p<03
03<p<07

0.7<p<1

k-majority > cohorts> G-Grid= DIV
k-majority > G-Grid= DIV > cohorts
G-Grid= k-majority = DIV > cohorts

cohorts> k-majority > G-Grid = DIV
k-majority > cohorts> G-Grid= DIV
k-majority > G-Grid= DIV > cohorts
G-Grid= DIV = k-majority > cohort

cohort> G-Grid= DIV > k-majority

G-Grid= DIV > cohorts> k-majority
G-Grid= DIV > k-majority > cohorts
G-Grid= DIV = k-majority > cohorts

k-majority > cohorts> G-Grid= DIV

cohorts> G-Grid= DIV > k-majority
G-Grid= DIV > cohorts> k-majority
G-Grid= DIV = k-majority > cohorts

Table 4

the quorum size of the G-Grid strategy is smaller than A comparison of the availabilitytotal = 19 x 7= 133,k = 3

that of the DIV andc-majority strategies. For cases 6—
9, the quorum size of the G-Grid strategy is the same
as that of the DIV strategy, and is smaller than that of
thek-majority strategy. For cases 1-9, the quorum size
of the G-Grid strategy is smaller than or equal to the
level (=) of the cohorts strategy. For the other cases
(5A and 6A), the quorum size of the G-Grid strategy
is larger than that of the DIV strategy, smaller than
that of thek-majority strategy, and is smaller than or
equal to the leve(=1) of the cohorts strategy. Note
that for case 5, both the G-Grid and DIV strategies
satisfy (x/y] = x/y), but the quorum size of the G-
Grid strategy is smaller than that of the DIV strategy.
In summary, for the DIV and G-Grid strategies, the
guorum size of the G-Grid strategy can be smaller than
(case 5 fok = 3), equal to (case 5 fdr=4) or larger
than that of the DIV strategy (case 5A fér= 4).
For thek-majority and G-Grid strategies, the quorum
size of the G-Grid strategy is smaller than (case 3 for
k = 4) that of thek-majority strategy. Moreover, when
some node failures occur, the quorum size of the G-
Grid, DIV andk-majority strategies are still fixed, and

l

p

The availability

2

0<p<0.2

02<p<04
04<p<05
05<p<06
0.6 < p<0.65
065<p<1

0<p<045
045<p<05
05<p <055
055< p<07
07<p<1

O0<p<04
04<p<05
05<p<07
0.7<p<08

08<p<1

cohorts> k-majority > G-Grid > DIV
k-majority > cohorts> G-Grid > DIV
k-majority > G-Grid > cohorts> DIV
k-majority > G-Grid > DIV > cohorts
G-Grid= k-majority > DIV > cohorts
G-Grid= k-majority = DIV > cohorts

cohorts> G-Grid > DIV > k-majority
G-Grid= DIV > cohorts> k-majority
DIV > k-majority > G-Grid > cohorts
k-majority > DIV > G-Grid > cohorts
G-Grid= DIV = k-majority > cohorts

cohorts> DIV > G-Grid > k-majority
DIV > cohorts> G-Grid > k-majority
DIV > G-Grid > cohorts> k-majority
DIV > G-Grid > k-majority > cohorts
G-Grid> DIV > k-majority > cohorts
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these three strategies can be always fault-tolerant uprow, we have applied the majority strategy. Therefore,

to (total — kx (the number of a quorum size)) node the proposed strategy can be considered as a hybrid

failures. While in the cohorts strategy, the quorum size approach which contains themajority and the ma-

can be increased as the number of failure nodes isjority strategies. From our performance study, we have

increased. shown that the generalized grid quorum strategy can
Tables 3 and 4 show a comparison of the availabil- provide a good performance in terms of the quorum

ity. From this table, we show that the availability of the size and the availability. How to extend the general-

G-Grid strategy can be better than (or equal to) that of ized grid quorum strategy to tolerate even more node

other strategies whemnear 1 (i.e., low probability of ~ failures is the future research direction.

node failures). From our several more simulation re-

sults, we observe that for a givéotal, (1) when the

quorum size of strategy is smaller than that of strat-  References

egy B (# A), it does not imply that the availability of
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