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Abstract

In the problem ofk-mutual exclusion, concurrent access to shared resource or the critical section (CS) must be synchronized
such that at any time at mostk processes can access the CS. In this paper, we propose ageneralized grid quorum
strategy fork-mutual exclusion, which imposes a logical grid structure on the network. The quorum size is always equal to
�(M + 1)/(k + 1)� × �(N + 1)/2�, whereM is the number of rows andN is the number of columns in a grid. From our
performance study, we show that the generalized grid quorum strategy can provide a good performance in terms of the quorum
size and the availability. 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A distributed system consists of a collection of geo-
graphically dispersed autonomous nodes connected by
a communication network. The nodes have no shared
memory, no global clock, and communicated with one
another by passing messages. Message propagation
delay is finite but unpredictable.

The mutual exclusion problem was originally con-
sidered in centralized systems for the synchronization
of exclusive access to the shared resource. In the prob-
lem ofk-mutual exclusion, concurrent access to shared
resource or the critical section (CS) must be synchro-
nized such that at any time, at mostk processes can
access the CS, wherek � 1. In distributed systems,
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the k-mutual exclusion problem arises in several in-
teresting applications. For example, it could be used
to monitor the number of processes in distributed sys-
tems that are allowed to perform a certain action, such
as issuing broadcast messages. In such a case, the sys-
tem may restrict the number of broadcasting processes
so as to control the level of congestion. Another ap-
plication is in the context of replicated databases that
allow bounded ignorance[3]; i.e., transactions may
specify that they do not need to be aware of thek most
recent updates to the database.

To make distributedk-mutual exclusion protocols
fault-tolerant to node and communication failures,
many protocols based on the replica control strategies,
for example,coterie, have been proposed. In [6], they
extended themajority quorumstrategy tok-majority
quorumstrategy; any permission from�(total + 1)/

(k + 1)� (= W) nodes would form a quorum for
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k-mutual exclusion, whentotal is the number of nodes
in the system, and the following conditions must be
satisfied:k × W � total and(k + 1) × W > total [8].
In [5], they proposed acohort quorumfor k-mutual
exclusion based on acohort structure, Coh(k, l),
which hasl pairwise disjoint cohorts with the first
cohort havingk members and the others having more
than (2k − 2) members. This strategy may arrange
nodes according to their up-probabilities, which suits
the heterogeneous system that has nodes of different
up-probabilities. In [1], they partitiontotal nodes
into k classes with each class using any traditional
approach to enforce 1-mutual exclusion. When the
traditional approach is the majority quorum strategy,
the constructed quorums will be calledDIV of majority
quorums.

To reduce the overhead of achievingk-mutual
exclusion while supporting fault tolerance, in this
paper, we propose a strategy calledgeneralized grid
quorum for k-mutual exclusion, which imposes a
logical grid structure [2] on the network. The quorum
size constructed from this strategy is always equal to
�(M + 1)/(k + 1)� × �(N + 1)/2� whereM is the
number of rows andN is the number of columns in
a grid (i.e.,total = M × N ). From our performance
study, we show that the generalized grid quorum
strategy can provide a good performance in terms of
the quorum size and the availability.

The rest of the paper is organized as follows.
Section 2 describes the background in this paper. In
Section 3, we present the generalized grid quorums. In
Section 4, we make a comparison of the generalized
grid quorum strategy with thek-majority, cohorts, and
DIV strategies. Finally, Section 5 gives a conclusion.

2. Background

A distributed system is a collection of nodes that
may communicate with each other by exchanging
messages.k-mutual exclusion strategies concern
themselves with controlling the nodes such that at
mostk nodes can simultaneously access their critical
sections. Such strategies can be used to coordinate the
sharing of a resource that can be allocated to no more
thank nodes at a time [1,5,6,8].

Definition 1. A k-coterie C is a family of non-
empty subsets of an underlying setU , which is a
set containing all system nodes 1,2, . . . , total. Each
memberQ in C is called a quorum, and the following
properties should hold for the quorums [6]:
(1) The non-intersection property. For any h(< k)

pairwise disjoint quorumsQ1, . . . ,Qh in C, there
exists one quorumQh+1 in C such thatQ1, . . . ,

Qh+1 are pairwise disjoint.
(2) The intersection property. There are nom, m > k,

pairwise disjoint quorums inC (i.e., there are at
mostk pairwise disjoint quorums inC).

(3) The minimality property. There are no two quo-
rumsQi andQj in C such thatQi is a super set
of Qj wherei �= j .

By the non-intersection property, if there exists one
unoccupied entry of the critical section, then some
node that waits for entering the critical section can
proceed. The intersection property assures that no
more thank nodes can form quorums simultaneously,
so no more thank nodes can access the critical section
at the same time. Again, the minimality property for
thek-coterie is for the enhancement of efficiency. For
example, {{1,2}, {3,4}, {1,3}, {2,4}} is a 2-coterie
underU = {1,2,3,4}.

3. Generalized grid quorums

In this section, we present ageneralized grid quo-
rum for k-mutual exclusion based on agrid M × N

structure imposed in the system. Between rows, we
apply thek-majority strategy, and inside each row, we
apply the majority strategy.

3.1. Definition

In this section, we give the definition of the gener-
alized grid quorums.

Definition 2 (A generalized grid quorum). The gen-
eralized grid quorum strategy logically organizes the
nodes in a system as anM × N (= total) grid struc-
ture, whereM andN denote the number of nodes in a
row and column, respectively,M � k andN � 1. We
number the rows and columns of the grid structure as
0,1,2, . . . , (M − 1) and 1,2, . . . ,N , respectively. For
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Fig. 1. A 4× 3 grid for 2-mutual exclusion withtotal = 12.

the nodes in each rowrowi , 0� i � (M −1), letRi be
any one of the majority quorums for 1-mutual exclu-
sion. A generalized grid quorumQ (for k-mutual ex-
clusion) contains any�(M + 1)/(k + 1)� (= W) quo-
rums fromR0,R1, . . . , andRM−1, wherek × W � M

and(k + 1) × W > M.

Example 1. For a 4×3 grid as shown in Fig. 1, the set
R of generalized grid quorums for 2-mutual exclusion
is as follows:

R = {{1,2,4,5}, {1,2,4,6}, {1,2,5,6}, {1,2,7,8},
{1,2,7,9}, {1,2,8,9}, {1,2,10,11}, {1,2,10,12},
{1,2,11,12}, {1,3,4,5}, {1,3,4,6}, {1,3,5,6},
{1,3,7,8}, {1,3,7,9}, {1,3,8,9}, {1,3,10,11},
{1,3,10,12}, {1,3,11,12}, {2,3,4,5}, {2,3,4,6},
{2,3,5,6}, {2,3,7,8}, {2,3,7,9}, {2,3,8,9},
{2,3,10,11}, {2,3,10,12}, {2,3,11,12}, {4,5,7,8},
{4,5,7,9}, {4,5,8,9}, {4,5,10,11}, {4,5,10,12},
{4,5,11,12}, {4,6,7,8}, {4,6,7,9}, {4,6,8,9},
{4,6,10,11}, {4,6,10,12}, {4,6,11,12}, {5,6,7,8},
{5,6,7,9}, {5,6,8,9}, {5,6,10,11},
{5,6,10,12}, {5,6,11,12}, {7,8,10,11},
{7,8,10,12}, {7,8,11,12}, {7,9,10,11},
{7,9,10,12}, {7,9,11,12}, {8,9,10,11},
{8,9,10,12}, {8,9,11,12}}.

Totally,R contains 54(= 6∗32, where 6= C(4, �(4+
1)/(2+1)�), 3= C(3, �(3+1)/2�), 2= �(4+1)/(2+
1)� and

C(j, i) = j × (j − 1) × · · · × (j − i + 1)

1× 2× · · · × i
)

quorums. Note that, in this example, everyRi contains
any two nodes in rowi, 0 � i � 3; a generalized
grid quorum contains any�(4 + 1)/(2 + 1)� = 2
(= W ) quorums fromR0,R1,R2 andR3. Moreover,
it satisfies the conditions:k × W = 2 × 2 � 4 (= M)
and(k + 1) × W = 3× 2 = 6> 4 (= M).

3.2. Correctness

In this section, we prove that the set of the gen-
eralized grid quorums fork-mutual exclusion is ak-
coterie. Here, we will refer to such ak-coterie as the
generalized grid coterie.

Lemma 1. The set of thek-majority quorums is a
k-coterie [6,8].

Lemma 2. The set of the majority quorums is a
1-coterie[6].

Lemma 3. Let U1 and U2 be two nonempty sets of
nodes such thatU1 ∩ U2 = ∅, and x ∈ U1. Let U =
(U1 − x) ∪ U2. The coterie join operation⊗x [7] is
defined as

Z = X ⊗x Y = {
CTx(X,Y ) | X ∈ X, Y ∈ Y

}
,

where X is a k-coterie underU1, Y is a 1-coterie
underU2, and

CTx(X,Y ) =



(X − {x}) ∪ Y if x ∈ X,

X otherwise.

Then,Z is a k-coterie underU [4].

Theorem 1. The set of the generalized grid quorums
for k-mutual exclusion is ak-coterie.

Proof. Let rowi be the set of nodes in rowi and
Ri be any one of the majority quorums underrowi ,
0� i � (M −1). (For the example shown in Fig. 1,R0
can be{1,2}, or {1,3}, or {2,3}.) A generalized grid
quorumQ contains any�(M + 1)/(k + 1)� quorums
from R0,R1, . . . ,RM−1. Let U1 = {g0, g1, . . . , gM−1}
and U1 ∩ rowi = ∅, 0 � i � (M − 1). (Note that
here, we consider the wholerowi as a new element
gi , for example,g0 = {1,2,3} in Fig. 1; therefore,
{g0} ∩ row0 = {{1,2,3}} ∩ {1,2,3} = ∅.) Let X be the
set of thek-majority quorums underU1, the quorum
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size of X is �(M + 1)/(k + 1)�. (For the example
shown in Fig. 1,{g0, g1} is one of the elements inX for
k = 2.) Moreover, letx = g0 ∈ U1, U2 = row0, andY

be the set of the majority quorums underrow0. (For the
example shown in Fig. 1,Y = {{1,2}, {1,3}, {2,3}}.)

Based on Lemma 3, we have thatZ is a k-coterie
underU = (U1 − {g0}) ∪ row0, sinceX is ak-coterie
based on Lemma 1, andY is a 1-coterie based on
Lemma 2. (For the example shown in Fig. 1,Z is a 2-
coterie underU = {g0, g1, g2, g3} − {g0} ∪ {1,2,3} =
{1,2,3, g1, g2, g3}, and one of the elements inZ
is {g0, g1} − {g0} ∪ {1,2} = {1,2, g1}.) Therefore,
∀(Qx ∈ X underU1 and g0 ∈ Qx ), we have a new
quorum(R0 ∪ (Qx − {g0})) ∈ Z under(U1 − {g0}) ∪
row0. That is, a quorum inZ under(U1−{g0})∪ row0,
contains any�(M + 1)/(k + 1)� subsets fromR0,
g1, . . . , andgM−1. In the same way, we can replaceU2
with everyrowi , where 1� i � (M − 1). Therefore,
a quorum inZ under row0 ∪ row1 ∪ · · · ∪ rowM−1

(= ((U1 − {g0, g1, . . . , gM−1}) ∪ row0 ∪ row1 ∪ · · · ∪
rowM−1)), contains any�(M + 1)/(k + 1)� subsets
from R0,R1, . . . , andRM−1. Consequently, the set of
generalized grid quorums fork-mutual exclusion is a
k-coterie. ✷

Note that from this proof, we can show that, in fact,
the proposed strategy can be considered as a special
case of a hybrid strategy based on thek-majority and
the majority strategies. That is, for a system with
M × N nodes, we first divide them intoM sets with
each setN nodes. Inside each seti of M sets, we apply
the majority quorums strategy for 1-mutual exclusion
for thoseN nodes, which results inRi , where 0�
i � (M − 1). Between thoseM sets, we apply thek-
majority strategy.

3.3. Availability of the generalized grid quorums

In this section, we first analyze the availability of the
majority quorums for 1-mutual exclusion [6] and then
the generalized grid quorums fork-mutual exclusion.
Here, we assume that all the nodes have the same up-
probability p, which is the probability that a single
node is up operational.

For the availability of the majority strategy, let
AVM(j) be the function evaluating the probability that
the majority quorums can be formed withj nodes

simultaneously, andC(j, i) = j×(j−1)×···×(j−i+1)
1×2×···×i

. Func-
tion AVM(j) has the following condition:

AVM(j) =
j∑

i=�(j+1)/2�
C(j, i) × pi × (1− p)j−i .

Next, for the availability of the generalized grid
quorum strategy, let(k, l)-availability, 1� l � k, be
the probability thatl pairwise disjoint quorums of a
k-coterie can be formed successfully; it is used as
a measure for the fault-tolerant ability of a solution
using ak-coterie.

Let AVG(l) be the function evaluating the probabil-
ity that l pairwise disjoint quorums under grid can be
formed simultaneously. The functionAVG(l) has the
following two boundary conditions:

AVM(j) =
j∑

i=�(j+1)/2�
C(j, i) × pi × (1− p)j−i . (1)

AVG(l) =
M∑

i=l×�(M+1)/(k+1)�
C(M, i) × AVM(N)i

× (
1− AVM(N)

)M−i
. (2)

4. A comparison

In this section, we make a comparison of the gener-
alized grid quorum,k-majority, cohorts, and DIV quo-
rum strategies in terms of the quorum size and the
availability, where we assume that the system has a
fully connected network topology and no communi-
cation failure will occur. However, a node failure can
occur. (Note that, here, we assume that a failed node
simply stops execution (i.e., a fail-stop system). That
is, no Byzantine failure occurs.)

The number of messages required to construct
a quorum is proportional to the quorum size. The
quorum size of the generalized grid quorum strategy is
equal to�(M + 1)/(k + 1)� × �(N + 1)/2�, whereM

is the number of row andN is the number of columns
in a grid. Note that, in the generalized grid quorum
strategy,total nodes are divided intoM rows. Between
rows, we apply thek-majority strategy, and inside each
row, we apply the majority strategy. Therefore, in each
row, the quorum size is equal to�(N + 1)/2�, and the
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Table 1
A comparison of the quorum size:k = 4

Case total DIV k-majority G-Grid Cohortsl

(= M × N) � total+k
2k

� � total+1
k+1 � �M+1

k+1 � × �N+1
2 � (total = ∑l

i=1 |Ci |)
1 81 11 17 10(*) 12(**)

(= 9× 9) (= 4+ 7× 11)

2 95 13 20 12(*) 14(**)

(= 19× 5) (= 4+ 7× 13)

3 99 13 20(*) 12(*) 14

(= 9× 11) (= 4+ 7× 9+ 8× 4)

4 154 20 31(*) 18(*) 22

(= 14× 11) (= 4+ 7× 18+ 8× 3)

5 132 17(*) 27 17(*) 19

(= 4× 33) (= 4+ 7× 16+ 8× 2)

6 252 32(*) 51 32(*) 37(**)

(= 4× 63) (= 4+ 7× 36)

7 44 6(*) 9(*) 6(*) 6

(= 4× 11) (= 4+ 8× 5)

8 84 11(*) 17(*) 11(*) 12

(= 4× 21) (= 4+ 7× 8+ 8× 3)

5A 132 17(*) 27 18(*) 19

(= 44× 3)

6A 252 32(*) 51 34(*) 37(**)

(= 84× 3)

1A 81 11 17 12 12(**)

(= 27× 3)

3A 99 13 20(*) 14 14

(= 33× 3)

5B 132 17(*) 27 18 20

(= 12× 11)

(*) the case of�x/y� = x/y.

(**) the case ofl = (total− k)/(2k − 1) + 1.

quorum size of the generalized grid quorum strategy is
equal to�(M + 1)/(k + 1)� × �(N + 1)/2�.

The quorum size of thek-majority strategy is
equal to �(total + 1)/(k + 1)� [6,8]. For example,
when there are 1,2,3,4 nodes in the system, the
set R of 2-majority quorums is as follows:R =
{{1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}}.The quorum

size of the DIV strategy is equal to�(total+k)/2k� [1].
For example, when there are 1,2,3,4,5,6 nodes in
the system and we divided nodes into two classes,
(1,2,3) and (4,5,6), the setR of DIV of major-
ity quorums for 2-mutual exclusion is as follows:
R = {1,2}, {1,3}, {2,3}, {4,5}, {4,6}, {5,6}}. A co-
hort structureCoh(k, l) has l pairwise disjoint co-
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Table 2
A comparison of the quorum size:k = 3

Case total DIV k-majority G-Grid Cohortsl

(= M × N) � total+k
2k

� � total+1
k+1 � �M+1

k+1 � × �N+1
2 � (total = ∑l

i=1 |Ci |)
1 133 23 34 20(*) 27(**)

(= 19× 7) (= 3+ 5× 26)

(= 7× 19)

2 203 35 51 30(*) 41(**)

(= 7× 29) (= 3+ 5× 40)

3 35 7 9(*) 6(*) 7

(= 7× 5) (= 3+ 5× 4+ 6× 2)

4 143 25 36(*) 21(*) 29(**)

(= 11× 13) (= 3+ 5× 28)

5 63 11(*) 16(*) 10(*) 13(**)

(= 7× 9) (= 3+ 5× 12)

6 45 8(*) 12 8(*) 9

(= 3× 15) (= 3+ 5× 6+ 6× 2)

(= 15× 3)

7 93 16(*) 24 16(*) 19(**)

(= 3× 31) (= 3+ 5× 18)

(= 31× 3)

8 15 3(*) 4(*) 3(*) 3

(= 3× 5) (= 3+ 6× 2)

9 123 21(*) 31(*) 21(*) 25(**)

(= 3× 41) (= 3+ 5× 24)

5A 63 11(*) 16(*) 12 13(**)

(= 9× 7)

6A 45 8(*) 12 9 9

(= 9× 5)

(*) the case of�x/y� = x/y.

(**) the case ofl = (total− k)/(2k − 1) + 1.

horts with the first cohort havingk members and the
other cohorts having more than(2k − 2) members.
The quorum size of the cohorts strategy varies from 2
(whenk = 1) or k (whenk > 1) to l = (n − k)/s + 1,
for a cohort structureCoh(k, l) = 〈k, s, . . . , s〉, l �
s [5]. In fact, the upper bound of the quorum size of
the cohorts strategy depends on the structure of co-
horts. For example, the following sets are quorums un-
der Coh(2,2) = ({1,2}, {3,4,5}): Q1 = {3,4}, Q2 =

{3,5}, Q3 = {4,5}, Q4 = {1,3}, Q5 = {1,4}, Q6 =
{1,5}, Q7 = {2,3}, Q8 = {2,4}, andQ9 = {2,5} [5].

Since the quorum size of the cohorts strategy is
variable depending on the given cohort structure, in
this comparison, we consider the cohort structure as
(1) 〈k,2k−1, . . . ,2k−1〉, when (total−k) mod(2k−
1) = 0, or (2)〈k,2k−1, . . . ,2k−1,2k, . . .,2k〉, when
(total − k) mod (2k − 1) �= 0. In this case, the range
of the quorum size of the cohort coterie forCoh(k, l)
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changes fromk (= (2k − 1) − (k − 1)) to l. Tables 1
and 2 show a comparison of quorum size of those
strategies fork = 4 and 3, respectively, where the
generalized grid quorum strategy is denoted as G-
Grid. Note that the case marked with (*) in the DIV,
k-majority and G-Grid strategies means�x/y� = x/y,
i.e., x mody = 0. While the mark (**) attached with
l in the cohorts strategy denotes the case of(total −
k) mod(2k − 1) = 0.

In Table 1, whenk = 4, for cases 1–4, the quorum
size of the G-Grid strategy is smaller than that of
the DIV andk-majority strategies. For cases 5–8, the
quorum size of the G-Grid strategy is the same as that
of the DIV strategy, and is smaller than that of thek-
majority strategy. For cases 1–8, the quorum size of
the G-Grid strategy is smaller than or equal to the level
(= l) of the cohorts strategy. For the other cases (5A,
6A, 1A, 3A and 5B), the quorum size of the G-Grid
strategy is larger than that of the DIV strategy, smaller
than that of thek-majority strategy, and is smaller than
or equal to the level(= l) of the cohorts strategy. Note
that for cases 5 and 5A, both satisfy (�x/y� = x/y) in
the G-Grid strategy, but they provide different quorum
size.

Similarly, in Table 2, whenk = 3, for cases 1–5,
the quorum size of the G-Grid strategy is smaller than
that of the DIV andk-majority strategies. For cases 6–
9, the quorum size of the G-Grid strategy is the same
as that of the DIV strategy, and is smaller than that of
thek-majority strategy. For cases 1–9, the quorum size
of the G-Grid strategy is smaller than or equal to the
level (= l) of the cohorts strategy. For the other cases
(5A and 6A), the quorum size of the G-Grid strategy
is larger than that of the DIV strategy, smaller than
that of thek-majority strategy, and is smaller than or
equal to the level(= l) of the cohorts strategy. Note
that for case 5, both the G-Grid and DIV strategies
satisfy (�x/y� = x/y), but the quorum size of the G-
Grid strategy is smaller than that of the DIV strategy.

In summary, for the DIV and G-Grid strategies, the
quorum size of the G-Grid strategy can be smaller than
(case 5 fork = 3), equal to (case 5 fork = 4) or larger
than that of the DIV strategy (case 5A fork = 4).
For thek-majority and G-Grid strategies, the quorum
size of the G-Grid strategy is smaller than (case 3 for
k = 4) that of thek-majority strategy. Moreover, when
some node failures occur, the quorum size of the G-
Grid, DIV andk-majority strategies are still fixed, and

Table 3
A comparison of the availability:total = 4× 33= 132,k = 4

l p The availability

1 0< p � 0.55 k-majority> cohorts> G-Grid= DIV

0.55< p � 0.65 k-majority> G-Grid= DIV > cohorts

0.65< p < 1 G-Grid= k-majority= DIV > cohorts

2 0< p � 0.3 cohorts> k-majority> G-Grid= DIV

0.3 < p � 0.5 k-majority> cohorts> G-Grid= DIV

0.5 < p � 0.7 k-majority> G-Grid= DIV > cohorts

0.7 < p < 1 G-Grid= DIV = k-majority> cohort

3 0< p � 0.4 cohort> G-Grid= DIV > k-majority

0.4< p � 0.65 G-Grid= DIV > cohorts> k-majority

0.65< p � 0.7 G-Grid= DIV > k-majority> cohorts

0.7 < p < 1 G-Grid= DIV = k-majority> cohorts

4 0< p � 0.2 k-majority> cohorts> G-Grid= DIV

0.2 < p � 0.3 cohorts> G-Grid= DIV > k-majority

0.3 < p � 0.7 G-Grid= DIV > cohorts> k-majority

0.7 < p < 1 G-Grid= DIV = k-majority> cohorts

Table 4
A comparison of the availability:total = 19× 7= 133,k = 3

l p The availability

1 0< p � 0.2 cohorts> k-majority> G-Grid> DIV

0.2< p � 0.4 k-majority> cohorts> G-Grid> DIV

0.4< p � 0.5 k-majority> G-Grid> cohorts> DIV

0.5< p � 0.6 k-majority> G-Grid> DIV > cohorts

0.6 < p � 0.65 G-Grid= k-majority> DIV > cohorts

0.65< p < 1 G-Grid= k-majority= DIV > cohorts

2 0< p � 0.45 cohorts> G-Grid> DIV > k-majority

0.45< p � 0.5 G-Grid= DIV > cohorts> k-majority

0.5 < p � 0.55 DIV > k-majority> G-Grid> cohorts

0.55< p � 0.7 k-majority> DIV > G-Grid> cohorts

0.7 < p < 1 G-Grid= DIV = k-majority> cohorts

3 0< p � 0.4 cohorts> DIV > G-Grid> k-majority

0.4< p � 0.5 DIV > cohorts> G-Grid> k-majority

0.5< p � 0.7 DIV > G-Grid> cohorts> k-majority

0.7< p � 0.8 DIV > G-Grid> k-majority> cohorts

0.8 < p < 1 G-Grid> DIV > k-majority> cohorts
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these three strategies can be always fault-tolerant up
to (total − k× (the number of a quorum size)) node
failures. While in the cohorts strategy, the quorum size
can be increased as the number of failure nodes is
increased.

Tables 3 and 4 show a comparison of the availabil-
ity. From this table, we show that the availability of the
G-Grid strategy can be better than (or equal to) that of
other strategies whenp near 1 (i.e., low probability of
node failures). From our several more simulation re-
sults, we observe that for a giventotal, (1) when the
quorum size of strategyA is smaller than that of strat-
egyB ( �= A), it does not imply that the availability of
strategyA will definitely be higher than that of strat-
egy B; (2) when strategiesA and B have the same
quorum size, the availability of the strategies can be
the same (case 5 fork = 4) or different (case 7 for
k = 3, total = 31× 3); (c) for the same G-Grid strat-
egy, when the quorum size is the same for different
M × N , the availability for differentM × N can be
different (case 7 fork = 3).

5. Conclusion

In this paper, we have proposed a strategy called
generalized grid quorum fork-mutual exclusion, which
imposes a logical grid structure on the network. In
general, in the generalized grid quorum strategy,total
nodes are divided intoM rows. Between rows, we
have applied thek-majority strategy, and inside each

row, we have applied the majority strategy. Therefore,
the proposed strategy can be considered as a hybrid
approach which contains thek-majority and the ma-
jority strategies. From our performance study, we have
shown that the generalized grid quorum strategy can
provide a good performance in terms of the quorum
size and the availability. How to extend the general-
ized grid quorum strategy to tolerate even more node
failures is the future research direction.
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