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tData broad
ast is an eÆ
ient dissemination method to deliver information to mobile 
lientsthrough the wireless 
hannel. It allows a huge number of the mobile 
lients simultaneouslya

ess data in the wireless environments. In real-life appli
ations, more popular data maybe frequently a

essed by 
lients than less popular ones. Under su
h s
enarios, A
haryaet al.'s Broad
ast Disks algorithm (BD) allo
ates more popular data appeared more timesin a broad
ast period than less popular ones, i.e., the nonuniform broad
ast, and providesa good performan
e on redu
ing 
lient waiting time. However, mobile devi
es should 
on-stantly tune in to the wireless broad
ast 
hannel to examine data, 
onsuming a lot of energy.Using index te
hnologies on the broad
ast �le 
an redu
e a lot of energy 
onsumption ofthe mobile devi
es without signi�
antly in
reasing 
lient waiting time. In this paper, wepropose an eÆ
ient nonuniform index 
alled the skewed index, SI, over BD. The proposedalgorithm builds an index tree a

ording to skewed a

ess patterns of 
lients, and allo
atesindex nodes for the popular data more times than those for the less popular ones in abroad
ast 
y
le. From our experimental study, we have shown that our proposed algorithmoutperforms the 
exible index and the 
exible distributed index.(Keywords: broad
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1 Introdu
tionDue to asymmetri
 
ommuni
ations in the wireless environments, wireless data broad
astis an eÆ
ient way to simultaneously disseminate information to a large number of mobile
lients. Under su
h environments, servers 
y
li
ally broad
ast data on the wireless 
hannel,and mobile 
lients use battery-powered devi
es, e.g., palmtops, to tune in to the wirelessbroad
ast 
hannel to retrieve data without sending requests to the servers. Data broad-
ast is good at the s
enarios where mobile 
lients have the same 
ommonly interested dataon a regular basis. In addition, it s
ales well when the number of the mobile 
lients isdramati
ally in
reasing. Mi
rosoft's Dire
tBand Network, for example, utilizes the broad-
ast te
hnique to provide wireless data servi
es [21, 27℄. This wireless network utilizesunused FM radio spe
trum to 
onstantly broad
ast frequently 
hanging information su
has news, weather, sports, and sto
ks. Then, low-powered mobile devi
es, e.g., wat
hes, 
an
ontinuously retrieve these timely information at anytime and anywhere.Mobile devi
es have s
ar
e energy resour
es, i.e., batteries. Due to power limits, energy
onservation is a 
ru
ial issue for the mobile devi
es. When a 
lient requests a desired data,the mobile devi
e must a
tively listen to the broad
ast 
hannel to retrieve and examine datauntil the desired data is downloaded. That is, the mobile devi
e should be 
ontinuouslyin the a
tive mode to retrieve data. This is ineÆ
ient in terms of energy 
onsumption forthe mobile devi
e to 
ontinuously retrieve a lot of data on the 
hannel just to pi
k up oneof them [27℄. To solve this problem, sele
tive tuning is introdu
ed su
h that the mobiledevi
e 
an slip into the doze mode most of the time and listen to the 
hannel only whenthe relevant data arrives [7℄. As a result, it is advantageous to use index te
hnologies onthe wireless data broad
ast to guide the 
lients to retrieve data in the listening pro
ess.In this way, the mobile devi
es 
an be only a
tivated to retrieve the relevant information,thus redu
ing a lot of energy 
onsumption and lengthening their operating time withoutre
harging.In the wireless data broad
ast environments, the a

ess time and the tuning time are twoperforman
e measures [8℄. The a

ess time is the average time elapsed from the moment a
lient requests a data item identi�ed by its primary key, to the moment when the requireddata item is downloaded by the 
lient. On the other hand, the tuning time is the amount of1



time spent by a 
lient listening to the 
hannel. This will determine the energy 
onsumptionof the mobile devi
e to retrieve the required data.In the literature, many studies have been made on redu
ing energy 
onsumption ofmobile devi
es in the wireless environments. The studies in [4, 5, 7, 8, 11, 20, 21, 22℄ haveproposed index s
hemes for the uniform broad
ast on a single broad
ast 
hannel. On theuniform broad
ast, all data items are broad
ast on
e in a broad
ast 
y
le. The variant-fanout index tree [3℄ and the skewed distributed indexing [15℄ were presented based ondata popularity patterns. In [10℄, Katsaros et al. proposed an unbalan
ed-tree index tohandle partially ordered data under skewed a

ess patterns. For supporting spatial querieson the wireless data broad
ast, spatial indexes were proposed in [27, 28℄. The study in [6℄worked on index 
a
hing. The studies in [14, 17, 18, 23, 26℄ proposed index s
hemes for thenonuniform broad
ast on a single broad
ast 
hannel. On the nonuniform broad
ast, dataitems are broad
ast a

ording to their a

ess frequen
ies. While the above s
hemes assumethat data items are broad
ast over a single 
hannel, there have also been studies that workon broad
asting over multiple 
hannels. The work in [16℄ studied index allo
ation, that in[13, 24℄ dis
ussed data allo
ation, and that in [9℄ fo
used on index and data allo
ation onthe wireless broad
ast over multiple 
hannels. The work in [12, 17℄ 
on
erned on the issueof fault toleran
e.In real-life appli
ations, more popular data may be frequently a

essed by 
lients thanless popular ones, i.e., skewed data a

ess. For example, the weather 
onditions of hot at-tra
tions may be more frequently a

essed than those of 
old ones. Under su
h the s
enario,A
harya et al. [1℄ proposed Broad
ast Disks (BD) to allo
ate more popular data appearedmore times in a broad
ast 
y
le than less popular ones, i.e., a nonuniform broad
ast. BDprovides a way of organizing data into a popularity hierar
hy whi
h results in a skewedtransmission of data and qui
ker a

ess to more popular data [24℄.Under the nonuniform broad
ast environment, BD has a good performan
e on the av-erage a

ess time [13℄. However, when requesting a data item of interest, mobile 
lientsshould 
onstantly tune in to the broad
ast 
hannel to 
he
k the re
eived data items untilthe request item is downloaded. This in
reases the tuning time that is, on average, halfof a broad
ast period of the whole �le, i.e., a broad
ast 
y
le. The 
exible index (FI )2



[26℄ has been proposed to support sele
tive tuning over BD. However, FI does not takeskewed a

ess patterns of 
lients into 
onsideration. The 
exible distributed index (FDI )[14℄ interleaves the tree-based indexes in one broad
ast 
y
le with a given tuning timeon the nonuniform broad
ast. However, FDI may repli
ate too many index trees in onebroad
ast 
y
le, resulting in the in
rease of the a

ess time. Therefore, in this paper, wepropose an eÆ
ient nonuniform index 
alled the skewed index, SI, whi
h is built a

ordingto skewed a

ess patterns, over BD. Our proposed algorithm also allo
ates index nodes forpopular data more times than those for less popular ones in a broad
ast 
y
le. From ourexperimental results, we have shown our proposed algorithm outperforms FI and FDI inthe a

ess time and the tuning time.The rest of this paper is organized as follows. In Se
tion 2, we give a brief des
riptionof A
harya et al.'s BD. In Se
tion 3, we present our proposed skewed index. In Se
tion 4,we study the performan
e of the proposed algorithm. Finally, a 
on
lusion is presented inSe
tion 5.2 Ba
kgroundA
harya et al. [1℄ have proposed the use of a periodi
 dissemination ar
hite
ture in the
ontext of wireless mobile systems. They 
all the ar
hite
ture Broad
ast Disks, BD. Thealgorithm has the following steps:1. Order data items (= N) from the hottest (most popular) to the 
oldest.2. Partition the list of the data items (= N) into multiple disks (= S disks), where ea
hdisk Di, 1 � i � S, 
ontains pages (= Ki) with similar a

ess probabilities. That is,N =PSi=1Ki.3. Choose the relative frequen
y �i of broad
ast for ea
h disk Di, 1 � i � S.4. Split ea
h disk into a number of smaller units, 
alled 
hunks Cij, where Cij denotesthe j'th 
hunk in disk Di. First, 
al
ulate L as the LCM (Least Common Multiple) ofthe relative frequen
ies. Then, split ea
h disk Di into NCi = L�i 
hunks, 1 � i � S,where NCi denotes the number of 
hunks in disk Di.3



5. Create the broad
ast program by interleaving the 
hunks of ea
h disk in the followingmanner:for i := 1 to L dobeginfor j := 1 to S dobegink := ((i� 1) mod NCj) + 1;Broad
ast 
hunk Cj;k;end;end.Figure 1 shows an example of the broad
ast program generation, where S = 3, N = 7,K1 = 1, K2 = 2, K3 = 4, �1 = 4, �2 = 2, and �3 = 1. These disks are split into 
hunksa

ording to Step 4 of the algorithm. That is, L (= LCM(4; 2; 1)) is 4, and we haveNC1 = 1 (the number of 
hunks in disk D1), NC2 = 2, NC3 = 4. The resulting broad
ast
onsists of 4 minor 
y
les (
ontaining one 
hunk from ea
h disk), i.e., m1; m2; m3 andm4, whi
h is the LCM of the relative frequen
ies. The resulting broad
ast has a periodof 12 pages. This broad
ast produ
es a three-level memory hierar
hy in whi
h disk oneis the smallest and fastest level and disk three is the largest and slowest level. Thus, themulti-level broad
ast 
orresponds to the traditional notion of a memory hierar
hy [1℄.3 A Skewed Index for Broad
ast DisksIn this se
tion, to provide eÆ
iently sele
tive tuning over A
harya et al.'s Broad
ast Disks[1℄, we present our proposed skewed index and the 
orresponding a

ess proto
ol.3.1 AssumptionsThis work fo
uses in broad
ast-based wireless environments. Some assumptions shouldmake our work more 
exible. The assumptions in this paper are as follows.1. Data a

ess patterns are skewed.2. Data items are broad
ast over the reliably single 
hannel.4
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(d)Figure 1: An example of broad
ast disks: (a) data items sorted in the des
ending orderof their popularity; (b) three disks with the 
orresponding data items; (
) 
hunks for ea
hdisk; (d) the �nal broad
ast 
y
le.3. Data items are broad
ast non-uniformly; that is, the more popular data items appearmore times than the less popular ones in one broad
ast 
y
le.4. Clients request only one data item at one time; i.e., the single query.5. A bu
ket is a logi
al transmission unit on a broad
ast 
hannel. An index node 
anbe put into a bu
ket, the index bu
ket, and a data node 
an be put into a bu
ket ormore, the data bu
ket.3.2 The Proposed AlgorithmThe basi
 idea is that we build lo
al index trees for disks, and then 
ombine them from thelast disk to the �rst one to form a skewed index tree. Be
ause fast disks have fewer dataitems than slow ones, the size of the index trees for the fast disks is smaller than that forthe slow ones. Therefore, the 
ombined index tree is skewed. This 
an redu
e the indexprobes for the popular data. Based on the nonuniform broad
ast in BD, we 
an allo
atethe index nodes for the more popular data items more times than those for the less popularones in a broad
ast 
y
le. 5



The algorithm is pro
eeded as follows.1. Constru
t a lo
al index tree for ea
h disk a

ording to the degree of an index node,d, in a bottom-up manner. Note that d is set manually.2. Combine the lo
al index trees from the last disk to the �rst one a

ording to d.3. Distribute index nodes over the broad
ast 
y
le generated by BD by usingPro
edureAllo
ateIndexNode(B), as shown in Figure 2, where B is a linked list that stores thebroad
ast 
y
le generated by BD.4. Che
k whether the �rst node of ea
h minor 
y
le is the root node. If not, then insertthe root node in front of that minor 
y
le.Let us use an example to illustrate the proposed algorithm. Take the data items indisks D1, D2 and D3 in Figure 1-(b) as an input. In Step 1, our algorithm �rst 
onstru
tsa lo
al index tree for ea
h disk (Di) in a bottom-up manner as shown in Figure 3-(a),where the degree of ea
h index node, d, is 2. Data items are atta
hed to index nodes withd degrees at the same level and then these index nodes are re
ursively pro
essed in thesame way until the root node is 
reated. For ea
h lo
al tree, bran
hes between a parentnode and its 
hildren are bi-dire
tional, so a node 
an easily �nd its parent and 
hildren.Entries in ea
h index nodes are generated through the Bloom �lter [2℄, whi
h is used to testwhether an element is a member of a set. Therefore, a data item 
an be 
he
ked whetherit is 
overed by the subtree. It means that through the Bloom �lter, a mobile 
lient 
andetermine whi
h bran
h to follow in the index tree. Applying the Bloom �lter may havea very small false-positive (false-drop) probability. In su
h a 
ase, more than one bran
hshould be followed. However, this 
an be adjusted to an insigni�
ant e�e
t.In Step 2, our algorithm then 
ombines these lo
al index trees from the last disk to the�rst one by 
onsidering the degree of an index node, i.e., d = 2. Figure 3-(b) shows anindex tree after the last two lo
al index trees, the ones for D2 and D3, are 
ombined. The�nal index tree for the data items in Figure 1-(b) is shown in Figure 3-(
). In this skewedindex tree, we 
an observe that the level for the more popular data items is higher thanthat for the less popular ones. 6



1: pro
edure Allo
ateIndexNode (B)2: begin /* B is a linked list that stores the broad
ast 
y
le generated by BD. *//* 
 is used to re
ord the 
urrent pro
essing data item in B. */3: 
 := the �rst item of B;4: while (
 6= null) do /* Che
k if it is the end of the broad
ast 
y
le. */5: begin6: 
opy the 
ontent of 
 to dup to start traversing the index tree;/* Traverse the index tree from the data node to the root node. */7: while (dup 6= null) do /* Che
k if the root node is traversed. */8: begin9: if dup = root then /* root is the root node of the index tree. *//* p is used to re
ord the parent of the 
urrent visited node. */10: p := null11: else12: p := the parent of dup;13: if dup is the �rst 
hild of p then14: begin15: push p into IndexSta
k; /* IndexSta
k is a sta
k. */16: dup := p; /* The parent p of node dup is then visited. */17: end18: else19: begin20: repeat21: pop an index node a from IndexSta
k and output a;22: until IndexSta
k is empty;23: output 
;24: break;25: end;26: end;27: 
 := the following item of 
 in B; /* Pro
ess the next data item. */28: end;29: end; Figure 2: Pro
edure Allo
ateIndexNode
7
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(
)Figure 3: The pro
ess of 
onstru
ting a skewed index tree: (a) lo
al index trees; (b) anindex tree after the last two lo
al index trees are 
ombined; (
) the �nal skewed index tree.In Step 3, after the skewed index tree is 
onstru
ted, the algorithm then uses Pro
edureAllo
ateIndexNode, with the broad
ast 
y
le shown in Figure 1-(d) as an input, to distributeindex nodes over the broad
ast 
y
le. Pro
edure Allo
ateIndexNode allo
ates the indexnodes for the data items in the fast disks to one broad
ast 
y
le more times than those inthe slow ones. In Pro
edure Allo
ateIndexNode, data items of the broad
ast 
y
le stored inlinked list B are sequentially pro
essed one by one. The pro
edure will traverse the indextree from the data node to the root node to determine whi
h index nodes should be putbefore the pro
essed data item. The poli
y is des
ribed as follows. If the visited node isthe �rst 
hild of its parent, its parent should be put before this node, and then its parentwill be visited. Otherwise, the pro
edure stops traversing the index tree. The reason thatwe put the 
orresponding index nodes before their �rst 
hild node is that these index nodes
an 
over their 
orresponding data items in the same broad
ast 
y
le. If we only put these8
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(a) (b) (
)Figure 4: The 
ontent of sta
k IndexSta
k for data items in minor 
y
le m1: (a)IndexSta
k of dealing with data item 1; (b) IndexSta
k of dealing with data item 2;(
) IndexSta
k of dealing with data item 4.index nodes before their other 
hild nodes, some data items 
overed by these index nodeshave been broad
ast yet, so that they 
annot be retrieved in the same broad
ast 
y
le.This is a dire
tory miss, whi
h will in
rease the a

ess time. On the other hand, if we putthese index nodes before ea
h data node, it will lengthen the broad
ast 
y
le, in
reasingthe a

ess time.In Pro
edure Allo
ateIndexNode, for the �rst data item 1 in the broad
ast 
y
le in Figure1-(d), sin
e it is not the end of the broad
ast 
y
le, it is 
opied to dup to start traversingthe index tree from it to the root node. Sin
e it is not the root node of the skewed indextree shown in Figure 3-(
), its parent node R in that index tree is assigned to p (lines 9{12).(Note that we have to 
he
k the relationship between dup and p later; that is, we have to
he
k whether dup is the �rst 
hild of p.) From line 13 to line 25, sin
e data item 1 is the�rst 
hild of its parent p (i.e., R) in the index tree shown in Figure 3-(
), its parent R ispushed into sta
k IndexSta
k shown in Figure 4-(a) and its parent R will then be visited.(Note that sin
e we traverse the index tree from the data node to the root node, we needto use sta
k IndexSta
k to reverse the output order of the index nodes.) In the se
ond runof the inner while loop, sin
e the 
urrent node is the root node in the index tree, p is set tonull. Therefore, the if 
ondition about whether dup (i.e., R) is the �rst 
hild of p is false,and all index nodes in IndexSta
k will be popped out and put before data item 1 (lines19{25) in the pop-out order. This result is shown in the leftmost part of Figure 5-(a).For the se
ond data item 2 in Figure 1-(d), sin
e data item 2 and index node b1 are the�rst 
hildren of their parents in the index tree shown in Figure 3-(
), their parents b1 anda1 are pushed into IndexSta
k shown in Figure 4-(b), respe
tively. When a1 is visited,9
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(b)Figure 5: Index distribution: (a) the distribution of index nodes; (b) the �nal broad
ast
y
le with index nodes interleaved.sin
e it is not the �rst 
hild of its parent R in the index tree, index nodes a1 and b1 arepopped out sequentially, and then put before data item 2 in the broad
ast 
y
le, as shownin Figure 5-(a). For the third data item 4 in Figure 1-(d), sin
e data item 4 and indexnode 
1 are the �rst 
hildren of their parents in the index tree, their parents 
1 and b2 arepushed into IndexSta
k shown in Figure 4-(
), respe
tively. When b2 is visited, sin
e it isnot the �rst 
hild of its parent a1 in the index tree, index nodes 
1 and b2 are popped outsequentially, and then put before data item 4 in the broad
ast 
y
le, as shown in Figure5-(a). Until now, the 
ontent of minor 
y
le m1 is generated, as shown in the leftmost partof Figure 5-(b), where mi, 1 � i � 4; means the ith minor 
y
le in this broad
ast 
y
le.In the same way, Pro
edure Allo
ateIndexNode pro
esses all the rest of the data items.Finally, the distribution of index nodes over the broad
ast 
y
le is shown in Figure 5-(a),and the 
orresponding result of the broad
ast 
y
le with index nodes interleaved is shownin Figure 5-(b).In Step 4, sin
e 
lients need the root node to start traversing index nodes, if the �rstnode of a minor 
y
le is not the root node, our algorithm will insert the root node in frontof that minor 
y
le to help the 
lients qui
kly start traversing the 
orresponding indexnodes. In Figure 5-(b), sin
e the �rst node of ea
h minor 
y
le is the root node, there isno 
hange for the �nal result after the pro
essing of Step 4.Entries in ea
h index node in Figure 5-(b) are shown in Figure 6, where the number10
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* BN : Bu
ket number* offseti is the o�set to the beginning of the bu
ket 
ontaining idi.Figure 6: Entries in ea
h index nodebelow the bu
ket is the bu
ket number starting from 1. To guide 
lients to qui
kly starttraversing the index nodes, ex
ept the root nodes, ea
h index or data node also has an entrydire
ting them to the nearest root node, not shown in Figure 6. Ea
h entry in an indexnode is of the form < id; offset >, where id is an identi�er generated through the Bloom�lter [2℄ for a data item or index node and offset is the distan
e in terms of bu
kets fromthe end of the 
urrent bu
ket to the beginning of the bu
ket 
ontaining id. For example, inFigure 6, the �rst entry < 1; 0 > at bu
ket number 1, i.e., R, represents that data item 1 is0 bu
ket away from the 
urrent bu
ket. Note that data item 1 is the �rst 
hild of root nodeR as shown in Figure 3-(
). The se
ond entry < a1; 1 > represents that if 
lients want toget the data items 
overed by a1, they should wait 1 bu
ket to rea
h the bu
ket 
ontaininga1. Note that, in Figure 6, the se
ond entries < b2; 13 > and < a1; 5 > at bu
ket numbers15 and 20 guide the 
lients to the bu
kets 
ontaining b2 and a1, respe
tively, in the next
y
le.3.3 A

ess Proto
olWe now present the a

ess proto
ol of the proposed algorithm. The a

ess proto
ol is asfollows.1. Tune in to the broad
ast 
hannel to re
eive the 
urrent bu
ket.11



2. Read the 
urrent bu
ket to get the o�set of the nearest root node, and go into thedoze mode.3. Tune in to the broad
ast 
hannel to re
eive the nearest root node, and then traversethe index tree until the requested data item is rea
hed or not found. (While waitingfor another index node or data node, 
lients 
an go into the doze mode for savingenergy.)For example, in Figure 6, a 
lient tunes in at bu
ket number 4 and wants to retrieve dataitem 1. After retrieving bu
ket number 4, the 
lient gets an o�set to the nearest root nodeat bu
ket number 9. The 
lient then goes into the doze mode waiting for the beginning ofbu
ket number 9. After retrieving bu
ket number 9, the 
lient knows the position of dataitem 1 from the �rst entry in it. The 
lient �nally retrieves data item 1 at bu
ket number10.4 Performan
eIn the literature, Tsakiridis et al. [20℄ proposed the interpolation air index to redu
e thetuning time on the uniform data broad
ast in a single 
hannel. However, this algorithmassumes that data items are evenly a

essed by 
lients in a broad
ast 
y
le, and was notproposed for the environments with skewed a

ess patterns. Katsaros et al. [10℄ proposedan unbalan
ed-tree index to handle partially ordered data under skewed a

ess patterns forthe uniform data broad
ast. However, this algorithm was not proposed for the nonuniformdata broad
ast. Yao et al. [23℄ proposed a hash algorithm to map data to a broad
ast 
y
lefor the nonuniform data broad
ast. However, their algorithm su�ers from the over
owproblem, resulting in the in
rease in both the a

ess time and the tuning time. Yu andTan [26℄ proposed the 
exible index (FI ) to redu
e the tuning time over Broad
ast Diskson the nonuniform data broad
ast. However, this algorithm does not 
onsider skeweda

ess patterns to further redu
e the tuning time. Seifert and Hung [14℄ proposed the
exible distributed index (FDI ) for the nonuniform broad
ast. However, this algorithmmay repli
ate too many index trees in one broad
ast 
y
le, resulting in the in
rease of theaverage a

ess time. 12



Among the above algorithms, FI [26℄ and FDI [14℄ have the assumptions of the en-vironments similar to our work. Therefore, to evaluate the e�e
tiveness of our proposedalgorithm, we 
ompare our proposed algorithm with Broad
ast Disks [1℄ with no index(NI ), FI [26℄, and FDI [14℄ via a simulation study. Sin
e NI has no index in a broad
ast
y
le, it has the shortest a

ess time and the longest tuning time among these algorithms.It is used to a
t as the ben
hmark for the a

ess time and the tuning time. FI splits asorted list of data items in a minor 
y
le (segment) into several equal-sized se
tions. At thebeginning of ea
h se
tion, there is a 
ontrol index 
onsisting of a global index, whi
h pointsto the up
oming se
tion where the data item 
an be found, and a lo
al index, whi
h pointsto the data bu
ket in the 
urrent se
tion where the data item 
an be found. FDI partitionsthe broad
ast program into a number of equal-sized segments with a given bounded tuningtime, and interleaves the tree-based index, whi
h handles the following segments, beforeea
h segment.4.1 System ModelThe parameters used in our performan
e model are shown in Table 1. First, we generate Ndata items with the a

ess probability, Pr(h), 1 � h � N , based on the Zipf distribution.The Zipf distribution is typi
ally used to model nonuniform a

ess patterns. The Zipfdistribution 
an be expressed as Pr(h) = (1=h)�PNj=1(1=j)� , 1 � h � N , where � is a parameternamed the a

ess skew 
oeÆ
ient or the Zipf fa
tor [1℄. Di�erent values of � yield thedi�erent Zipf distribution. When � = 0, we have the uniform distribution. When the valueof � in
reases, the a

ess probabilities be
ome in
reasingly skewed [3℄. For example, when� = 1 and N = 3, we have Pr(1) = 611, Pr(2) = 311, and Pr(3) = 211. Then, the numberof data items, Ki, in ea
h disk i, 1 � i � S, is assigned by Yee et al.'s GREEDY algorithm[25℄. This algorithm partitions N data items into S disks, so as to minimize the averagea

ess time. A

ording to the assignment of this algorithm, K1 has the fewest number ofdata items, K2 has the next fewest number of data items, and KS has the most number ofdata items. The relative frequen
y (Ri) of disk i is determined by RiRS = (S� i)�+ 1, andRS = 1, 1 � i � S, where � is the fa
tor for relative frequen
ies.When 
onsidering the demand a

ess probability (from 
lients), we also apply the Zipf13



Table 1: ParametersParameter Des
riptionN The total number of data itemsS The number of broad
ast disksKi The number of data items in disk i, 1 � i � SRi The relative frequen
y of disk i� The fa
tor for relative frequen
ies� The Zipf fa
tor for generating the a

ess probabilities of data items
 The Zipf fa
tor for generating a

ess probabilities of disks� The ratio of the size of a data node to that of an index noded The degree of an index nodedistribution with a Zipf fa
tor 
. Here, we assume that the probability of a

essing anydata item within a region is uniform; that is, the Zipf distribution is applied to these disks[1℄. Therefore, we model the demand a

ess probability of the ith disk (DiskPr(i)) usingthe Zipf distribution as follows: DiskPr(i) = (1=i)
PSj=1(1=j)
 , where 
 is the Zipf fa
tor.In this 
ase, the �rst disk (K1), whi
h has the least number of data items, is the mostfrequently a

essed.Sin
e the size of a data node (item) is larger than that of an index node, we use � to
ontrol the ratio of the size of a data node to that of an index node. That is, if an indexnode o

upies one bu
ket, then a data node o

upies � bu
kets. Parameter d is used todetermine the degree of an index node in our proposed algorithm.4.2 Performan
e AnalysisNow we analyze the a

ess time and the tuning time of our proposed algorithm. We assumethat the a

ess probability for a

essing disk j is DiskPr(j), 1 � j � S, and the demanda

ess probabilities of data items in ea
h disk are uniform.For analyzing the a

ess time of a

essing data item i, DIi, there are two 
ases: (1) It
an be downloaded in the 
urrent 
y
le; (2) it 
annot be downloaded in the 
urrent 
y
le,but the next 
y
le. Take data item 3, referred to as DI3, in Figure 6 for example. If 
lientstune in the 
hannel before the third root node, R, at bu
ket 13, i.e., tuning in at minor
y
le m1 or m2, they 
an rea
h DI3 at bu
ket 22 in the 
urrent 
y
le. This is be
ause in14



the 
urrent 
y
le, the third root node at bu
ket 13 is the last root node that 
ontains therelated entry, i.e., < a1; 15 >, to rea
h DI3. On the other hand, if they tune in at minor
y
le m3 or m4, they should wait for the next 
y
le to rea
h DI3.Assume that Dis(a; b) represents the distan
e from the beginning of node a to the endof node b. The a

ess time for a

essing DI3 ism1 +m2TotalSize�(m1 +m22 +Dis(R3rd; DI32nd))+ m3 +m4TotalSize�(m3 +m42 +Dis(R1st; DI31st)),where TotalSize = PLj=1mj, Rith represents the ith root node and DI3jth represents thejth DI3. The �rst term is for Case 1, and the se
ond one is for Case 2. Note that, R1stand DI31st are the �rst appearing root node and the �rst appearing DI3 in the next 
y
le,respe
tively.In general, there are L minor 
y
les (m1; m2; : : : ; mL) in one broad
ast 
y
le, where Lis the least 
ommon multiple of all relative frequen
ies of disks. For data item DIi withrelative frequen
y �z, there would be �z regions among the whole broad
ast 
y
le for dataitem DIi. The �rst (�z � 1) regions are for Case 1, and the last one region is for Case 2.Therefore, for data item DIi, its a

ess time is 
al
ulated byAT (DIi) = �zXj=1 P(Æz)�jk=(j�1)�Æz+1mkTotalSize �(P(Æz)�jk=(j�1)�Æz+1mk2 +Dis(R(Æz�j+1)th; DIi(j+1)th)),where Æz = L�z . Note that, if the value of (Æz � j +1) in R(Æz�j+1)th is larger than that of L,R(Æz�j+1)th is R(Æz�j+1�L)th in the next 
y
le. Similarly, if the value of (j + 1) in DIi(j+1)this larger than that of �z, DIi(j+1)th is data item DIi(j+1��z)th in the next 
y
le. As a result,the average a

ess time is 
al
ulated by AvgAT =PSj=1 PKji=1 AT (i)Kj �DiskPr(j), 1 � j � S.Assume that Path(DIi) means the number of index bu
kets from the root node to dataitemDIi. For data itemDIi, its tuning time is 
al
ulated as TT (DIi) = 1+Path(DIi)+�,where � is the ratio of the size of a data bu
ket to that of an index bu
ket. In thisequation, one is for the initial probe. As a result, the average tuning time is 
al
ulated asAvgTT =PSj=1 PKji=1 TT (i)Kj �DiskPr(j), 1 � j � S.4.3 Experimental ResultsFor our proposed skewed index (SI ), the default values for the parameters are shown inTable 2. For the 
exible index (FI ), we set the default values for the number of se
tionsper segment and the number of lo
al index entries to 10 and 60, respe
tively. For the15



Table 2: Default settingsParameter Default valueN 10000..12000S 4� 1� 1.0
 0.8� 20d 10
exible distributed index (FDI ), we let the bounded tuning time as 
lose as the tuningtime of our proposed SI. Moreover, the number of the distin
t index tree and the numberof the repli
ated index tree in FDI are set a

ording to the equations des
ribed in [14℄.The following experimental results are the average of 100 
ases in whi
h the total numberof data items, N , is uniformly 
hosen from 10000 to 12000. Note that the average a

esstime and the average tuning time are measured in terms of bu
kets. In this performan
eevaluation, we will �rst show the e�e
ts of 
hanging �ve parameters, (a) �, (b) S, (
) �,(d) 
, and (e) �, individually. Next we will show how the degree of an index node a�e
tsthe performan
e in our proposed SI.To provide a fairly statisti
 basis for performan
e 
omparison between our proposedalgorithm and the 
ompared ones, we present 
on�den
e intervals for our experimentalresults. A 
on�den
e interval for a population mean is an interval of values that is likelyto 
ontain the true value of the population mean [19℄. The 95% 
on�den
e interval for thepopulation mean provides a good balan
e between pre
ision and reliability. Therefore, wepresent the 95% 
on�den
e interval for our experimental results. A 95% 
on�den
e intervalfor the population mean is given by (x�1:96� spns; x+1:96� spns), where x is the samplemean, s is the sample standard deviation, and ns is the number of the samples [19℄. The�rst term is 
alled the lower 
on�den
e limit and the se
ond is 
alled the upper 
on�den
elimit. If the upper 
on�den
e limit of the experimental results for our proposed SI is lessthan the lower 
on�den
e limit of those for the 
ompared algorithms, we 
an 
on
lude thatSI has a statisti
ally signi�
ant better performan
e than the 
ompared algorithms.In the �rst experimental result, we vary the value of �, whi
h a�e
ts the relative fre-16
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Figure 7: E�e
t of �: the average a

ess timeTable 3: E�e
t of �: the lower 
on�den
e limit and the upper 
on�den
e limit for theaverage a

ess time� NI L NI U FI L FI U FDI L FDI U SI L SI U1 73676.74 74978.33 118198.59 120271.17 102094.53 103901.85 81409.76 82847.712 74558.15 76041.31 109631.35 111791.42 104687.16 106775.49 77275.01 78811.683 81152.26 82704.35 112919.02 115055.78 113375.41 115551.17 82744.03 84325.64 89126.35 90938.23 119191.43 121587.2 123481.93 126177.23 90340.04 92174.915 96249.82 98173.59 124894.72 127361.27 132226.18 134878.06 97323.07 99265.68quen
ies of disks, from 1 to 5, while the other parameters are set to the default values.Figure 7 shows the average a

ess time with the in
rease of the value of �. In Figure 7,x-axis represents the value of �, and y-axis represents the average a

ess time. Moreover,Table 3 lists the 
orresponding lower 
on�den
e limit and upper 
on�den
e limit for theaverage a

ess time. NI L, FI L, FDI L, and SI L represent the lower 
on�den
e limits forNI, FI, FDI, and SI, respe
tively, under the 95% 
on�den
e level. NI U, FI U, FDI U, andSI U represent the upper 
on�den
e limits for NI, FI, FDI, and SI, respe
tively, under the95% 
on�den
e level.As the value of � in
reases, the di�eren
e between the relative frequen
ies of disksbe
omes larger. This means that the size of the broad
ast 
y
le will in
rease, resulting17



Table 4: E�e
t of �: the average tuning time� NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U1 73676.74 74327.53 74978.33 358.27 359.12 359.97 27 27 27 26.57 26.57 26.572 74558.15 75299.73 76041.31 396.4 397.29 398.17 27 27 27 26.57 26.57 26.573 81152.26 81928.3 82704.35 440.72 441.6 442.47 27 27 27 26.57 26.57 26.574 89126.35 90032.29 90938.23 486.14 487.12 488.1 27 27 27 26.57 26.57 26.575 96249.82 97211.7 98173.59 530.42 531.43 532.44 27 27 27 26.57 26.57 26.57in the in
rease of the average a

ess time, as shown in Figure 7. We 
an observe that NIhas the shortest average a

ess time among these four algorithms, as 
an be also seen inthe following experimental results. This is be
ause there is no index used in NI. However,using NI, mobile devi
es should 
onstantly tune in to the wireless 
hannel to examine data,
onsuming a lot of energy. Adding index information to the broad
ast 
y
le will in
reasethe size of the broad
ast 
y
le, resulting in the in
rease of the average a

ess time. Atthe same time, it will redu
e the average tuning time. In Figure 7, although the averagea

ess time of SI is longer than that of NI, it is shorter than that of FI and FDI. SI hasaverage improvements of 26.72% and 25.35% on the average a

ess time over FI and FDI,respe
tively. (Note that the per
entage of the improvement from our SI to algorithm X is
omputed as (X�SI)X � 100.) Moreover, in Table 3, the values of SI U are always less thanthose of FI L and FDI L. (Note that those values are with an underline.) Therefore, we
an 
on
lude that SI has a statisti
ally signi�
ant shorter a

ess time than FI and FDI.Table 4 shows the 
orresponding average tuning time with the in
rease of the value of�. Sin
e there is no index used in BD, 
lients should tune in to the 
hannel all the timewhile examining the broad
ast data items. Therefore, NI has the longest average tuningtime among these four algorithms. We 
an observe that SI has the shortest average tuningtime among these four algorithms. This is be
ause, in our SI, we 
onstru
t the index treea

ording to a

ess probabilities of data items. SI has average improvements of 99.97%,93.89% and 1.59% on the average tuning time over NI, FI and FDI, respe
tively. Therefore,the average tuning time of SI is redu
ed as 
ompared with that of the others. Moreover,the values of SI U are always less than those of NI L, FI L and FDI L. Therefore, we 
an
on
lude that SI has a statisti
ally signi�
ant shorter tuning time than NI, FI and FDI.In the se
ond experimental result, we vary the value of S, the number of disks, from 418
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Figure 8: E�e
t of S: the average a

ess timeto 7, while the other parameters are set to the default values. Figure 8 shows the averagea

ess time with the in
rease of the value of S, in whi
h x-axis represents the value of S,and Table 5 lists the 
orresponding lower 
on�den
e limit and upper 
on�den
e limit forthe average a

ess time. In Figure 8, as the value of S in
reases, the average a

ess timede
reases ex
ept S = 4. We 
an also observe that as the value of S in
reases, the di�eren
eof the average a

ess time between SI and NI is redu
ed. In addition, the average a

esstime of SI is shorter than that of FI and FDI. SI has average improvements of 33.63% and24.61% on the average a

ess time over FI and FDI, respe
tively. Moreover, in Table 5, thevalues of SI U are always less than those of FI L and FDI L. Therefore, we 
an 
on
ludethat SI has a statisti
ally signi�
ant shorter a

ess time than FI and FDI. Table 6 showsthe 
orresponding average tuning time with the in
rease of the value of S. Among thesefour algorithms, SI has the shortest average tuning time. SI has average improvements of99.97%, 92.97% and 1.69% on the average tuning time over NI, FI and FDI, respe
tively.Moreover, the values of SI U are always less than those of NI L, FI L and FDI L. Therefore,we 
an 
on
lude that SI has a statisti
ally signi�
ant shorter tuning time than NI, FI andFDI. 19



Table 5: E�e
t of S: the lower 
on�den
e limit and the upper 
on�den
e limit for theaverage a

ess timeS NI L NI U FI L FI U FDI L FDI U SI L SI U4 74231.73 75804.4 119082.32 121586.54 102864.87 105048.67 82022.77 83760.225 90396.88 92006.07 142150.94 144665.23 121831.12 124003.22 93056.18 94712.16 86865.21 88537.3 134859.87 137437.89 119395.8 121698.62 87859.92 89548.817 77031.21 78725.11 118536.94 121122.66 108789.95 111192.4 78206.01 79910.43Table 6: E�e
t of S: the average tuning timeS NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U4 74231.73 75018.06 75804.4 359 360.02 361.05 27 27 27 26.57 26.57 26.575 90396.88 91201.48 92006.07 385.96 386.99 388.02 27 27 27 26.61 26.61 26.616 86865.21 87701.25 88537.3 386.07 387.13 388.18 27 27 27 26.65 26.65 26.657 77031.21 77878.16 78725.11 377.51 378.57 379.63 27 27 27 26.35 26.35 26.35In the third experimental result, we vary the value of �, the Zipf fa
tor for generatingthe a

ess probabilities of data items, from 0.8 to 1.3, while the other parameters are set tothe default values. With the same total number of data items, as the value of � in
reases,the a

ess probabilities of data items be
ome in
reasingly skewed. Therefore, as the value of� in
reases, the number of data items in disk 1 de
reases and that in the last disk in
reasesby using Yee et al.'s algorithm [25℄ for assigning data items to disks. Figure 9 shows theaverage a

ess time with the in
rease of the value of �, in whi
h x-axis represents the valueof �, and Table 7 lists the 
orresponding lower 
on�den
e limit and upper 
on�den
e limitfor the average a

ess time. In Figure 9, as the value of � in
reases, the average a

ess timede
reases. In that �gure, the average a

ess time of SI is shorter than that of FI and FDI.SI has average improvements of 31.14% and 20.45% on the average a

ess time over FI andFDI, respe
tively. Moreover, in Table 7, the values of SI U are always less than those ofFI L and FDI L. Therefore, we 
an 
on
lude that SI has a statisti
ally signi�
ant shortera

ess time than FI and FDI. Table 8 shows the average tuning time with the in
rease ofthe value of �. Among these four algorithms, SI has the shortest average tuning time. SIhas average improvements of 99.96%, 92.63% and 2.59% on the average tuning time overNI, FI and FDI, respe
tively. Moreover, the values of SI U are always less than those ofNI L, FI L and FDI L. Therefore, we 
an 
on
lude that SI has a statisti
ally signi�
antshorter tuning time than NI, FI and FDI. 20
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Figure 9: E�e
t of �: the average a

ess time
Table 7: E�e
t of �: the lower 
on�den
e limit and the upper 
on�den
e limit for theaverage a

ess time� NI L NI U FI L FI U FDI L FDI U SI L SI U0.8 84160.8 85920.76 134892.75 137695.2 113824.42 116206.27 92991.6 94936.150.9 79408.8 81009.93 127325.96 129875.5 108282.79 110468.89 87741.87 89510.791.0 73419.18 74954.71 117788.48 120233.55 101737.24 103869.36 81125.24 82821.651.1 68697.8 70118.53 110270.45 112532.72 95978.61 97969.08 75907.86 77477.461.2 64540.49 65877.07 103650.6 105778.9 90871 92759.07 71313.5 72790.281.3 61595.93 62848.85 98961.87 100956.95 88105.55 89903.81 68060.61 69444.91

Table 8: E�e
t of �: the average tuning time� NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U0.8 84160.8 85040.78 85920.76 371.95 373.1 374.25 27 27 27 26.57 26.57 26.570.9 79408.8 80209.36 81009.93 365.75 366.8 367.84 27 27 27 26.57 26.57 26.571.0 73419.18 74186.95 74954.71 357.93 358.94 359.94 27 27 27 26.57 26.57 26.571.1 68697.8 69408.16 70118.53 351.77 352.7 353.63 27 27 27 26.32 26.32 26.321.2 64540.49 65208.78 65877.07 346.35 347.22 348.09 27 27 27 25.89 25.89 25.891.3 61595.93 62222.39 62848.85 342.5 343.32 344.14 27 27 27 25.89 25.89 25.8921



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

γ

50000

70000

90000

110000

130000

A
ve

ra
ge

 a
cc

es
s 

tim
e

NI
FI
FDI
SI

Figure 10: E�e
t of 
: the average a

ess timeIn the fourth experimental result, we vary the value of 
, the Zipf fa
tor for generatingthe a

ess probabilities of disks, from 0.0 to 1.3, while the other parameters are set to thedefault values. As the value of 
 in
reases, the a

ess probability for data items in disk1 in
reases and that in the last disk de
reases. Figure 10 shows the average a

ess timewith the in
rease of the value of 
, in whi
h x-axis represents the value of 
, and Table 9lists the 
orresponding lower 
on�den
e limit and upper 
on�den
e limit for the averagea

ess time. In Figure 10, as the value of 
 in
reases, the average a

ess time de
reases.In that �gure, the average a

ess time of SI is shorter than that of FI and FDL. SI hasaverage improvements of 30.37% and 19.88% on the average a

ess time over FI and FDI,respe
tively. Moreover, in Table 9, the values of SI U are always less than those of FI Land FDL L. Therefore, we 
an 
on
lude that SI has a statisti
ally signi�
ant shorter a

esstime than FI and FDL. Table 10 shows the average tuning time with the in
rease of thevalue of 
. Among these four algorithms, SI has the shortest average tuning time. SI hasaverage improvements of 99.97%, 92.77% and 1.47% on the average tuning time over NI,FI and FDI, respe
tively. Moreover, the values of SI U are always less than those of NI L,FI L and FDI L. Therefore, we 
an 
on
lude that SI has a statisti
ally signi�
ant shorter22



Table 9: E�e
t of 
: the lower 
on�den
e limit and the upper 
on�den
e limit for theaverage a

ess time
 NI L NI U FI L FI U FDI L FDI U SI L SI U0.0 90301.72 92041.2 134656.34 137230.76 119859.41 122172.7 98079.61 99968.590.1 88815.14 90629.76 133512.38 136219.95 118446.28 120870.87 96644.55 98618.80.2 87117.14 88918.64 132066.31 134777.13 116755.86 119174.63 94981.95 96945.730.3 83995.94 85818.85 128467.03 131234.25 113150.51 115611.09 91765.79 93756.960.4 82841.82 84499.74 127844.75 130384.44 112193.17 114442.83 90696.96 92511.740.5 79258.43 80852.61 123479.51 125944.49 107929.19 110104.44 86965.02 88713.910.6 77405.94 78922.93 121752.89 124121.14 106006.57 108088.66 85125.74 86793.750.7 76162.65 77813.57 120967.96 123570.67 104914.87 107193.61 83954.58 85774.080.8 74078.8 75597.73 118838.81 121257.46 102652.63 104761.98 81853.71 83531.780.9 71507.6 73014.08 115886.91 118310.1 99689.68 101794.68 79206.73 80875.161.0 69769.7 71288.46 114227.27 116695.24 97864.52 99999.14 77474.51 79160.681.1 68144.63 69412.98 112711.6 114793.87 96177.46 97971.29 75860.89 77272.611.2 66905.27 68284.41 111791.73 114079.13 95015.35 96977.9 74670.07 76208.951.3 64884.06 66286.54 109524.79 111874.63 92714.35 94722.68 72598.27 74167.25Table 10: E�e
t of 
: the average tuning time
 NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U0.0 90301.72 91171.46 92041.2 407.24 408.29 409.35 27 27 27 26.75 26.75 26.750.1 88815.14 89722.45 90629.76 401.71 402.82 403.93 27 27 27 26.73 26.73 26.730.2 87117.14 88017.89 88918.64 395.94 397.05 398.16 27 27 27 26.71 26.71 26.710.3 83995.94 84907.39 85818.85 388.44 389.57 390.7 27 27 27 26.69 26.69 26.690.4 82841.82 83670.78 84499.74 383.42 384.46 385.5 27 27 27 26.66 26.66 26.660.5 79258.43 80055.52 80852.61 375.39 376.4 377.41 27 27 27 26.64 26.64 26.640.6 77405.94 78164.44 78922.93 369.61 370.58 371.55 27 27 27 26.62 26.62 26.620.7 76162.65 76988.11 77813.57 364.7 365.77 366.83 27 27 27 26.59 26.59 26.590.8 74078.8 74838.27 75597.73 358.8 359.79 360.78 27 27 27 26.57 26.57 26.570.9 71507.6 72260.84 73014.08 352.35 353.34 354.33 27 27 27 26.54 26.54 26.541.0 69769.7 70529.08 71288.46 347.09 348.1 349.12 27 27 27 26.52 26.52 26.521.1 68144.63 68778.81 69412.98 342.11 342.96 343.82 27 27 27 26.5 26.5 26.51.2 66905.27 67594.84 68284.41 337.77 338.71 339.65 27 27 27 26.47 26.47 26.471.3 64884.06 65585.3 66286.54 332.5 333.46 334.43 27 27 27 26.45 26.45 26.45tuning time than NI, FI and FDI.In the �fth experimental result, we vary the value of �, the ratio of the size of a data nodeto that of an index node, from 10 to 50, while the other parameters are set to the defaultvalues. Figure 11 shows the average a

ess time with the in
rease of the value of �, in whi
hx-axis represents the value of �, and Table11 lists the 
orresponding lower 
on�den
e limitand upper 
on�den
e limit for the average a

ess time. In Figure 11, as the value of �in
reases, the average a

ess time in
reases. For the same size of an index node and thesame total number of data items, as the value of � in
reases, the size of the broad
ast 
y
lein
reases, resulting in the in
rease of the average a

ess time. In that �gure, the averagea

ess time of SI is shorter than that of FI and FDL. SI has average improvements of23
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Figure 11: E�e
t of �: the average a

ess timeTable 11: E�e
t of �: the lower 
on�den
e limit and the upper 
on�den
e limit for theaverage a

ess time� NI L NI U FI L FI U FDI L FDI U SI L SI U10 36700.2 37515.61 59319.49 60617.89 58353.24 59653.95 40781.01 41686.7620 73787.85 75257.54 118375.51 120715.76 102248.99 104289.63 81532.41 83156.0630 111038.35 113274.87 177690.87 181252.17 144170.62 147079.21 122461.92 124928.2140 147442.97 150342.41 235659.29 240276.17 184706.71 188343.81 162458.59 16565350 183761.84 187368.51 293491.18 299234.22 224479.83 228891.3 202361.64 206333.0731.11% and 17.47% on the average a

ess time over FI and FDI, respe
tively. Moreover, inTable 11, the values of SI U are always less than those of FI L and FDL L. Therefore, we
an 
on
lude that SI has a statisti
ally signi�
ant shorter a

ess time than FI and FDL.Table 12 shows the average tuning time with the in
rease of the value of �. Among thesefour algorithms, SI has the shortest average tuning time. SI has average improvements of99.97%, 91.6% and 1.39% on the average tuning time over NI, FI and FDI, respe
tively.Moreover, the values of SI U are always less than those of NI L, FI L and FDI L. Therefore,we 
an 
on
lude that SI has a statisti
ally signi�
ant shorter tuning time than NI, FI andFDI.So far, we have shown that SI has a better performan
e than the 
ompared ones. In the24



Table 12: E�e
t of �: the average tuning time� NI L NI NI U FI L FI FI U FDI L FDI FDI U SI L SI SI U10 36700.2 37107.91 37515.61 300.01 300.54 301.07 17 17 17 16.57 16.57 16.5720 73787.85 74522.69 75257.54 358.42 359.38 360.33 27 27 27 26.57 26.57 26.5730 111038.35 112156.61 113274.87 417.04 418.49 419.95 37 37 37 36.57 36.57 36.5740 147442.97 148892.69 150342.41 474.55 476.44 478.33 47 47 47 46.57 46.57 46.5750 183761.84 185565.18 187368.51 531.95 534.31 536.66 57 57 57 56.57 56.57 56.57
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Figure 12: E�e
t of d: (a) the average a

ess time; (b) the average tuning time.last experimental result, we evaluate how the degree of an index node a�e
ts the averagea

ess time and the average tuning time in our proposed SI. In this result, we vary thedegree of an index node, d, from 5 to 20, while the other parameters are set to the defaultvalues. Figure 12-(a) and Figure 12-(b) show the average a

ess time and the averagetuning time, respe
tively, with the in
rease of the value of d. In Figure 12-(a), SI hasthe shortest average a

ess time with d = 10 under the setting. The average a

ess timeis a�e
ted by the index allo
ation so that there is no dire
t a�e
tion by the in
rease ofthe value of d. Moreover, as the value of d in
reases, the more number of index entriesin a bu
ket should be examined. On the other hand, in Figure 12-(b), as the value of din
reases, the average tuning time de
reases. For the same total number of data items, asthe value of d in
reases, the height of the skewed index tree may de
rease, resulting in thede
rease of the average tuning time.
25



5 Con
lusionsIn this paper, we have proposed a skewed index over Broad
ast Disks under skewed a

esspatterns on the nonuniform data broad
ast. Our proposed algorithm allo
ates the indexnodes for the popular data items more times than those for the less popular ones in abroad
ast 
y
le. In this way, both the a

ess time and the tuning time 
an be redu
ed inthe proposed algorithm. From our experimental results, we have shown that the proposedalgorithm has average improvements of up to 33.63% and 25.35% on the average a

esstime over the 
exible index and the 
exible distributed index, respe
tively. Moreover, theproposed algorithm has average improvements of up to 93.89% and 2.59% on the averagetuning time over the 
exible index and the 
exible distributed index, respe
tively. How toinvestigate the index stru
ture for data with skewed a

ess patterns over multiple 
hannelsis the possible future work.Referen
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