
An EÆient Nonuniform Index in the WirelessBroadast Environments 1Jun-Hong Shen and Ye-In ChangDept. of Computer Siene and EngineeringNational Sun Yat-Sen UniversityKaohsiung, TaiwanRepubli of ChinafE-mail: shenjh�se.nsysu.edu.twgfTel: 886-7-5254350gfFax: 886-7-5254301gAbstratData broadast is an eÆient dissemination method to deliver information to mobile lientsthrough the wireless hannel. It allows a huge number of the mobile lients simultaneouslyaess data in the wireless environments. In real-life appliations, more popular data maybe frequently aessed by lients than less popular ones. Under suh senarios, Aharyaet al.'s Broadast Disks algorithm (BD) alloates more popular data appeared more timesin a broadast period than less popular ones, i.e., the nonuniform broadast, and providesa good performane on reduing lient waiting time. However, mobile devies should on-stantly tune in to the wireless broadast hannel to examine data, onsuming a lot of energy.Using index tehnologies on the broadast �le an redue a lot of energy onsumption ofthe mobile devies without signi�antly inreasing lient waiting time. In this paper, wepropose an eÆient nonuniform index alled the skewed index, SI, over BD. The proposedalgorithm builds an index tree aording to skewed aess patterns of lients, and alloatesindex nodes for the popular data more times than those for the less popular ones in abroadast yle. From our experimental study, we have shown that our proposed algorithmoutperforms the exible index and the exible distributed index.(Keywords: broadast disks, data broadast, seletive tuning, skewed aess patterns,wireless network.)
1This researh was supported in part by the National Siene Counil of Republi of China under GrantNo. NSC-95-2221-E-110-101 and by National Sun Yat-Sen University. The authors also like to thank \Aimfor Top University Plan" projet of NSYSU and Ministry of Eduation, Taiwan, for partially supportingthe researh.

1 IntrodutionDue to asymmetri ommuniations in the wireless environments, wireless data broadastis an eÆient way to simultaneously disseminate information to a large number of mobilelients. Under suh environments, servers ylially broadast data on the wireless hannel,and mobile lients use battery-powered devies, e.g., palmtops, to tune in to the wirelessbroadast hannel to retrieve data without sending requests to the servers. Data broad-ast is good at the senarios where mobile lients have the same ommonly interested dataon a regular basis. In addition, it sales well when the number of the mobile lients isdramatially inreasing. Mirosoft's DiretBand Network, for example, utilizes the broad-ast tehnique to provide wireless data servies [21, 27℄. This wireless network utilizesunused FM radio spetrum to onstantly broadast frequently hanging information suhas news, weather, sports, and stoks. Then, low-powered mobile devies, e.g., wathes, anontinuously retrieve these timely information at anytime and anywhere.Mobile devies have sare energy resoures, i.e., batteries. Due to power limits, energyonservation is a ruial issue for the mobile devies. When a lient requests a desired data,the mobile devie must atively listen to the broadast hannel to retrieve and examine datauntil the desired data is downloaded. That is, the mobile devie should be ontinuouslyin the ative mode to retrieve data. This is ineÆient in terms of energy onsumption forthe mobile devie to ontinuously retrieve a lot of data on the hannel just to pik up oneof them [27℄. To solve this problem, seletive tuning is introdued suh that the mobiledevie an slip into the doze mode most of the time and listen to the hannel only whenthe relevant data arrives [7℄. As a result, it is advantageous to use index tehnologies onthe wireless data broadast to guide the lients to retrieve data in the listening proess.In this way, the mobile devies an be only ativated to retrieve the relevant information,thus reduing a lot of energy onsumption and lengthening their operating time withoutreharging.In the wireless data broadast environments, the aess time and the tuning time are twoperformane measures [8℄. The aess time is the average time elapsed from the moment alient requests a data item identi�ed by its primary key, to the moment when the requireddata item is downloaded by the lient. On the other hand, the tuning time is the amount of1

time spent by a lient listening to the hannel. This will determine the energy onsumptionof the mobile devie to retrieve the required data.In the literature, many studies have been made on reduing energy onsumption ofmobile devies in the wireless environments. The studies in [4, 5, 7, 8, 11, 20, 21, 22℄ haveproposed index shemes for the uniform broadast on a single broadast hannel. On theuniform broadast, all data items are broadast one in a broadast yle. The variant-fanout index tree [3℄ and the skewed distributed indexing [15℄ were presented based ondata popularity patterns. In [10℄, Katsaros et al. proposed an unbalaned-tree index tohandle partially ordered data under skewed aess patterns. For supporting spatial querieson the wireless data broadast, spatial indexes were proposed in [27, 28℄. The study in [6℄worked on index ahing. The studies in [14, 17, 18, 23, 26℄ proposed index shemes for thenonuniform broadast on a single broadast hannel. On the nonuniform broadast, dataitems are broadast aording to their aess frequenies. While the above shemes assumethat data items are broadast over a single hannel, there have also been studies that workon broadasting over multiple hannels. The work in [16℄ studied index alloation, that in[13, 24℄ disussed data alloation, and that in [9℄ foused on index and data alloation onthe wireless broadast over multiple hannels. The work in [12, 17℄ onerned on the issueof fault tolerane.In real-life appliations, more popular data may be frequently aessed by lients thanless popular ones, i.e., skewed data aess. For example, the weather onditions of hot at-trations may be more frequently aessed than those of old ones. Under suh the senario,Aharya et al. [1℄ proposed Broadast Disks (BD) to alloate more popular data appearedmore times in a broadast yle than less popular ones, i.e., a nonuniform broadast. BDprovides a way of organizing data into a popularity hierarhy whih results in a skewedtransmission of data and quiker aess to more popular data [24℄.Under the nonuniform broadast environment, BD has a good performane on the av-erage aess time [13℄. However, when requesting a data item of interest, mobile lientsshould onstantly tune in to the broadast hannel to hek the reeived data items untilthe request item is downloaded. This inreases the tuning time that is, on average, halfof a broadast period of the whole �le, i.e., a broadast yle. The exible index (FI)2

[26℄ has been proposed to support seletive tuning over BD. However, FI does not takeskewed aess patterns of lients into onsideration. The exible distributed index (FDI)[14℄ interleaves the tree-based indexes in one broadast yle with a given tuning timeon the nonuniform broadast. However, FDI may repliate too many index trees in onebroadast yle, resulting in the inrease of the aess time. Therefore, in this paper, wepropose an eÆient nonuniform index alled the skewed index, SI, whih is built aordingto skewed aess patterns, over BD. Our proposed algorithm also alloates index nodes forpopular data more times than those for less popular ones in a broadast yle. From ourexperimental results, we have shown our proposed algorithm outperforms FI and FDI inthe aess time and the tuning time.The rest of this paper is organized as follows. In Setion 2, we give a brief desriptionof Aharya et al.'s BD. In Setion 3, we present our proposed skewed index. In Setion 4,we study the performane of the proposed algorithm. Finally, a onlusion is presented inSetion 5.2 BakgroundAharya et al. [1℄ have proposed the use of a periodi dissemination arhiteture in theontext of wireless mobile systems. They all the arhiteture Broadast Disks, BD. Thealgorithm has the following steps:1. Order data items (= N) from the hottest (most popular) to the oldest.2. Partition the list of the data items (= N) into multiple disks (= S disks), where eahdisk Di, 1 � i � S, ontains pages (= Ki) with similar aess probabilities. That is,N =PSi=1Ki.3. Choose the relative frequeny �i of broadast for eah disk Di, 1 � i � S.4. Split eah disk into a number of smaller units, alled hunks Cij, where Cij denotesthe j'th hunk in disk Di. First, alulate L as the LCM (Least Common Multiple) ofthe relative frequenies. Then, split eah disk Di into NCi = L�i hunks, 1 � i � S,where NCi denotes the number of hunks in disk Di.3

5. Create the broadast program by interleaving the hunks of eah disk in the followingmanner:for i := 1 to L dobeginfor j := 1 to S dobegink := ((i� 1) mod NCj) + 1;Broadast hunk Cj;k;end;end.Figure 1 shows an example of the broadast program generation, where S = 3, N = 7,K1 = 1, K2 = 2, K3 = 4, �1 = 4, �2 = 2, and �3 = 1. These disks are split into hunksaording to Step 4 of the algorithm. That is, L (= LCM(4; 2; 1)) is 4, and we haveNC1 = 1 (the number of hunks in disk D1), NC2 = 2, NC3 = 4. The resulting broadastonsists of 4 minor yles (ontaining one hunk from eah disk), i.e., m1; m2; m3 andm4, whih is the LCM of the relative frequenies. The resulting broadast has a periodof 12 pages. This broadast produes a three-level memory hierarhy in whih disk oneis the smallest and fastest level and disk three is the largest and slowest level. Thus, themulti-level broadast orresponds to the traditional notion of a memory hierarhy [1℄.3 A Skewed Index for Broadast DisksIn this setion, to provide eÆiently seletive tuning over Aharya et al.'s Broadast Disks[1℄, we present our proposed skewed index and the orresponding aess protool.3.1 AssumptionsThis work fouses in broadast-based wireless environments. Some assumptions shouldmake our work more exible. The assumptions in this paper are as follows.1. Data aess patterns are skewed.2. Data items are broadast over the reliably single hannel.4

1 2 3 4 5 6 7HOT COLD(a)
1 2 3 4 5 6 7

D1 D2 D3(b)
1 2 3 4 5 6 7Chunks

C1, 1 C2, 1 C2, 2 C3, 1 C3, 2 C3, 3 C3, 4()
1 2 4 1 3 5 1 2 6 1 3 7

One broadcast cycle

m1 m2 m3 m4(d)Figure 1: An example of broadast disks: (a) data items sorted in the desending orderof their popularity; (b) three disks with the orresponding data items; () hunks for eahdisk; (d) the �nal broadast yle.3. Data items are broadast non-uniformly; that is, the more popular data items appearmore times than the less popular ones in one broadast yle.4. Clients request only one data item at one time; i.e., the single query.5. A buket is a logial transmission unit on a broadast hannel. An index node anbe put into a buket, the index buket, and a data node an be put into a buket ormore, the data buket.3.2 The Proposed AlgorithmThe basi idea is that we build loal index trees for disks, and then ombine them from thelast disk to the �rst one to form a skewed index tree. Beause fast disks have fewer dataitems than slow ones, the size of the index trees for the fast disks is smaller than that forthe slow ones. Therefore, the ombined index tree is skewed. This an redue the indexprobes for the popular data. Based on the nonuniform broadast in BD, we an alloatethe index nodes for the more popular data items more times than those for the less popularones in a broadast yle. 5

The algorithm is proeeded as follows.1. Construt a loal index tree for eah disk aording to the degree of an index node,d, in a bottom-up manner. Note that d is set manually.2. Combine the loal index trees from the last disk to the �rst one aording to d.3. Distribute index nodes over the broadast yle generated by BD by usingProedureAlloateIndexNode(B), as shown in Figure 2, where B is a linked list that stores thebroadast yle generated by BD.4. Chek whether the �rst node of eah minor yle is the root node. If not, then insertthe root node in front of that minor yle.Let us use an example to illustrate the proposed algorithm. Take the data items indisks D1, D2 and D3 in Figure 1-(b) as an input. In Step 1, our algorithm �rst onstrutsa loal index tree for eah disk (Di) in a bottom-up manner as shown in Figure 3-(a),where the degree of eah index node, d, is 2. Data items are attahed to index nodes withd degrees at the same level and then these index nodes are reursively proessed in thesame way until the root node is reated. For eah loal tree, branhes between a parentnode and its hildren are bi-diretional, so a node an easily �nd its parent and hildren.Entries in eah index nodes are generated through the Bloom �lter [2℄, whih is used to testwhether an element is a member of a set. Therefore, a data item an be heked whetherit is overed by the subtree. It means that through the Bloom �lter, a mobile lient andetermine whih branh to follow in the index tree. Applying the Bloom �lter may havea very small false-positive (false-drop) probability. In suh a ase, more than one branhshould be followed. However, this an be adjusted to an insigni�ant e�et.In Step 2, our algorithm then ombines these loal index trees from the last disk to the�rst one by onsidering the degree of an index node, i.e., d = 2. Figure 3-(b) shows anindex tree after the last two loal index trees, the ones for D2 and D3, are ombined. The�nal index tree for the data items in Figure 1-(b) is shown in Figure 3-(). In this skewedindex tree, we an observe that the level for the more popular data items is higher thanthat for the less popular ones. 6

1: proedure AlloateIndexNode (B)2: begin /* B is a linked list that stores the broadast yle generated by BD. *//* is used to reord the urrent proessing data item in B. */3: := the �rst item of B;4: while (6= null) do /* Chek if it is the end of the broadast yle. */5: begin6: opy the ontent of to dup to start traversing the index tree;/* Traverse the index tree from the data node to the root node. */7: while (dup 6= null) do /* Chek if the root node is traversed. */8: begin9: if dup = root then /* root is the root node of the index tree. *//* p is used to reord the parent of the urrent visited node. */10: p := null11: else12: p := the parent of dup;13: if dup is the �rst hild of p then14: begin15: push p into IndexStak; /* IndexStak is a stak. */16: dup := p; /* The parent p of node dup is then visited. */17: end18: else19: begin20: repeat21: pop an index node a from IndexStak and output a;22: until IndexStak is empty;23: output ;24: break;25: end;26: end;27: := the following item of in B; /* Proess the next data item. */28: end;29: end; Figure 2: Proedure AlloateIndexNode
7

1 2 3 4 5 6 7

c1 c2

b2

b1

: index node

D1 D2 D3

2 3

b1

a1

4 5 6 7

c1 c2

b2

(a) (b)
2 3

b1

a11

R

4 5 6 7

c1 c2

b2

()Figure 3: The proess of onstruting a skewed index tree: (a) loal index trees; (b) anindex tree after the last two loal index trees are ombined; () the �nal skewed index tree.In Step 3, after the skewed index tree is onstruted, the algorithm then uses ProedureAlloateIndexNode, with the broadast yle shown in Figure 1-(d) as an input, to distributeindex nodes over the broadast yle. Proedure AlloateIndexNode alloates the indexnodes for the data items in the fast disks to one broadast yle more times than those inthe slow ones. In Proedure AlloateIndexNode, data items of the broadast yle stored inlinked list B are sequentially proessed one by one. The proedure will traverse the indextree from the data node to the root node to determine whih index nodes should be putbefore the proessed data item. The poliy is desribed as follows. If the visited node isthe �rst hild of its parent, its parent should be put before this node, and then its parentwill be visited. Otherwise, the proedure stops traversing the index tree. The reason thatwe put the orresponding index nodes before their �rst hild node is that these index nodesan over their orresponding data items in the same broadast yle. If we only put these8

R
IndexStack

b1

a1

IndexStack

c1

b2

IndexStack(a) (b) ()Figure 4: The ontent of stak IndexStak for data items in minor yle m1: (a)IndexStak of dealing with data item 1; (b) IndexStak of dealing with data item 2;() IndexStak of dealing with data item 4.index nodes before their other hild nodes, some data items overed by these index nodeshave been broadast yet, so that they annot be retrieved in the same broadast yle.This is a diretory miss, whih will inrease the aess time. On the other hand, if we putthese index nodes before eah data node, it will lengthen the broadast yle, inreasingthe aess time.In Proedure AlloateIndexNode, for the �rst data item 1 in the broadast yle in Figure1-(d), sine it is not the end of the broadast yle, it is opied to dup to start traversingthe index tree from it to the root node. Sine it is not the root node of the skewed indextree shown in Figure 3-(), its parent node R in that index tree is assigned to p (lines 9{12).(Note that we have to hek the relationship between dup and p later; that is, we have tohek whether dup is the �rst hild of p.) From line 13 to line 25, sine data item 1 is the�rst hild of its parent p (i.e., R) in the index tree shown in Figure 3-(), its parent R ispushed into stak IndexStak shown in Figure 4-(a) and its parent R will then be visited.(Note that sine we traverse the index tree from the data node to the root node, we needto use stak IndexStak to reverse the output order of the index nodes.) In the seond runof the inner while loop, sine the urrent node is the root node in the index tree, p is set tonull. Therefore, the if ondition about whether dup (i.e., R) is the �rst hild of p is false,and all index nodes in IndexStak will be popped out and put before data item 1 (lines19{25) in the pop-out order. This result is shown in the leftmost part of Figure 5-(a).For the seond data item 2 in Figure 1-(d), sine data item 2 and index node b1 are the�rst hildren of their parents in the index tree shown in Figure 3-(), their parents b1 anda1 are pushed into IndexStak shown in Figure 4-(b), respetively. When a1 is visited,9

1 2 4 1 3 5 1 2 6 1 3 7

R

a1 b1

b2 c1

R

R

a1 b1

c2

R(a)
1 2 4�R �a1��b1��b2�c1 1�R 3 5 1�R 2�a1��b1 6��c2 1��R 3 7�: index bucket

m1 m2 m3 m4(b)Figure 5: Index distribution: (a) the distribution of index nodes; (b) the �nal broadastyle with index nodes interleaved.sine it is not the �rst hild of its parent R in the index tree, index nodes a1 and b1 arepopped out sequentially, and then put before data item 2 in the broadast yle, as shownin Figure 5-(a). For the third data item 4 in Figure 1-(d), sine data item 4 and indexnode 1 are the �rst hildren of their parents in the index tree, their parents 1 and b2 arepushed into IndexStak shown in Figure 4-(), respetively. When b2 is visited, sine it isnot the �rst hild of its parent a1 in the index tree, index nodes 1 and b2 are popped outsequentially, and then put before data item 4 in the broadast yle, as shown in Figure5-(a). Until now, the ontent of minor yle m1 is generated, as shown in the leftmost partof Figure 5-(b), where mi, 1 � i � 4; means the ith minor yle in this broadast yle.In the same way, Proedure AlloateIndexNode proesses all the rest of the data items.Finally, the distribution of index nodes over the broadast yle is shown in Figure 5-(a),and the orresponding result of the broadast yle with index nodes interleaved is shownin Figure 5-(b).In Step 4, sine lients need the root node to start traversing index nodes, if the �rstnode of a minor yle is not the root node, our algorithm will insert the root node in frontof that minor yle to help the lients quikly start traversing the orresponding indexnodes. In Figure 5-(b), sine the �rst node of eah minor yle is the root node, there isno hange for the �nal result after the proessing of Step 4.Entries in eah index node in Figure 5-(b) are shown in Figure 6, where the number10

1 2 4 3 5

R

1 2

1

a1

0

1

b1

b2

0

2

a1

3

2

3

0

6

4

b1

5

c1

c2

0

11

6

b2
4

5

0

4

7

c1

8

R

9

1

a1

0

5 1

10 11 12

R
1

a1

0

5

20

1 3 7

21 22 23

2 6

R
1

a1

0

1

13

1

14

b1

b2

0

13

a1

15

2

3

0

5

b1

16 17

6

7

0

4

c2

18 19

BN

BN

m1 m2

m3 m4

id1

id2

offset 1

offset 2
: index bucket* BN : Buket number* offseti is the o�set to the beginning of the buket ontaining idi.Figure 6: Entries in eah index nodebelow the buket is the buket number starting from 1. To guide lients to quikly starttraversing the index nodes, exept the root nodes, eah index or data node also has an entrydireting them to the nearest root node, not shown in Figure 6. Eah entry in an indexnode is of the form < id; offset >, where id is an identi�er generated through the Bloom�lter [2℄ for a data item or index node and offset is the distane in terms of bukets fromthe end of the urrent buket to the beginning of the buket ontaining id. For example, inFigure 6, the �rst entry < 1; 0 > at buket number 1, i.e., R, represents that data item 1 is0 buket away from the urrent buket. Note that data item 1 is the �rst hild of root nodeR as shown in Figure 3-(). The seond entry < a1; 1 > represents that if lients want toget the data items overed by a1, they should wait 1 buket to reah the buket ontaininga1. Note that, in Figure 6, the seond entries < b2; 13 > and < a1; 5 > at buket numbers15 and 20 guide the lients to the bukets ontaining b2 and a1, respetively, in the nextyle.3.3 Aess ProtoolWe now present the aess protool of the proposed algorithm. The aess protool is asfollows.1. Tune in to the broadast hannel to reeive the urrent buket.11

2. Read the urrent buket to get the o�set of the nearest root node, and go into thedoze mode.3. Tune in to the broadast hannel to reeive the nearest root node, and then traversethe index tree until the requested data item is reahed or not found. (While waitingfor another index node or data node, lients an go into the doze mode for savingenergy.)For example, in Figure 6, a lient tunes in at buket number 4 and wants to retrieve dataitem 1. After retrieving buket number 4, the lient gets an o�set to the nearest root nodeat buket number 9. The lient then goes into the doze mode waiting for the beginning ofbuket number 9. After retrieving buket number 9, the lient knows the position of dataitem 1 from the �rst entry in it. The lient �nally retrieves data item 1 at buket number10.4 PerformaneIn the literature, Tsakiridis et al. [20℄ proposed the interpolation air index to redue thetuning time on the uniform data broadast in a single hannel. However, this algorithmassumes that data items are evenly aessed by lients in a broadast yle, and was notproposed for the environments with skewed aess patterns. Katsaros et al. [10℄ proposedan unbalaned-tree index to handle partially ordered data under skewed aess patterns forthe uniform data broadast. However, this algorithm was not proposed for the nonuniformdata broadast. Yao et al. [23℄ proposed a hash algorithm to map data to a broadast ylefor the nonuniform data broadast. However, their algorithm su�ers from the overowproblem, resulting in the inrease in both the aess time and the tuning time. Yu andTan [26℄ proposed the exible index (FI) to redue the tuning time over Broadast Diskson the nonuniform data broadast. However, this algorithm does not onsider skewedaess patterns to further redue the tuning time. Seifert and Hung [14℄ proposed theexible distributed index (FDI) for the nonuniform broadast. However, this algorithmmay repliate too many index trees in one broadast yle, resulting in the inrease of theaverage aess time. 12

Among the above algorithms, FI [26℄ and FDI [14℄ have the assumptions of the en-vironments similar to our work. Therefore, to evaluate the e�etiveness of our proposedalgorithm, we ompare our proposed algorithm with Broadast Disks [1℄ with no index(NI), FI [26℄, and FDI [14℄ via a simulation study. Sine NI has no index in a broadastyle, it has the shortest aess time and the longest tuning time among these algorithms.It is used to at as the benhmark for the aess time and the tuning time. FI splits asorted list of data items in a minor yle (segment) into several equal-sized setions. At thebeginning of eah setion, there is a ontrol index onsisting of a global index, whih pointsto the upoming setion where the data item an be found, and a loal index, whih pointsto the data buket in the urrent setion where the data item an be found. FDI partitionsthe broadast program into a number of equal-sized segments with a given bounded tuningtime, and interleaves the tree-based index, whih handles the following segments, beforeeah segment.4.1 System ModelThe parameters used in our performane model are shown in Table 1. First, we generate Ndata items with the aess probability, Pr(h), 1 � h � N , based on the Zipf distribution.The Zipf distribution is typially used to model nonuniform aess patterns. The Zipfdistribution an be expressed as Pr(h) = (1=h)�PNj=1(1=j)� , 1 � h � N , where � is a parameternamed the aess skew oeÆient or the Zipf fator [1℄. Di�erent values of � yield thedi�erent Zipf distribution. When � = 0, we have the uniform distribution. When the valueof � inreases, the aess probabilities beome inreasingly skewed [3℄. For example, when� = 1 and N = 3, we have Pr(1) = 611, Pr(2) = 311, and Pr(3) = 211. Then, the numberof data items, Ki, in eah disk i, 1 � i � S, is assigned by Yee et al.'s GREEDY algorithm[25℄. This algorithm partitions N data items into S disks, so as to minimize the averageaess time. Aording to the assignment of this algorithm, K1 has the fewest number ofdata items, K2 has the next fewest number of data items, and KS has the most number ofdata items. The relative frequeny (Ri) of disk i is determined by RiRS = (S� i)�+ 1, andRS = 1, 1 � i � S, where � is the fator for relative frequenies.When onsidering the demand aess probability (from lients), we also apply the Zipf13

Table 1: ParametersParameter DesriptionN The total number of data itemsS The number of broadast disksKi The number of data items in disk i, 1 � i � SRi The relative frequeny of disk i� The fator for relative frequenies� The Zipf fator for generating the aess probabilities of data items The Zipf fator for generating aess probabilities of disks� The ratio of the size of a data node to that of an index noded The degree of an index nodedistribution with a Zipf fator . Here, we assume that the probability of aessing anydata item within a region is uniform; that is, the Zipf distribution is applied to these disks[1℄. Therefore, we model the demand aess probability of the ith disk (DiskPr(i)) usingthe Zipf distribution as follows: DiskPr(i) = (1=i)PSj=1(1=j) , where is the Zipf fator.In this ase, the �rst disk (K1), whih has the least number of data items, is the mostfrequently aessed.Sine the size of a data node (item) is larger than that of an index node, we use � toontrol the ratio of the size of a data node to that of an index node. That is, if an indexnode oupies one buket, then a data node oupies � bukets. Parameter d is used todetermine the degree of an index node in our proposed algorithm.4.2 Performane AnalysisNow we analyze the aess time and the tuning time of our proposed algorithm. We assumethat the aess probability for aessing disk j is DiskPr(j), 1 � j � S, and the demandaess probabilities of data items in eah disk are uniform.For analyzing the aess time of aessing data item i, DIi, there are two ases: (1) Itan be downloaded in the urrent yle; (2) it annot be downloaded in the urrent yle,but the next yle. Take data item 3, referred to as DI3, in Figure 6 for example. If lientstune in the hannel before the third root node, R, at buket 13, i.e., tuning in at minoryle m1 or m2, they an reah DI3 at buket 22 in the urrent yle. This is beause in14

the urrent yle, the third root node at buket 13 is the last root node that ontains therelated entry, i.e., < a1; 15 >, to reah DI3. On the other hand, if they tune in at minoryle m3 or m4, they should wait for the next yle to reah DI3.Assume that Dis(a; b) represents the distane from the beginning of node a to the endof node b. The aess time for aessing DI3 ism1 +m2TotalSize�(m1 +m22 +Dis(R3rd; DI32nd))+ m3 +m4TotalSize�(m3 +m42 +Dis(R1st; DI31st)),where TotalSize = PLj=1mj, Rith represents the ith root node and DI3jth represents thejth DI3. The �rst term is for Case 1, and the seond one is for Case 2. Note that, R1stand DI31st are the �rst appearing root node and the �rst appearing DI3 in the next yle,respetively.In general, there are L minor yles (m1; m2; : : : ; mL) in one broadast yle, where Lis the least ommon multiple of all relative frequenies of disks. For data item DIi withrelative frequeny �z, there would be �z regions among the whole broadast yle for dataitem DIi. The �rst (�z � 1) regions are for Case 1, and the last one region is for Case 2.Therefore, for data item DIi, its aess time is alulated byAT (DIi) = �zXj=1 P(Æz)�jk=(j�1)�Æz+1mkTotalSize �(P(Æz)�jk=(j�1)�Æz+1mk2 +Dis(R(Æz�j+1)th; DIi(j+1)th)),where Æz = L�z . Note that, if the value of (Æz � j +1) in R(Æz�j+1)th is larger than that of L,R(Æz�j+1)th is R(Æz�j+1�L)th in the next yle. Similarly, if the value of (j + 1) in DIi(j+1)this larger than that of �z, DIi(j+1)th is data item DIi(j+1��z)th in the next yle. As a result,the average aess time is alulated by AvgAT =PSj=1 PKji=1 AT (i)Kj �DiskPr(j), 1 � j � S.Assume that Path(DIi) means the number of index bukets from the root node to dataitemDIi. For data itemDIi, its tuning time is alulated as TT (DIi) = 1+Path(DIi)+�,where � is the ratio of the size of a data buket to that of an index buket. In thisequation, one is for the initial probe. As a result, the average tuning time is alulated asAvgTT =PSj=1 PKji=1 TT (i)Kj �DiskPr(j), 1 � j � S.4.3 Experimental ResultsFor our proposed skewed index (SI), the default values for the parameters are shown inTable 2. For the exible index (FI), we set the default values for the number of setionsper segment and the number of loal index entries to 10 and 60, respetively. For the15

Table 2: Default settingsParameter Default valueN 10000..12000S 4� 1� 1.0 0.8� 20d 10exible distributed index (FDI), we let the bounded tuning time as lose as the tuningtime of our proposed SI. Moreover, the number of the distint index tree and the numberof the repliated index tree in FDI are set aording to the equations desribed in [14℄.The following experimental results are the average of 100 ases in whih the total numberof data items, N , is uniformly hosen from 10000 to 12000. Note that the average aesstime and the average tuning time are measured in terms of bukets. In this performaneevaluation, we will �rst show the e�ets of hanging �ve parameters, (a) �, (b) S, () �,(d) , and (e) �, individually. Next we will show how the degree of an index node a�etsthe performane in our proposed SI.To provide a fairly statisti basis for performane omparison between our proposedalgorithm and the ompared ones, we present on�dene intervals for our experimentalresults. A on�dene interval for a population mean is an interval of values that is likelyto ontain the true value of the population mean [19℄. The 95% on�dene interval for thepopulation mean provides a good balane between preision and reliability. Therefore, wepresent the 95% on�dene interval for our experimental results. A 95% on�dene intervalfor the population mean is given by (x�1:96� spns; x+1:96� spns), where x is the samplemean, s is the sample standard deviation, and ns is the number of the samples [19℄. The�rst term is alled the lower on�dene limit and the seond is alled the upper on�denelimit. If the upper on�dene limit of the experimental results for our proposed SI is lessthan the lower on�dene limit of those for the ompared algorithms, we an onlude thatSI has a statistially signi�ant better performane than the ompared algorithms.In the �rst experimental result, we vary the value of �, whih a�ets the relative fre-16

1 2 3 4 5

∆

70000

90000

110000

130000

A
ve

ra
ge

 a
cc

es
s

tim
e

NI
FI
FDI
SI

Figure 7: E�et of �: the average aess timeTable 3: E�et of �: the lower on�dene limit and the upper on�dene limit for theaverage aess time� NI L NI U FI L FI U FDI L FDI U SI L SI U1 73676.74 74978.33 118198.59 120271.17 102094.53 103901.85 81409.76 82847.712 74558.15 76041.31 109631.35 111791.42 104687.16 106775.49 77275.01 78811.683 81152.26 82704.35 112919.02 115055.78 113375.41 115551.17 82744.03 84325.64 89126.35 90938.23 119191.43 121587.2 123481.93 126177.23 90340.04 92174.915 96249.82 98173.59 124894.72 127361.27 132226.18 134878.06 97323.07 99265.68quenies of disks, from 1 to 5, while the other parameters are set to the default values.Figure 7 shows the average aess time with the inrease of the value of �. In Figure 7,x-axis represents the value of �, and y-axis represents the average aess time. Moreover,Table 3 lists the orresponding lower on�dene limit and upper on�dene limit for theaverage aess time. NI L, FI L, FDI L, and SI L represent the lower on�dene limits forNI, FI, FDI, and SI, respetively, under the 95% on�dene level. NI U, FI U, FDI U, andSI U represent the upper on�dene limits for NI, FI, FDI, and SI, respetively, under the95% on�dene level.As the value of � inreases, the di�erene between the relative frequenies of disksbeomes larger. This means that the size of the broadast yle will inrease, resulting17

Table 4: E�et of �: the average tuning time� NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U1 73676.74 74327.53 74978.33 358.27 359.12 359.97 27 27 27 26.57 26.57 26.572 74558.15 75299.73 76041.31 396.4 397.29 398.17 27 27 27 26.57 26.57 26.573 81152.26 81928.3 82704.35 440.72 441.6 442.47 27 27 27 26.57 26.57 26.574 89126.35 90032.29 90938.23 486.14 487.12 488.1 27 27 27 26.57 26.57 26.575 96249.82 97211.7 98173.59 530.42 531.43 532.44 27 27 27 26.57 26.57 26.57in the inrease of the average aess time, as shown in Figure 7. We an observe that NIhas the shortest average aess time among these four algorithms, as an be also seen inthe following experimental results. This is beause there is no index used in NI. However,using NI, mobile devies should onstantly tune in to the wireless hannel to examine data,onsuming a lot of energy. Adding index information to the broadast yle will inreasethe size of the broadast yle, resulting in the inrease of the average aess time. Atthe same time, it will redue the average tuning time. In Figure 7, although the averageaess time of SI is longer than that of NI, it is shorter than that of FI and FDI. SI hasaverage improvements of 26.72% and 25.35% on the average aess time over FI and FDI,respetively. (Note that the perentage of the improvement from our SI to algorithm X isomputed as (X�SI)X � 100.) Moreover, in Table 3, the values of SI U are always less thanthose of FI L and FDI L. (Note that those values are with an underline.) Therefore, wean onlude that SI has a statistially signi�ant shorter aess time than FI and FDI.Table 4 shows the orresponding average tuning time with the inrease of the value of�. Sine there is no index used in BD, lients should tune in to the hannel all the timewhile examining the broadast data items. Therefore, NI has the longest average tuningtime among these four algorithms. We an observe that SI has the shortest average tuningtime among these four algorithms. This is beause, in our SI, we onstrut the index treeaording to aess probabilities of data items. SI has average improvements of 99.97%,93.89% and 1.59% on the average tuning time over NI, FI and FDI, respetively. Therefore,the average tuning time of SI is redued as ompared with that of the others. Moreover,the values of SI U are always less than those of NI L, FI L and FDI L. Therefore, we anonlude that SI has a statistially signi�ant shorter tuning time than NI, FI and FDI.In the seond experimental result, we vary the value of S, the number of disks, from 418

4 5 6 7

S

60000

80000

100000

120000

140000

A
ve

ra
ge

 a
cc

es
s

tim
e

NI
FI
FDI
SI

Figure 8: E�et of S: the average aess timeto 7, while the other parameters are set to the default values. Figure 8 shows the averageaess time with the inrease of the value of S, in whih x-axis represents the value of S,and Table 5 lists the orresponding lower on�dene limit and upper on�dene limit forthe average aess time. In Figure 8, as the value of S inreases, the average aess timedereases exept S = 4. We an also observe that as the value of S inreases, the di�ereneof the average aess time between SI and NI is redued. In addition, the average aesstime of SI is shorter than that of FI and FDI. SI has average improvements of 33.63% and24.61% on the average aess time over FI and FDI, respetively. Moreover, in Table 5, thevalues of SI U are always less than those of FI L and FDI L. Therefore, we an onludethat SI has a statistially signi�ant shorter aess time than FI and FDI. Table 6 showsthe orresponding average tuning time with the inrease of the value of S. Among thesefour algorithms, SI has the shortest average tuning time. SI has average improvements of99.97%, 92.97% and 1.69% on the average tuning time over NI, FI and FDI, respetively.Moreover, the values of SI U are always less than those of NI L, FI L and FDI L. Therefore,we an onlude that SI has a statistially signi�ant shorter tuning time than NI, FI andFDI. 19

Table 5: E�et of S: the lower on�dene limit and the upper on�dene limit for theaverage aess timeS NI L NI U FI L FI U FDI L FDI U SI L SI U4 74231.73 75804.4 119082.32 121586.54 102864.87 105048.67 82022.77 83760.225 90396.88 92006.07 142150.94 144665.23 121831.12 124003.22 93056.18 94712.16 86865.21 88537.3 134859.87 137437.89 119395.8 121698.62 87859.92 89548.817 77031.21 78725.11 118536.94 121122.66 108789.95 111192.4 78206.01 79910.43Table 6: E�et of S: the average tuning timeS NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U4 74231.73 75018.06 75804.4 359 360.02 361.05 27 27 27 26.57 26.57 26.575 90396.88 91201.48 92006.07 385.96 386.99 388.02 27 27 27 26.61 26.61 26.616 86865.21 87701.25 88537.3 386.07 387.13 388.18 27 27 27 26.65 26.65 26.657 77031.21 77878.16 78725.11 377.51 378.57 379.63 27 27 27 26.35 26.35 26.35In the third experimental result, we vary the value of �, the Zipf fator for generatingthe aess probabilities of data items, from 0.8 to 1.3, while the other parameters are set tothe default values. With the same total number of data items, as the value of � inreases,the aess probabilities of data items beome inreasingly skewed. Therefore, as the value of� inreases, the number of data items in disk 1 dereases and that in the last disk inreasesby using Yee et al.'s algorithm [25℄ for assigning data items to disks. Figure 9 shows theaverage aess time with the inrease of the value of �, in whih x-axis represents the valueof �, and Table 7 lists the orresponding lower on�dene limit and upper on�dene limitfor the average aess time. In Figure 9, as the value of � inreases, the average aess timedereases. In that �gure, the average aess time of SI is shorter than that of FI and FDI.SI has average improvements of 31.14% and 20.45% on the average aess time over FI andFDI, respetively. Moreover, in Table 7, the values of SI U are always less than those ofFI L and FDI L. Therefore, we an onlude that SI has a statistially signi�ant shorteraess time than FI and FDI. Table 8 shows the average tuning time with the inrease ofthe value of �. Among these four algorithms, SI has the shortest average tuning time. SIhas average improvements of 99.96%, 92.63% and 2.59% on the average tuning time overNI, FI and FDI, respetively. Moreover, the values of SI U are always less than those ofNI L, FI L and FDI L. Therefore, we an onlude that SI has a statistially signi�antshorter tuning time than NI, FI and FDI. 20

0.8 0.9 1.0 1.1 1.2 1.3

θ

50000

70000

90000

110000

130000

A
ve

ra
ge

 a
cc

es
s

tim
e

NI
FI
FDI
SI

Figure 9: E�et of �: the average aess time
Table 7: E�et of �: the lower on�dene limit and the upper on�dene limit for theaverage aess time� NI L NI U FI L FI U FDI L FDI U SI L SI U0.8 84160.8 85920.76 134892.75 137695.2 113824.42 116206.27 92991.6 94936.150.9 79408.8 81009.93 127325.96 129875.5 108282.79 110468.89 87741.87 89510.791.0 73419.18 74954.71 117788.48 120233.55 101737.24 103869.36 81125.24 82821.651.1 68697.8 70118.53 110270.45 112532.72 95978.61 97969.08 75907.86 77477.461.2 64540.49 65877.07 103650.6 105778.9 90871 92759.07 71313.5 72790.281.3 61595.93 62848.85 98961.87 100956.95 88105.55 89903.81 68060.61 69444.91

Table 8: E�et of �: the average tuning time� NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U0.8 84160.8 85040.78 85920.76 371.95 373.1 374.25 27 27 27 26.57 26.57 26.570.9 79408.8 80209.36 81009.93 365.75 366.8 367.84 27 27 27 26.57 26.57 26.571.0 73419.18 74186.95 74954.71 357.93 358.94 359.94 27 27 27 26.57 26.57 26.571.1 68697.8 69408.16 70118.53 351.77 352.7 353.63 27 27 27 26.32 26.32 26.321.2 64540.49 65208.78 65877.07 346.35 347.22 348.09 27 27 27 25.89 25.89 25.891.3 61595.93 62222.39 62848.85 342.5 343.32 344.14 27 27 27 25.89 25.89 25.8921

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

γ

50000

70000

90000

110000

130000

A
ve

ra
ge

 a
cc

es
s

tim
e

NI
FI
FDI
SI

Figure 10: E�et of : the average aess timeIn the fourth experimental result, we vary the value of , the Zipf fator for generatingthe aess probabilities of disks, from 0.0 to 1.3, while the other parameters are set to thedefault values. As the value of inreases, the aess probability for data items in disk1 inreases and that in the last disk dereases. Figure 10 shows the average aess timewith the inrease of the value of , in whih x-axis represents the value of , and Table 9lists the orresponding lower on�dene limit and upper on�dene limit for the averageaess time. In Figure 10, as the value of inreases, the average aess time dereases.In that �gure, the average aess time of SI is shorter than that of FI and FDL. SI hasaverage improvements of 30.37% and 19.88% on the average aess time over FI and FDI,respetively. Moreover, in Table 9, the values of SI U are always less than those of FI Land FDL L. Therefore, we an onlude that SI has a statistially signi�ant shorter aesstime than FI and FDL. Table 10 shows the average tuning time with the inrease of thevalue of . Among these four algorithms, SI has the shortest average tuning time. SI hasaverage improvements of 99.97%, 92.77% and 1.47% on the average tuning time over NI,FI and FDI, respetively. Moreover, the values of SI U are always less than those of NI L,FI L and FDI L. Therefore, we an onlude that SI has a statistially signi�ant shorter22

Table 9: E�et of : the lower on�dene limit and the upper on�dene limit for theaverage aess time NI L NI U FI L FI U FDI L FDI U SI L SI U0.0 90301.72 92041.2 134656.34 137230.76 119859.41 122172.7 98079.61 99968.590.1 88815.14 90629.76 133512.38 136219.95 118446.28 120870.87 96644.55 98618.80.2 87117.14 88918.64 132066.31 134777.13 116755.86 119174.63 94981.95 96945.730.3 83995.94 85818.85 128467.03 131234.25 113150.51 115611.09 91765.79 93756.960.4 82841.82 84499.74 127844.75 130384.44 112193.17 114442.83 90696.96 92511.740.5 79258.43 80852.61 123479.51 125944.49 107929.19 110104.44 86965.02 88713.910.6 77405.94 78922.93 121752.89 124121.14 106006.57 108088.66 85125.74 86793.750.7 76162.65 77813.57 120967.96 123570.67 104914.87 107193.61 83954.58 85774.080.8 74078.8 75597.73 118838.81 121257.46 102652.63 104761.98 81853.71 83531.780.9 71507.6 73014.08 115886.91 118310.1 99689.68 101794.68 79206.73 80875.161.0 69769.7 71288.46 114227.27 116695.24 97864.52 99999.14 77474.51 79160.681.1 68144.63 69412.98 112711.6 114793.87 96177.46 97971.29 75860.89 77272.611.2 66905.27 68284.41 111791.73 114079.13 95015.35 96977.9 74670.07 76208.951.3 64884.06 66286.54 109524.79 111874.63 92714.35 94722.68 72598.27 74167.25Table 10: E�et of : the average tuning time NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U0.0 90301.72 91171.46 92041.2 407.24 408.29 409.35 27 27 27 26.75 26.75 26.750.1 88815.14 89722.45 90629.76 401.71 402.82 403.93 27 27 27 26.73 26.73 26.730.2 87117.14 88017.89 88918.64 395.94 397.05 398.16 27 27 27 26.71 26.71 26.710.3 83995.94 84907.39 85818.85 388.44 389.57 390.7 27 27 27 26.69 26.69 26.690.4 82841.82 83670.78 84499.74 383.42 384.46 385.5 27 27 27 26.66 26.66 26.660.5 79258.43 80055.52 80852.61 375.39 376.4 377.41 27 27 27 26.64 26.64 26.640.6 77405.94 78164.44 78922.93 369.61 370.58 371.55 27 27 27 26.62 26.62 26.620.7 76162.65 76988.11 77813.57 364.7 365.77 366.83 27 27 27 26.59 26.59 26.590.8 74078.8 74838.27 75597.73 358.8 359.79 360.78 27 27 27 26.57 26.57 26.570.9 71507.6 72260.84 73014.08 352.35 353.34 354.33 27 27 27 26.54 26.54 26.541.0 69769.7 70529.08 71288.46 347.09 348.1 349.12 27 27 27 26.52 26.52 26.521.1 68144.63 68778.81 69412.98 342.11 342.96 343.82 27 27 27 26.5 26.5 26.51.2 66905.27 67594.84 68284.41 337.77 338.71 339.65 27 27 27 26.47 26.47 26.471.3 64884.06 65585.3 66286.54 332.5 333.46 334.43 27 27 27 26.45 26.45 26.45tuning time than NI, FI and FDI.In the �fth experimental result, we vary the value of �, the ratio of the size of a data nodeto that of an index node, from 10 to 50, while the other parameters are set to the defaultvalues. Figure 11 shows the average aess time with the inrease of the value of �, in whihx-axis represents the value of �, and Table11 lists the orresponding lower on�dene limitand upper on�dene limit for the average aess time. In Figure 11, as the value of �inreases, the average aess time inreases. For the same size of an index node and thesame total number of data items, as the value of � inreases, the size of the broadast yleinreases, resulting in the inrease of the average aess time. In that �gure, the averageaess time of SI is shorter than that of FI and FDL. SI has average improvements of23

10 20 30 40 50

η

0

50000

100000

150000

200000

250000

300000

A
ve

ra
ge

 a
cc

es
s

tim
e

NI
FI
FDI
SI

Figure 11: E�et of �: the average aess timeTable 11: E�et of �: the lower on�dene limit and the upper on�dene limit for theaverage aess time� NI L NI U FI L FI U FDI L FDI U SI L SI U10 36700.2 37515.61 59319.49 60617.89 58353.24 59653.95 40781.01 41686.7620 73787.85 75257.54 118375.51 120715.76 102248.99 104289.63 81532.41 83156.0630 111038.35 113274.87 177690.87 181252.17 144170.62 147079.21 122461.92 124928.2140 147442.97 150342.41 235659.29 240276.17 184706.71 188343.81 162458.59 16565350 183761.84 187368.51 293491.18 299234.22 224479.83 228891.3 202361.64 206333.0731.11% and 17.47% on the average aess time over FI and FDI, respetively. Moreover, inTable 11, the values of SI U are always less than those of FI L and FDL L. Therefore, wean onlude that SI has a statistially signi�ant shorter aess time than FI and FDL.Table 12 shows the average tuning time with the inrease of the value of �. Among thesefour algorithms, SI has the shortest average tuning time. SI has average improvements of99.97%, 91.6% and 1.39% on the average tuning time over NI, FI and FDI, respetively.Moreover, the values of SI U are always less than those of NI L, FI L and FDI L. Therefore,we an onlude that SI has a statistially signi�ant shorter tuning time than NI, FI andFDI.So far, we have shown that SI has a better performane than the ompared ones. In the24

Table 12: E�et of �: the average tuning time� NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U10 36700.2 37107.91 37515.61 300.01 300.54 301.07 17 17 17 16.57 16.57 16.5720 73787.85 74522.69 75257.54 358.42 359.38 360.33 27 27 27 26.57 26.57 26.5730 111038.35 112156.61 113274.87 417.04 418.49 419.95 37 37 37 36.57 36.57 36.5740 147442.97 148892.69 150342.41 474.55 476.44 478.33 47 47 47 46.57 46.57 46.5750 183761.84 185565.18 187368.51 531.95 534.31 536.66 57 57 57 56.57 56.57 56.57

5 10 15 20
d

82000

82400

82800

83200

A
ve

ra
ge

 a
cc

es
s

tim
e

SI

5 10 15 20
d

25.1

25.6

26.1

26.6

27.1

27.6

A
ve

ra
ge

 tu
ni

ng
 ti

m
e

SI

Figure 12: E�et of d: (a) the average aess time; (b) the average tuning time.last experimental result, we evaluate how the degree of an index node a�ets the averageaess time and the average tuning time in our proposed SI. In this result, we vary thedegree of an index node, d, from 5 to 20, while the other parameters are set to the defaultvalues. Figure 12-(a) and Figure 12-(b) show the average aess time and the averagetuning time, respetively, with the inrease of the value of d. In Figure 12-(a), SI hasthe shortest average aess time with d = 10 under the setting. The average aess timeis a�eted by the index alloation so that there is no diret a�etion by the inrease ofthe value of d. Moreover, as the value of d inreases, the more number of index entriesin a buket should be examined. On the other hand, in Figure 12-(b), as the value of dinreases, the average tuning time dereases. For the same total number of data items, asthe value of d inreases, the height of the skewed index tree may derease, resulting in thederease of the average tuning time.
25

5 ConlusionsIn this paper, we have proposed a skewed index over Broadast Disks under skewed aesspatterns on the nonuniform data broadast. Our proposed algorithm alloates the indexnodes for the popular data items more times than those for the less popular ones in abroadast yle. In this way, both the aess time and the tuning time an be redued inthe proposed algorithm. From our experimental results, we have shown that the proposedalgorithm has average improvements of up to 33.63% and 25.35% on the average aesstime over the exible index and the exible distributed index, respetively. Moreover, theproposed algorithm has average improvements of up to 93.89% and 2.59% on the averagetuning time over the exible index and the exible distributed index, respetively. How toinvestigate the index struture for data with skewed aess patterns over multiple hannelsis the possible future work.Referenes[1℄ S. Aharya, M. Franklin, S. Zdonik, and R. Alongso, \Broadast Disks: Data Management forAsymmetri Communiations Environments," Pro. of the 1995 ACM SIGMOD Int. Conf. onManagement of Data, pp. 199{210, 1995.[2℄ B. H. Bloom, \Spae/Time Trade-o�s in Hash Coding with Allowable Errors," Comm. ofthe ACM, Vol. 13, No. 7, pp. 422{426, July 1970.[3℄ M. S. Chen, K. L. Wu, and P. S. Yu, \Optimizing Index Alloation for Sequential DataBroadasting in Wireless Mobile Computing," IEEE Trans. on Knowledge and Data Eng.,Vol. 15, No. 1, pp. 161{173, Jan./Feb. 2003.[4℄ Y. D. Chung and M. H. Kim, \An Index Repliation Sheme for Wireless Data Broadasting,"The Journal of Systems and Software, Vol. 51, No. 3, pp. 191{199, May 2000.[5℄ Q. L. Hu, W. C. Lee, and D. L. Lee, \Indexing Tehniques for Wireless Data BroadastUnder Data Clustering and Sheduling," Pro. of the 8th Int. Conf. on Information andKnowledge Management, pp. 351{358, 1999.[6℄ J. J. Hung and Y. Leu, \EÆient Index Cahing for Data Dissemination in Mobile ComputingEnvironments," The Journal of Systems and Software, Vol. 79, No. 1, pp. 93{106, Jan. 2006.26

[7℄ T. Imielinski, S. Viswanathan, and B. R. Badrinath, \Power EÆient Filtering of Data onAir," Pro. of the 4th Int. Conf. on Extending DataBase Tehnology, pp. 245{258, 1994.[8℄ T. Imielinski, S. Viswanathan, and B. R. Badrinath, \Data on Air: Organization and Aess,"IEEE Trans. on Knowledge and Data Eng., Vol. 9, No. 3, pp. 353{372, May/June 1997.[9℄ S. Jung, B. Lee, and S. Pramanik, \A Tree-Strutured Index Alloation Method with Repli-ation over Multiple Broadast Channels in Wireless Environments," IEEE Trans. on Knowl-edge and Data Eng., Vol. 17, No. 3, pp. 311{325, Marh 2005.[10℄ D. Katsaros, N. Dimokas, and Y. Manolopoulos, \Generalized Indexing for Energy-EÆientAess to Partially Ordered Broadast Data in Wireless Networks," Pro. of the 10th Int.Database Eng. and Appliations Symp., pp. 89{96, 2006.[11℄ W. C. Lee and D. L. Lee, \Signature Cahing Tehniques for Information Filtering in MobileEnvironments," ACM Wireless Networks, Vol. 5, No. 1, pp. 57{67, Jan. 1999.[12℄ S. C. Lo and A. L. P. Chen, \An Adaptive Aess Method for Broadast Data Under anError-Prone Mobile Environment," IEEE Trans. on Knowledge and Data Eng., Vol. 12,No. 4, pp. 609{620, July/Aug. 2000.[13℄ W. C. Peng and M. S. Chen, \EÆient Channel Alloation Tree Generation for Data Broad-asting in a Mobile Computing Environment,"Wireless Networks, Vol. 9, No. 2, pp. 117{129,Marh 2003.[14℄ A. Seifert and J. J. Hung, \FlexInd: A Flexible and Parameterizable Air-Indexing Sheme forData Broadast Systems," Pro. of the 10th Int. Conf. on Extending Database Tehnology,LNCS, Vol. 3896, pp. 902{920, 2006.[15℄ J. H. Shen and Y. I. Chang, \A Skewed Distributed Indexing for Skewed Aess Patterns onthe Wireless Broadast," The Journal of Systems and Software, Vol. 80, No. 5, pp. 711{723,May 2007.[16℄ N. Shivakumar and S. Venkatasubramanian, \EÆient Indexing for Broadast Based WirelessSystems," ACM/Baltzer Mobile Networks and Appliations, Vol. 1, No. 4, pp. 433{446, De.1996.[17℄ K. L. Tan and B. C. Ooi, \On Seletive Tuning in Unreliable Wireless Channels," Data andKnowledge Eng., Vol. 28, No. 2, pp. 209{231, Nov. 1998.27

[18℄ K. L. Tan, J. X. Yu, and P. K. Eng, \Supporting Range Queries in a Wireless Environmentwith Nonuniform Broadast," Data and Knowledge Eng., Vol. 29, No. 2, pp. 201{221, Feb.1999.[19℄ M. F. Triola, Elementary Statistis. Addison Wesley Longman, In., 7 ed., 1998.[20℄ F. Tsakiridis, P. Bozanis, and D. Katsaros, \Interpolating the Air for Optimizing WirelessData Broadast," Pro. of the 5th ACM Int. Workshop on Mobility Management and WirelessAess, pp. 112{119, 2007.[21℄ J. Xu, W. C. Lee, X. Tang, Q. Gao, and S. Li, \An Error-Resilient and Tunable DistributedIndexing Sheme for Wireless Data Broadast," IEEE Trans. on Knowledge and Data Eng.,Vol. 18, No. 3, pp. 392{404, Marh 2006.[22℄ X. Yang and A. Bouguettaya, \Adaptive Data Aess in Broadast-Based Wireless Envi-ronments," IEEE Trans. on Knowledge and Data Eng., Vol. 17, No. 3, pp. 326{338, Marh2005.[23℄ Y. Yao, X. Tang, E. P. Lim, and A. Sun, \An Energy-EÆient and Aess Lateny OptimizedIndexing Sheme for Wireless Data Broadast," IEEE Trans. on Knowledge and Data Eng.,Vol. 18, No. 8, pp. 1111{1124, Aug. 2006.[24℄ W. G. Yee, S. B. Navathe, and E. Omieinski, \EÆient Data Alloation over MultipleChannels at Broadast Servers," IEEE Trans. on Computers, Vol. 51, No. 10, pp. 1231{1236, Ot. 2002.[25℄ W. G. Yee, S. B. Navathe, E. Omieinski, and C. Jermaine, \Bridging the Gap BetweenResponse Time and Energy-EÆieny in Broadast Shedule Design," Pro. of the 8th Int.Conf. on Extending Database Tehnology, pp. 572{589, 2002.[26℄ J. X. Yu and K. L. Tan, \An Analysis of Seletive Tuning Shemes for Nonuniform Broad-ast," Data and Knowledge Eng., Vol. 22, No. 3, pp. 319{344, May 1997.[27℄ B. Zheng and D. L. Lee, \Information Dissemination via Wireless Broadast," Comm. of theACM, Vol. 48, No. 5, pp. 105{110, May 2005.[28℄ B. Zheng, W. C. Lee, and D. L. Lee, \Spatial Queries in Wireless Broadast Systems,"Wireless Networks, Vol. 10, No. 6, pp. 723{736, Nov. 2004.
28

