A Note on Adaptive 2D-H Strings ¹

Ye-In Chang and Hsing-Yen Ann

Dept. of Applied Mathematics National Sun Yat-Sen University Kaohsiung, Taiwan R.O.C. {E-mail: changyi@math.nsysu.edu.tw} {Tel: 887-7-5252000 (ext. 3819)} {Fax: 886-7-5253809}

Abstract

A picture is defined to be *ambiguous* if there exists more than one different reconstructed picture from its representation. In this paper, we first give an ambiguous case based on the adaptive 2D-H string representation [1]. Next, we show how to avoid the ambiguous cases.

(*Keywords*: 2D strings, 2D-H strings, adaptive 2D-H strings, image databases, symbolic pictures)

¹This research was supported in part by the National Science Council of Republic of China under Grant No. NSC-87-2213-E-110-014.

1 Introduction

In [3], Chang and Li has proposed 2D-H strings, which can be viewed as a combination of quadtrees [4] and 2D strings [2]. Using the 2D-H string, the hierarchical symbolic pictures can be represented efficiently in terms of space complexity. Although the 2D-H string data structure has been proven to be an efficient approach to represent and to manipulate symbolic pictures, in [1], Chang and Lin has discovered some redundancies existing in those data representations. Therefore, they proposed another alternative, called adaptive 2D-H strings, for representing the relationships among the objects in an image.

In [1], Chang and Lin has presented an algorithm for converting symbolic pictures of any size into adaptive 2D-H strings. They show that their adaptive 2D-H string can work well for many unbalanced non-square small pictures, which frequently exist in our real environment. However, based on Chang and Lin's procedure to construct the adaptive 2D-H string, *ambiguous* cases can occur, where a picture is defined to be *ambiguous* if there exists more than one different reconstructed picture from its representation. Therefore, in this paper, we first give an ambiguous case based on the adaptive 2D-H string representation [1]. Next, we show how to avoid the ambiguous cases.

2 An Ambiguous Case

Take Figure 1 as an example, where picture f_1 and f_2 are two different pictures while they contain the same 4 symbols occupying 12 cells. The corresponding decomposition steps for pictures f_1 and f_2 are shown in Figure 2 and Figure 3, respectively.

Moreover, the corresponding adaptive 2D-H string representation for pictures f_1 and f_2 are as follows:

adaptive 2D-H(f_1) = $b_N b_S s_N s_S$ = 11 $s_N s_S$ = 11 **10** $s_{NN} s_{NS}$ **11** $s_{SN} s_{SS}$ = 11 **10** <u>1001AB</u> **11** <u>1000C</u> <u>01D</u> adaptive 2D-H(f_2) = $b_W b_E s_W s_E$ = 11 $s_W s_E$ = 11 **10** $s_{WW} s_{WE}$ **11** $s_{EW} s_{EE}$ = 11 **10** <u>1001AB</u> **11** <u>1000C</u> <u>01D</u>

3 The Revised Version of the Adaptive 2D-H Strings

From the above example, we show that pictures represented in the adaptive 2D-H strings can be ambiguous. In this example, pictures f_1 and f_2 have the same corresponding quadtree as shown in Figure 4. To overcome this problem, we provide an answer. We can avoid the ambiguous case by adding the size information of a picture, say $m_1 \times m_2$, at the end of the corresponding adaptive 2D-H string. The *Reconstruct* procedure presented in the Appendix shows how to reconstruct a picture based on the revised version of the adaptive 2D-H string without causing any ambiguous. In this *Reconstruct* procedure, we use the size information of a picture f, say $m \times n$, to guide us how to decompose the adaptive 2D-H string, just the same case as how the picture f is segmented. In this way, obviously, when $m_1 \neq m_2$ or $n_1 \neq n_2$, two pictures f_1 (with size $m_1 \times n_1$) and f_2 (with size $m_2 \times n_2$) will be distinguished well even they have the same adaptive 2D-H string representation.

4 Conclusion

The adaptive 2D-H string representation has been proposed to remove the redundancy existing in the 2D-H string representation. However, the concise representation of the adaptive 2D-H string can cause ambiguous cases. In this paper, we have shown such a case and have provided an answer to avoid the ambiguous case.

Figure 2: Decomposition steps for picture f_1

Figure 3: Decomposition steps for picture f_2

Figure 4: The quadtree of picture f_1 (f_2)

References

- Chang, C. C. and Lin, D. C. (1996). A Spatial Data Representation: An Adaptive 2D-H String. Pattern Recognition Letters, 17 (2), 175-185.
- [2] Chang, S. K., Shi, Q. Y. and Yan. C. W. (1987). Iconic Indexing by 2-D Strings, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-9 (3), 413-428.
- [3] Chang, S. K. and Li, Y. (1988). Representation of Multi-Resolution Symbolic and Binary Pictures Using 2D-H Strings, Proc. IEEE Workshop on Languages for Automata, Maryland, 190-195.
- [4] Samet, H. (1984). The Quadtree and Related Data Structure, ACM Comput. Surveys, 16 (2), 187-260.
- [5] Samet, H. (1990). Applications of Spatial Data Structure, Addison-Wesley, Reading, MA.

Appendix

Procedure Reconstruct(f, m, n)

```
(1) the size of a symbolic picture f, m, n;
 Input:
             (2) a global variable S, the adaptive 2D-H string of f
             the symbolic picture f
 Output:
1. IF (\min(m,n) > 2) THEN
                                         \% quadrant segmentation \%
2. BEGIN
3.
       set f_1, f_2, f_3 and f_4 to be NW, SW, NE and SE
4.
       quadrants subpictures of f, respectively
5.
       \% let S_i be the ith bit of S from the left side \%
6.
       FOR i = 1 to 4
7.
           b_i := S_i
8.
       S \leftarrow S shift left 4 bits
9.
       IF (b_1 = 1) THEN
10.
            Reconstruct(f_1, \lceil 1/2m \rceil, \lceil 1/2n \rceil)
                                                       % NW %
        IF (b_2 = 1) THEN
11.
                                                        % SW %
12.
            Reconstruct(f_2, \lfloor 1/2m \rfloor, \lceil 1/2n \rceil)
13.
        IF (b_3 = 1) THEN
14.
            \operatorname{Reconstruct}(f_3, \lceil 1/2m \rceil, \lceil 1/2n \rceil)
                                                        % NE %
15.
        IF (b_4 = 1) THEN
                                                       % SE %
16.
            Reconstruct(f_4, |1/2m|, |1/2n|)
17. END
18. ELSE IF (m \leq 2 \text{ and } n > 2) THEN
                                                      % column segmentation %
19. BEGIN
20.
        set f_1 and f_2 to be W and E quadrant subpictures of f
        FOR i = 1 to 2
21.
22.
            b_i := S_i
23.
        S \leftarrow S shift left 2 bits
24.
        IF (b_1 = 1) THEN
            \operatorname{Reconstruct}(f_1, m, \lceil 1/2n \rceil)
                                                % W %
25.
26.
        IF (b_2 = 1) THEN
                                                 % E %
27.
            \operatorname{Reconstruct}(f_2, m, |1/2n|)
28. END
29. ELSE IF (m > 2 \text{ and } n < 2) THEN
                                                      % row segmentation %
30. BEGIN
31.
        set f_1 and f_2 to be N and S quadrant subpictures of f
32.
        FOR i = 1 to 2
33.
            b_i := S_i
34.
        S \leftarrow S shift left 2 bits
        IF (b_1 = 1) THEN
35.
                                                % N %
36.
            Reconstruct(f_1, \lceil 1/2m \rceil, n)
37.
        IF (b_2 = 1) THEN
38.
            Reconstruct(f_2, \lfloor 1/2m \rfloor, n)
                                                 % S %
```

39. END 40. **ELSE** % the elementary unit of decomposition %41. **BEGIN** % type-1 unit %42. IF (m = 2 and n = 2) THEN BEGIN 43. 44. set f_1 , f_2 , f_3 and f_4 to be NW, SW, NE and SE 45. quadrants subpictures of f, respectively FOR i = 1 to 4 46. 47. $b_i := S_i$ 48. $S \leftarrow S$ shift left 4 bits 49. FOR i = 1 to 4 IF $(b_i = 1)$ THEN 50.BEGIN 51.52. $B \leftarrow$ the first symbol from the left side of S 53.output B in f_i $S \leftarrow S$ shift left 1 symbol 54.55. END END 56. **ELSE IF** (m = 2) **THEN** % type-2 unit %57.BEGIN 58.59. set f_1 and f_2 to be N and S quadrant subpictures of fFOR i = 1 to 2 60. 61. $b_i := S_i$ 62. $S \leftarrow S$ shift left 2 bits FOR i = 1 to 2 63. IF $(b_i = 1)$ THEN 64. 65. BEGIN 66. $B \leftarrow$ the first symbol from the left side of S 67. output B in f_i $S \leftarrow S$ shift left 1 symbol 68. 69. END 70. IF (n = 2) THEN % type-3 unit %BEGIN 71.72. set f_1 and f_2 to be E and W quadrant subpictures of f73. FOR i = 1 to 2 74. $b_i := S_i$ $S \leftarrow S$ shift left 2 bits 75.76.FOR i = 1 to 2 IF $(b_i = 1)$ THEN 77. BEGIN 78.79. $B \leftarrow$ the first symbol from the left side of S 80. output B in f_i $S \leftarrow S$ shift left 1 symbol 81. 82. END 83. END

84.	\mathbf{ELSE}	% type-4 unit $%$
85.	BEGIN	
86.	$b_1 := S$	1
87.	$S \leftarrow \mathrm{sh}$	ift left 1 bit
88.	\mathbf{IF} (b_i =	= 1) THEN
89.	BEGII	N
90.	$B \leftarrow$	- the first symbol from the left side of S
91.	outj	put B in f_i
92.	$S \leftarrow$	- S shift left 1 symbol
93.	\mathbf{END}	
94.	\mathbf{END}	
95.	\mathbf{END}	