An Efficient Nonuniform Index in the Wireless
Broadcast Environments'

Jun-Hong Shen and Ye-In Chang

Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan
Republic of China
{E-mail: shenjh@cse.nsysu.edu.tw}
{Tel: 886-7-5254350}

{Fax: 886-7-5254301}

Abstract

Data broadcast is an efficient dissemination method to deliver information to mobile clients
through the wireless channel. It allows a huge number of the mobile clients simultaneously
access data in the wireless environments. In real-life applications, more popular data may
be frequently accessed by clients than less popular ones. Under such scenarios, Acharya
et al.’s Broadcast Disks algorithm (BD) allocates more popular data appeared more times
in a broadcast period than less popular ones, i.e., the nonuniform broadcast, and provides
a good performance on reducing client waiting time. However, mobile devices should con-
stantly tune in to the wireless broadcast channel to examine data, consuming a lot of energy.
Using index technologies on the broadcast file can reduce a lot of energy consumption of
the mobile devices without significantly increasing client waiting time. In this paper, we
propose an efficient nonuniform index called the skewed index, SI, over BD. The proposed
algorithm builds an index tree according to skewed access patterns of clients, and allocates
index nodes for the popular data more times than those for the less popular ones in a
broadcast cycle. From our experimental study, we have shown that our proposed algorithm
outperforms the flexible index and the flexible distributed index.

(Keywords: broadcast disks, data broadcast, selective tuning, skewed access patterns,
wireless network.)

! This research was supported in part by the National Science Council of Republic of China under Grant
No. NSC-95-2221-E-110-101 and by National Sun Yat-Sen University. The authors also like to thank “Aim
for Top University Plan” project of NSYSU and Ministry of Education, Taiwan, for partially supporting
the research.

1 Introduction

Due to asymmetric communications in the wireless environments, wireless data broadcast
is an efficient way to simultaneously disseminate information to a large number of mobile
clients. Under such environments, servers cyclically broadcast data on the wireless channel,
and mobile clients use battery-powered devices, e.g., palmtops, to tune in to the wireless
broadcast channel to retrieve data without sending requests to the servers. Data broad-
cast is good at the scenarios where mobile clients have the same commonly interested data
on a regular basis. In addition, it scales well when the number of the mobile clients is
dramatically increasing. Microsoft’s DirectBand Network, for example, utilizes the broad-
cast technique to provide wireless data services [21, 27]. This wireless network utilizes
unused FM radio spectrum to constantly broadcast frequently changing information such
as news, weather, sports, and stocks. Then, low-powered mobile devices, e.g., watches, can
continuously retrieve these timely information at anytime and anywhere.

Mobile devices have scarce energy resources, i.e., batteries. Due to power limits, energy
conservation is a crucial issue for the mobile devices. When a client requests a desired data,
the mobile device must actively listen to the broadcast channel to retrieve and examine data
until the desired data is downloaded. That is, the mobile device should be continuously
in the active mode to retrieve data. This is inefficient in terms of energy consumption for
the mobile device to continuously retrieve a lot of data on the channel just to pick up one
of them [27]. To solve this problem, selective tuning is introduced such that the mobile
device can slip into the doze mode most of the time and listen to the channel only when
the relevant data arrives [7]. As a result, it is advantageous to use index technologies on
the wireless data broadcast to guide the clients to retrieve data in the listening process.
In this way, the mobile devices can be only activated to retrieve the relevant information,
thus reducing a lot of energy consumption and lengthening their operating time without
recharging.

In the wireless data broadcast environments, the access time and the tuning time are two
performance measures [8]. The access time is the average time elapsed from the moment a
client requests a data item identified by its primary key, to the moment when the required

data item is downloaded by the client. On the other hand, the tuning time is the amount of

time spent by a client listening to the channel. This will determine the energy consumption
of the mobile device to retrieve the required data.

In the literature, many studies have been made on reducing energy consumption of
mobile devices in the wireless environments. The studies in [4, 5, 7, 8, 11, 20, 21, 22] have
proposed index schemes for the uniform broadcast on a single broadcast channel. On the
uniform broadcast, all data items are broadcast once in a broadcast cycle. The variant-
fanout index tree [3] and the skewed distributed indexing [15] were presented based on
data popularity patterns. In [10], Katsaros et al. proposed an unbalanced-tree index to
handle partially ordered data under skewed access patterns. For supporting spatial queries
on the wireless data broadcast, spatial indexes were proposed in [27, 28]. The study in [6]
worked on index caching. The studies in [14, 17, 18, 23, 26] proposed index schemes for the
nonuniform broadcast on a single broadcast channel. On the nonuniform broadcast, data
items are broadcast according to their access frequencies. While the above schemes assume
that data items are broadcast over a single channel, there have also been studies that work
on broadcasting over multiple channels. The work in [16] studied index allocation, that in
[13, 24] discussed data allocation, and that in [9] focused on index and data allocation on
the wireless broadcast over multiple channels. The work in [12, 17] concerned on the issue
of fault tolerance.

In real-life applications, more popular data may be frequently accessed by clients than
less popular ones, i.e., skewed data access. For example, the weather conditions of hot at-
tractions may be more frequently accessed than those of cold ones. Under such the scenario,
Acharya et al. [1] proposed Broadcast Disks (BD) to allocate more popular data appeared
more times in a broadcast cycle than less popular ones, i.e., a nonuniform broadcast. BD
provides a way of organizing data into a popularity hierarchy which results in a skewed
transmission of data and quicker access to more popular data [24].

Under the nonuniform broadcast environment, BD has a good performance on the av-
erage access time [13]. However, when requesting a data item of interest, mobile clients
should constantly tune in to the broadcast channel to check the received data items until
the request item is downloaded. This increases the tuning time that is, on average, half

of a broadcast period of the whole file, i.e., a broadcast cycle. The flexible index (FI)

[26] has been proposed to support selective tuning over BD. However, FI does not take
skewed access patterns of clients into consideration. The flexible distributed index (FDI)
[14] interleaves the tree-based indexes in one broadcast cycle with a given tuning time
on the nonuniform broadcast. However, FDI may replicate too many index trees in one
broadcast cycle, resulting in the increase of the access time. Therefore, in this paper, we
propose an efficient nonuniform index called the skewed index, SI, which is built according
to skewed access patterns, over BD. Our proposed algorithm also allocates index nodes for
popular data more times than those for less popular ones in a broadcast cycle. From our
experimental results, we have shown our proposed algorithm outperforms FI and FDI in
the access time and the tuning time.

The rest of this paper is organized as follows. In Section 2, we give a brief description
of Acharya et al.’s BD. In Section 3, we present our proposed skewed index. In Section 4,
we study the performance of the proposed algorithm. Finally, a conclusion is presented in

Section 5.

2 Background

Acharya et al. [1] have proposed the use of a periodic dissemination architecture in the
context of wireless mobile systems. They call the architecture Broadcast Disks, BD. The

algorithm has the following steps:

1. Order data items (= N) from the hottest (most popular) to the coldest.

2. Partition the list of the data items (= N) into multiple disks (= S disks), where each
disk D;, 1 < i < S, contains pages (= K;) with similar access probabilities. That is,
N = Ziszl K.

3. Choose the relative frequency A; of broadcast for each disk D;, 1 <i < S.

4. Split each disk into a number of smaller units, called chunks C;;, where Cj; denotes
the j’th chunk in disk D;. First, calculate L as the LCM (Least Common Multiple) of

L
the relative frequencies. Then, split each disk D; into NC; = ~ chunks, 1 <i < S,

i

where NC; denotes the number of chunks in disk D;.

5. Create the broadcast program by interleaving the chunks of each disk in the following
manner:
for »:=1to L do
begin
for j:=1to S do
begin
k= ((i—1) mod NC;) + 1;
Broadcast chunk C};
end;

end.

Figure 1 shows an example of the broadcast program generation, where S =3, N =7,
Ki=1 Ky=2 K3y =4, A\ =4, \y =2, and A3 = 1. These disks are split into chunks
according to Step 4 of the algorithm. That is, L (= LCM(4,2,1)) is 4, and we have
NCy =1 (the number of chunks in disk D), NCy = 2, NC3 = 4. The resulting broadcast
consists of 4 minor cycles (containing one chunk from each disk), i.e., my, mo, ms and
my, which is the LCM of the relative frequencies. The resulting broadcast has a period
of 12 pages. This broadcast produces a three-level memory hierarchy in which disk one
is the smallest and fastest level and disk three is the largest and slowest level. Thus, the

multi-level broadcast corresponds to the traditional notion of a memory hierarchy [1].

3 A Skewed Index for Broadcast Disks

In this section, to provide efficiently selective tuning over Acharya et al.’s Broadcast Disks

[1], we present our proposed skewed index and the corresponding access protocol.

3.1 Assumptions

This work focuses in broadcast-based wireless environments. Some assumptions should

make our work more flexible. The assumptions in this paper are as follows.

1. Data access patterns are skewed.
2. Data items are broadcast over the reliably single channel.

4

HoT [2]3]4[5]6]7]coLp
(a)

D, D D

B [2Is] [4]s]e]7]
(b)

Chunks- IE’
c

c C C c C C

1,1 2,1 2,2 3,1 3,2 3,3 3,4

(c)

One broadcast cycle ——»

2[4 !3|5 !2|6 !3|7
m, —» m,— m,— m,—
(d)

Figure 1: An example of broadcast disks: (a) data items sorted in the descending order
of their popularity; (b) three disks with the corresponding data items; (c) chunks for each
disk; (d) the final broadcast cycle.

3. Data items are broadcast non-uniformly; that is, the more popular data items appear

more times than the less popular ones in one broadcast cycle.
4. Clients request only one data item at one time; i.e., the single query.

5. A bucket is a logical transmission unit on a broadcast channel. An index node can
be put into a bucket, the index bucket, and a data node can be put into a bucket or

more, the data bucket.

3.2 The Proposed Algorithm

The basic idea is that we build local index trees for disks, and then combine them from the
last disk to the first one to form a skewed index tree. Because fast disks have fewer data
items than slow ones, the size of the index trees for the fast disks is smaller than that for
the slow ones. Therefore, the combined index tree is skewed. This can reduce the index
probes for the popular data. Based on the nonuniform broadcast in BD, we can allocate
the index nodes for the more popular data items more times than those for the less popular

ones in a broadcast cycle.

The algorithm is proceeded as follows.

1. Construct a local index tree for each disk according to the degree of an index node,

d, in a bottom-up manner. Note that d is set manually.
2. Combine the local index trees from the last disk to the first one according to d.

3. Distribute index nodes over the broadcast cycle generated by BD by using Procedure
AllocateIndexNode(B), as shown in Figure 2, where B is a linked list that stores the

broadcast cycle generated by BD.

4. Check whether the first node of each minor cycle is the root node. If not, then insert

the root node in front of that minor cycle.

Let us use an example to illustrate the proposed algorithm. Take the data items in
disks Dy, Dy and D3 in Figure 1-(b) as an input. In Step 1, our algorithm first constructs
a local index tree for each disk (D;) in a bottom-up manner as shown in Figure 3-(a),
where the degree of each index node, d, is 2. Data items are attached to index nodes with
d degrees at the same level and then these index nodes are recursively processed in the
same way until the root node is created. For each local tree, branches between a parent
node and its children are bi-directional, so a node can easily find its parent and children.
Entries in each index nodes are generated through the Bloom filter [2], which is used to test
whether an element is a member of a set. Therefore, a data item can be checked whether
it is covered by the subtree. It means that through the Bloom filter, a mobile client can
determine which branch to follow in the index tree. Applying the Bloom filter may have
a very small false-positive (false-drop) probability. In such a case, more than one branch
should be followed. However, this can be adjusted to an insignificant effect.

In Step 2, our algorithm then combines these local index trees from the last disk to the
first one by considering the degree of an index node, i.e., d = 2. Figure 3-(b) shows an
index tree after the last two local index trees, the ones for Dy and D3, are combined. The
final index tree for the data items in Figure 1-(b) is shown in Figure 3-(c). In this skewed
index tree, we can observe that the level for the more popular data items is higher than

that for the less popular ones.

1: procedure AllocateIndexNode (B)
2: begin /* B is a linked list that stores the broadcast cycle generated by BD. */
/* ¢ is used to record the current processing data item in B. */

3: ¢ := the first item of B;
4: while (¢ # null) do /* Check if it is the end of the broadcast cycle. */
5: begin
6: copy the content of ¢ to dup to start traversing the index tree;
/* Traverse the index tree from the data node to the root node. */
7 while (dup # null) do /* Check if the root node is traversed. */
8: begin
9: if dup = root then /* root is the root node of the index tree. */
/* p is used to record the parent of the current visited node. */
10: p = null
11: else
12: p := the parent of dup;
13: if dup is the first child of p then
14: begin
15: push p into IndexStack; /* IndexStack is a stack. */
16: dup :=p; /* The parent p of node dup is then visited. */
17: end
18: else
19: begin
20: repeat
21: pop an index node a from IndexStack and output a;
22: until IndexStack is empty;
23: output ¢;
24: break;
25: end;
26: end;
27: ¢ := the following item of ¢ in B; /* Process the next data item. */
28: end;
29: end;

Figure 2: Procedure AllocateIndexNode

b1l

al

cl

b2

c2

O:indexnode 4 5 6 7

al

bl b2

Figure 3: The process of constructing a skewed index tree: (a) local index trees; (b) an
index tree after the last two local index trees are combined; (¢) the final skewed index tree.

In Step 3, after the skewed index tree is constructed, the algorithm then uses Procedure
AllocateIndexNode, with the broadcast cycle shown in Figure 1-(d) as an input, to distribute
index nodes over the broadcast cycle. Procedure AllocateIndezNode allocates the index
nodes for the data items in the fast disks to one broadcast cycle more times than those in
the slow ones. In Procedure AllocateIndexNode, data items of the broadcast cycle stored in
linked list B are sequentially processed one by one. The procedure will traverse the index
tree from the data node to the root node to determine which index nodes should be put
before the processed data item. The policy is described as follows. If the visited node is
the first child of its parent, its parent should be put before this node, and then its parent
will be visited. Otherwise, the procedure stops traversing the index tree. The reason that
we put the corresponding index nodes before their first child node is that these index nodes

can cover their corresponding data items in the same broadcast cycle. If we only put these

al b2
R bl cl
IndexStack IndexStack IndexStack

() (b) (c)

Figure 4: The content of stack IndexStack for data items in minor cycle mq: (a)
IndexStack of dealing with data item 1; (b) IndexStack of dealing with data item 2;
(c) IndexStack of dealing with data item 4.

index nodes before their other child nodes, some data items covered by these index nodes
have been broadcast yet, so that they cannot be retrieved in the same broadcast cycle.
This is a directory miss, which will increase the access time. On the other hand, if we put
these index nodes before each data node, it will lengthen the broadcast cycle, increasing
the access time.

In Procedure AllocateIndexNode, for the first data item 1 in the broadcast cycle in Figure
1-(d), since it is not the end of the broadcast cycle, it is copied to dup to start traversing
the index tree from it to the root node. Since it is not the root node of the skewed index
tree shown in Figure 3-(c), its parent node R in that index tree is assigned to p (lines 9-12).
(Note that we have to check the relationship between dup and p later; that is, we have to
check whether dup is the first child of p.) From line 13 to line 25, since data item 1 is the
first child of its parent p (i.e., R) in the index tree shown in Figure 3-(c), its parent R is
pushed into stack IndexStack shown in Figure 4-(a) and its parent R will then be visited.
(Note that since we traverse the index tree from the data node to the root node, we need
to use stack IndexStack to reverse the output order of the index nodes.) In the second run
of the inner while loop, since the current node is the root node in the index tree, p is set to
null. Therefore, the if condition about whether dup (i.e., R) is the first child of p is false,
and all index nodes in IndexStack will be popped out and put before data item 1 (lines
19-25) in the pop-out order. This result is shown in the leftmost part of Figure 5-(a).

For the second data item 2 in Figure 1-(d), since data item 2 and index node b1 are the
first children of their parents in the index tree shown in Figure 3-(c), their parents b1 and

al are pushed into IndexStack shown in Figure 4-(b), respectively. When al is visited,

® O ® O

2 4,3 5‘\2 6,3 7
® @ ®
(a)

Ea:.al b1] 2 [b2 014‘?_:.3 b ‘ E@_.s 7
< m, > m,—> |« m, > m,—

[
m: index bucket

4,_‘4
N
R
o

(6]
Co
B

(b)

Figure 5: Index distribution: (a) the distribution of index nodes; (b) the final broadcast
cycle with index nodes interleaved.

since it is not the first child of its parent R in the index tree, index nodes al and bl are
popped out sequentially, and then put before data item 2 in the broadcast cycle, as shown
in Figure 5-(a). For the third data item 4 in Figure 1-(d), since data item 4 and index
node ¢l are the first children of their parents in the index tree, their parents cl and b2 are
pushed into I'ndexStack shown in Figure 4-(c), respectively. When b2 is visited, since it is
not the first child of its parent al in the index tree, index nodes c1 and b2 are popped out
sequentially, and then put before data item 4 in the broadcast cycle, as shown in Figure
5-(a). Until now, the content of minor cycle m; is generated, as shown in the leftmost part
of Figure 5-(b), where m;, 1 < i < 4, means the ith minor cycle in this broadcast cycle.
In the same way, Procedure AllocateIndexNode processes all the rest of the data items.
Finally, the distribution of index nodes over the broadcast cycle is shown in Figure 5-(a),
and the corresponding result of the broadcast cycle with index nodes interleaved is shown
in Figure 5-(b).

In Step 4, since clients need the root node to start traversing index nodes, if the first
node of a minor cycle is not the root node, our algorithm will insert the root node in front
of that minor cycle to help the clients quickly start traversing the corresponding index
nodes. In Figure 5-(b), since the first node of each minor cycle is the root node, there is
no change for the final result after the processing of Step 4.

Entries in each index node in Figure 5-(b) are shown in Figure 6, where the number

10

R al bl b2 «cl1 R

O T EEEET
BN 1 2 3 4 5 6 7 8 9 10 11 12
ol«—m

2
R al bl c2 R

B s EHE] 7
BN 13 14 15 16 17 18 19 20 21 2223

!: m, >| m

1]0
al | 1

4

id, |offset ,

T Tomer] - iINdex bucket

* BN: Bucket number
* of fset; is the offset to the beginning of the bucket containing id;.

Figure 6: Entries in each index node

below the bucket is the bucket number starting from 1. To guide clients to quickly start
traversing the index nodes, except the root nodes, each index or data node also has an entry
directing them to the nearest root node, not shown in Figure 6. Each entry in an index
node is of the form < id,of fset >, where id is an identifier generated through the Bloom
filter [2] for a data item or index node and of fset is the distance in terms of buckets from
the end of the current bucket to the beginning of the bucket containing id. For example, in
Figure 6, the first entry < 1,0 > at bucket number 1, 7.e., R, represents that data item 1 is
0 bucket away from the current bucket. Note that data item 1 is the first child of root node
R as shown in Figure 3-(c). The second entry < al,1 > represents that if clients want to
get the data items covered by al, they should wait 1 bucket to reach the bucket containing
al. Note that, in Figure 6, the second entries < 2,13 > and < al,5 > at bucket numbers
15 and 20 guide the clients to the buckets containing b2 and al, respectively, in the next

cycle.

3.3 Access Protocol

We now present the access protocol of the proposed algorithm. The access protocol is as

follows.

1. Tune in to the broadcast channel to receive the current bucket.

11

2. Read the current bucket to get the offset of the nearest root node, and go into the

doze mode.

3. Tune in to the broadcast channel to receive the nearest root node, and then traverse
the index tree until the requested data item is reached or not found. (While waiting

for another index node or data node, clients can go into the doze mode for saving

energy.)

For example, in Figure 6, a client tunes in at bucket number 4 and wants to retrieve data
item 1. After retrieving bucket number 4, the client gets an offset to the nearest root node
at bucket number 9. The client then goes into the doze mode waiting for the beginning of
bucket number 9. After retrieving bucket number 9, the client knows the position of data
item 1 from the first entry in it. The client finally retrieves data item 1 at bucket number

10.

4 Performance

In the literature, Tsakiridis et al. [20] proposed the interpolation air index to reduce the
tuning time on the uniform data broadcast in a single channel. However, this algorithm
assumes that data items are evenly accessed by clients in a broadcast cycle, and was not
proposed for the environments with skewed access patterns. Katsaros et al. [10] proposed
an unbalanced-tree index to handle partially ordered data under skewed access patterns for
the uniform data broadcast. However, this algorithm was not proposed for the nonuniform
data broadcast. Yao et al. [23] proposed a hash algorithm to map data to a broadcast cycle
for the nonuniform data broadcast. However, their algorithm suffers from the overflow
problem, resulting in the increase in both the access time and the tuning time. Yu and
Tan [26] proposed the flexible index (FI) to reduce the tuning time over Broadcast Disks
on the nonuniform data broadcast. However, this algorithm does not consider skewed
access patterns to further reduce the tuning time. Seifert and Hung [14] proposed the
flexible distributed index (FDI) for the nonuniform broadcast. However, this algorithm
may replicate too many index trees in one broadcast cycle, resulting in the increase of the

average access time.

12

Among the above algorithms, FI [26] and FDI [14] have the assumptions of the en-
vironments similar to our work. Therefore, to evaluate the effectiveness of our proposed
algorithm, we compare our proposed algorithm with Broadcast Disks [1] with no index
(NI), FI [26], and FDI [14] via a simulation study. Since NI has no index in a broadcast
cycle, it has the shortest access time and the longest tuning time among these algorithms.
It is used to act as the benchmark for the access time and the tuning time. FI splits a
sorted list of data items in a minor cycle (segment) into several equal-sized sections. At the
beginning of each section, there is a control index consisting of a global index, which points
to the upcoming section where the data item can be found, and a local index, which points
to the data bucket in the current section where the data item can be found. FDI partitions
the broadcast program into a number of equal-sized segments with a given bounded tuning
time, and interleaves the tree-based index, which handles the following segments, before

each segment.

4.1 System Model

The parameters used in our performance model are shown in Table 1. First, we generate N
data items with the access probability, Pr(h), 1 < h < N, based on the Zipf distribution.
The Zipf distribution is typically used to model nonuniform access patterns. The Zipf

(1/h)°
> (1/4)°

named the access skew coefficient or the Zipf factor [1]. Different values of 6 yield the

distribution can be expressed as Pr(h) = 1 < h < N, where 0 is a parameter

different Zipf distribution. When 6 = 0, we have the uniform distribution. When the value
of # increases, the access probabilities become increasingly skewed [3]. For example, when
6 =1 and N = 3, we have Pr(1) = 16—1, Pr(2) = 13—1, and Pr(3) = % Then, the number
of data items, K, in each disk 7, 1 < < S, is assigned by Yee et al.’s GREEDY algorithm
[25]. This algorithm partitions N data items into S disks, so as to minimize the average
access time. According to the assignment of this algorithm, K; has the fewest number of
data items, K5 has the next fewest number of data items, and Kg has the most number of
data items. The relative frequency (R;) of disk i is determined by % = (S—14)A+1, and

Rs=1,1<1¢<S, where A is the factor for relative frequencies.

When considering the demand access probability (from clients), we also apply the Zipf

13

Table 1: Parameters

Parameter Description

The total number of data items

The number of broadcast disks

The number of data items in disk 7, 1 <1< S

The relative frequency of disk i

The factor for relative frequencies

The Zipf factor for generating the access probabilities of data items
The Zipf factor for generating access probabilities of disks

The ratio of the size of a data node to that of an index node

The degree of an index node

LRI

S,

LI 2 L

distribution with a Zipf factor . Here, we assume that the probability of accessing any
data item within a region is uniform; that is, the Zipf distribution is applied to these disks
[1]. Therefore, we model the demand access probability of the ith disk (DiskPr(i)) using

(1/i)

the Zipf distribution as follows: DiskPr(i) = —s————, where v is the Zipf factor.
Zj:l(l/j)’y
In this case, the first disk (K7), which has the least number of data items, is the most
frequently accessed.
Since the size of a data node (item) is larger than that of an index node, we use 71 to
control the ratio of the size of a data node to that of an index node. That is, if an index

node occupies one bucket, then a data node occupies n buckets. Parameter d is used to

determine the degree of an index node in our proposed algorithm.

4.2 Performance Analysis

Now we analyze the access time and the tuning time of our proposed algorithm. We assume
that the access probability for accessing disk j is DiskPr(j), 1 < j < S, and the demand
access probabilities of data items in each disk are uniform.

For analyzing the access time of accessing data item i, DIi, there are two cases: (1) It
can be downloaded in the current cycle; (2) it cannot be downloaded in the current cycle,
but the next cycle. Take data item 3, referred to as D13, in Figure 6 for example. If clients
tune in the channel before the third root node, R, at bucket 13, i.e., tuning in at minor

cycle my or mo, they can reach DI3 at bucket 22 in the current cycle. This is because in

14

the current cycle, the third root node at bucket 13 is the last root node that contains the
related entry, i.e., < al, 15 >, to reach DI3. On the other hand, if they tune in at minor
cycle mz or my, they should wait for the next cycle to reach DI3.

Assume that Dis(a, b) represents the distance from the beginning of node a to the end

of node b. The access time for accessing DI3 is

my + mo my + ms . ms + My ms + My .
Dis(Rgpq, D139, . Dis(Ryg, DI314)),
TotalSize x(2 +Dis(Rara 2 d))+T0talSzze x(2 +Dis(Fiy 1at))

where TotalSize = Zle mj, Ry, represents the 7th root node and D13, represents the

jth DI3. The first term is for Case 1, and the second one is for Case 2. Note that, Ry

and D134y are the first appearing root node and the first appearing DI3 in the next cycle,
respectively.

In general, there are L minor cycles (my, mg,...,mz) in one broadcast cycle, where L
is the least common multiple of all relative frequencies of disks. For data item DI: with
relative frequency \,, there would be), regions among the whole broadcast cycle for data
item DIi. The first (A, — 1) regions are for Case 1, and the last one region is for Case 2.
Therefore, for data item Dh’ its access time is Calculated by

Zk 1 .41 Mk Zk 1 o1 Mk
AT DI .] >< + J >< +
(DIi) = ; TotalSize X 2

where 0, = AL Note that, if the value of (0, X j +1) in R(s, «j41) is larger than that of L,

+DiS(R(5Z Xj+1)th; DU(jH)th))’

Rs. xj+1yn 18 Rs, xj+1-rym in the next cycle. Similarly, if the value of (j+1)in DTij i1y

is larger than that of A,, DI 1), is data item D1Iig 1y), in the next cycle. As a result,

)th
KJ

the average access time is calculated by AvgAT = Z ;() x DiskPr(j),1<j<S8.

Assume that Path(DIi) means the number of index buckets from the root node to data
item DIi. For data item DIi, its tuning time is calculated as TT(DIi) = 1+ Path(D1Ii)+n,
where 7 is the ratio of the size of a data bucket to that of an index bucket. In this

equation, one is for the initial probe. As a result, the average tuning time is calculated as

K
AvgTT = Z 7() x DiskPr(j),1<j<S§S.

4.3 Experimental Results

For our proposed skewed index (ST), the default values for the parameters are shown in
Table 2. For the flexible index (FI), we set the default values for the number of sections

per segment and the number of local index entries to 10 and 60, respectively. For the

15

Table 2: Default settings

Parameter Default value

10000..12000
4

1

1.0

0.8

20

10

LI 2 0z

flexible distributed index (FDI), we let the bounded tuning time as close as the tuning
time of our proposed SI. Moreover, the number of the distinct index tree and the number
of the replicated index tree in FDI are set according to the equations described in [14].
The following experimental results are the average of 100 cases in which the total number
of data items, N, is uniformly chosen from 10000 to 12000. Note that the average access
time and the average tuning time are measured in terms of buckets. In this performance
evaluation, we will first show the effects of changing five parameters, (a) A, (b) S, (c) 0,
(d) ~, and (e) n, individually. Next we will show how the degree of an index node affects
the performance in our proposed SI.

To provide a fairly statistic basis for performance comparison between our proposed
algorithm and the compared ones, we present confidence intervals for our experimental
results. A confidence interval for a population mean is an interval of values that is likely
to contain the true value of the population mean [19]. The 95% confidence interval for the
population mean provides a good balance between precision and reliability. Therefore, we
present the 95% confidence interval for our experimental results. A 95% confidence interval
for the population mean is given by (Z —1.96 x \/%, T41.96 x \/%), where 7 is the sample
mean, s is the sample standard deviation, and ns is the number of the samples [19]. The
first term is called the lower confidence limit and the second is called the upper confidence
limit. If the upper confidence limit of the experimental results for our proposed SI is less
than the lower confidence limit of those for the compared algorithms, we can conclude that
ST has a statistically significant better performance than the compared algorithms.

In the first experimental result, we vary the value of A, which affects the relative fre-

16

130000

110000

90000

Average access time

70000

Figure 7: Effect of A: the average access time

Table 3: Effect of A: the lower confidence limit and the upper confidence limit for the
average access time

A NI_L NILU FI_L FILU FDI_L FDI.U SI_L SI_U
1 73676.74 74978.33 118198.59 120271.17 102094.53 103901.85 81409.76 82847.71
2 74558.15 76041.31 109631.35 111791.42 104687.16 106775.49 77275.01 78811.68
3 81152.26 82704.35 112919.02 115055.78 113375.41 115551.17 82744.03 84325.6
4 89126.35 90938.23 119191.43 121587.2 123481.93 126177.23 90340.04 92174.91
5 96249.82 98173.59 124894.72 127361.27 132226.18 134878.06 97323.07 99265.68

quencies of disks, from 1 to 5, while the other parameters are set to the default values.
Figure 7 shows the average access time with the increase of the value of A. In Figure 7,
x-axis represents the value of A, and y-axis represents the average access time. Moreover,
Table 3 lists the corresponding lower confidence limit and upper confidence limit for the
average access time. NI_L, FI_L, FDI_L, and SI_L represent the lower confidence limits for
NI, FI, FDI, and SI, respectively, under the 95% confidence level. NI_U, FI_U, FDI_U, and
SI_U represent the upper confidence limits for NI, FI, FDI, and SI, respectively, under the
95% confidence level.

As the value of A increases, the difference between the relative frequencies of disks

becomes larger. This means that the size of the broadcast cycle will increase, resulting

17

Table 4: Effect of A: the average tuning time

A NI_L NI NI_U FI_L FI FILU FDI.L. FDI FDI.U SIL ST SI.U
1 73676.74 74327.53 74978.33 358.27 359.12 359.97 27 27 27 26.57 26.57 26.57
2 74558.15 75299.73 76041.31 396.4 397.29 398.17 27 27 27 26.57 26.57 26.57
3 81152.26 81928.3 82704.35 440.72 441.6 442.47 27 27 27 26.57 26.57 26.57
4 89126.35 90032.29 90938.23 486.14 487.12 488.1 27 27 27 26.57 26.57 26.57
5 96249.82 97211.7 98173.59 530.42 531.43 532.44 27 27 27 26.57 26.57 26.57

in the increase of the average access time, as shown in Figure 7. We can observe that NI
has the shortest average access time among these four algorithms, as can be also seen in
the following experimental results. This is because there is no index used in NI. However,
using NI, mobile devices should constantly tune in to the wireless channel to examine data,
consuming a lot of energy. Adding index information to the broadcast cycle will increase
the size of the broadcast cycle, resulting in the increase of the average access time. At
the same time, it will reduce the average tuning time. In Figure 7, although the average
access time of ST is longer than that of NI, it is shorter than that of FI and FDI. SI has
average improvements of 26.72% and 25.35% on the average access time over FI and FDI,

respectively. (Note that the percentage of the improvement from our SI to algorithm X is

(X—SI)
X

those of FI.L and FDI_L. (Note that those values are with an underline.) Therefore, we

computed as x 100.) Moreover, in Table 3, the values of SI_U are always less than
can conclude that ST has a statistically significant shorter access time than FI and FDI.
Table 4 shows the corresponding average tuning time with the increase of the value of
A. Since there is no index used in BD, clients should tune in to the channel all the time
while examining the broadcast data items. Therefore, NI has the longest average tuning
time among these four algorithms. We can observe that ST has the shortest average tuning
time among these four algorithms. This is because, in our SI, we construct the index tree
according to access probabilities of data items. SI has average improvements of 99.97%,
93.89% and 1.59% on the average tuning time over NI, FI and FDI, respectively. Therefore,
the average tuning time of ST is reduced as compared with that of the others. Moreover,
the values of SI_U are always less than those of NI_L, FI_L and FDI_L. Therefore, we can
conclude that ST has a statistically significant shorter tuning time than NI, FI and FDIL

In the second experimental result, we vary the value of S, the number of disks, from 4

18

140000 | - ———_ —A— F

120000 X I S A

100000

Average access time
[]

80000

60000 T T T T

Figure 8: Effect of S: the average access time

to 7, while the other parameters are set to the default values. Figure 8 shows the average
access time with the increase of the value of S, in which z-axis represents the value of S,
and Table 5 lists the corresponding lower confidence limit and upper confidence limit for
the average access time. In Figure 8, as the value of S increases, the average access time
decreases except S = 4. We can also observe that as the value of S increases, the difference
of the average access time between SI and NI is reduced. In addition, the average access
time of ST is shorter than that of FI and FDI. ST has average improvements of 33.63% and
24.61% on the average access time over FI and FDI, respectively. Moreover, in Table 5, the
values of SI_U are always less than those of FI_L and FDI_L. Therefore, we can conclude
that ST has a statistically significant shorter access time than FI and FDI. Table 6 shows
the corresponding average tuning time with the increase of the value of S. Among these
four algorithms, ST has the shortest average tuning time. SI has average improvements of
99.97%, 92.97% and 1.69% on the average tuning time over NI, FI and FDI, respectively.
Moreover, the values of SI_U are always less than those of NI_L, FI_L and FDI_L. Therefore,
we can conclude that ST has a statistically significant shorter tuning time than NI, FI and

FDI.

19

Table 5: FEffect of S: the lower confidence limit and the upper confidence limit for the
average access time

NI_L NILU FI_L FILU FDI_L FDI.U SI_L SI.U

S

4 74231.73 75804.4 119082.32 121586.54 102864.87 105048.67 82022.77 83760.22
5 90396.88 92006.07 142150.94 144665.23 121831.12 124003.22 93056.18 94712.1
6
7

86865.21 88537.3 134859.87 137437.89 119395.8 121698.62 87859.92 89548.81
77031.21 78725.11 118536.94 121122.66 108789.95 111192.4 78206.01 79910.43

Table 6: Effect of S: the average tuning time

S NI_L NI NI_LU FI_L FI FILU FDI.LL FDI FDI.U SI_L SI SI_.U
4 74231.73 75018.06 75804.4 359 360.02 361.05 27 27 27 26.57 26.57 26.57
5 90396.88 91201.48 92006.07 385.96 386.99 388.02 27 27 27 26.61 26.61 26.61
6 86865.21 87701.25 88537.3 386.07 387.13 388.18 27 27 27 26.65 26.65 26.65
7 77031.21 77878.16 78725.11 377.51 378.57 379.63 27 27 27 26.35 26.35 26.35

In the third experimental result, we vary the value of 6, the Zipf factor for generating
the access probabilities of data items, from 0.8 to 1.3, while the other parameters are set to
the default values. With the same total number of data items, as the value of # increases,
the access probabilities of data items become increasingly skewed. Therefore, as the value of
0 increases, the number of data items in disk 1 decreases and that in the last disk increases
by using Yee et al.’s algorithm [25] for assigning data items to disks. Figure 9 shows the
average access time with the increase of the value of 8, in which z-axis represents the value
of #, and Table 7 lists the corresponding lower confidence limit and upper confidence limit
for the average access time. In Figure 9, as the value of) increases, the average access time
decreases. In that figure, the average access time of ST is shorter than that of FI and FDI.
SI has average improvements of 31.14% and 20.45% on the average access time over FI and
FDI, respectively. Moreover, in Table 7, the values of SI_.U are always less than those of
FI L and FDI_L. Therefore, we can conclude that SI has a statistically significant shorter
access time than FI and FDI. Table 8 shows the average tuning time with the increase of
the value of #. Among these four algorithms, ST has the shortest average tuning time. ST
has average improvements of 99.96%, 92.63% and 2.59% on the average tuning time over
NI, FI and FDI, respectively. Moreover, the values of SI_U are always less than those of
NI_L, FI_.L and FDI_L. Therefore, we can conclude that ST has a statistically significant
shorter tuning time than NI, FI and FDI.

20

130000

110000

90000

Average access time

70000

50000 T T T T T T
0.8 0.9 1.0 11 1.2 13

Figure 9: Effect of #: the average access time

Table 7: Effect of #: the lower confidence limit and the upper confidence limit for the
average access time

0 NI_L NILU FI_L FILU FDI_L FDI.U SI_L SILU

0.8 84160.8 85920.76 134892.75 137695.2 113824.42 116206.27 92991.6 94936.15
0.9 79408.8 81009.93 127325.96 129875.5 108282.79 110468.89 87741.87 89510.79
1.0 73419.18 74954.71 117788.48 120233.55 101737.24 103869.36 81125.24 82821.65
1.1 68697.8 70118.53 110270.45 112532.72 95978.61 97969.08 75907.86 77477.46
1.2 64540.49 65877.07 103650.6 105778.9 90871 92759.07 71313.5 72790.28
1.3 61595.93 62848.85 98961.87 100956.95 88105.55 89903.81 68060.61 69444.91

Table 8: Effect of #: the average tuning time

0 NI_L NI NI_U FI L FI FI.U FDI.L FDI FDI.U SIL SI SI.U
0.8 84160.8 85040.78 85920.76 371.95 373.1 374.25 27 27 27 26.57 26.57 26.57
0.9 79408.8 80209.36 81009.93 365.75 366.8 367.84 27 27 27 26.57 26.57 26.57
1.0 73419.18 74186.95 74954.71 357.93 358.94 359.94 27 27 27 26.57 26.57 26.57
1.1 68697.8 69408.16 70118.53 351.77 352.7 353.63 27 27 27 26.32 26.32 26.32
1.2 64540.49 65208.78 65877.07 346.35 347.22 348.09 27 27 27 25.89 25.89 25.89
1.3 61595.93 62222.39 62848.85 342.5 343.32 344.14 27 27 27 25.89 25.89 25.89

21

130000

ime

110000

90000

Average access t

70000

50000 T T T T T T T T T T T T T T
00 01 02 03 04 05 06 07 08 09 10 11 12 13

Y

Figure 10: Effect of +: the average access time

In the fourth experimental result, we vary the value of v, the Zipf factor for generating
the access probabilities of disks, from 0.0 to 1.3, while the other parameters are set to the
default values. As the value of 7 increases, the access probability for data items in disk
1 increases and that in the last disk decreases. Figure 10 shows the average access time
with the increase of the value of v, in which z-axis represents the value of v, and Table 9
lists the corresponding lower confidence limit and upper confidence limit for the average
access time. In Figure 10, as the value of v increases, the average access time decreases.
In that figure, the average access time of SI is shorter than that of FI and FDL. SI has
average improvements of 30.37% and 19.88% on the average access time over FI and FDI,
respectively. Moreover, in Table 9, the values of SI_U are always less than those of FI_L
and FDL_L. Therefore, we can conclude that SI has a statistically significant shorter access
time than FI and FDL. Table 10 shows the average tuning time with the increase of the
value of v. Among these four algorithms, ST has the shortest average tuning time. SI has
average improvements of 99.97%, 92.77% and 1.47% on the average tuning time over NI,
FI and FDI, respectively. Moreover, the values of SI_U are always less than those of NI_L,
FI L and FDI_L. Therefore, we can conclude that SI has a statistically significant shorter

22

Table 9: Effect of v: the lower confidence limit and the upper confidence limit for the
average access time

o NI_L NILU FI_L FILU FDI_L FDI.U SI_L SI.U

0.0 90301.72 92041.2 134656.34 137230.76 119859.41 122172.7 98079.61 99968.59
0.1 88815.14 90629.76 133512.38 136219.95 118446.28 120870.87 96644.55 98618.8

0.2 87117.14 88918.64 132066.31 134777.13 116755.86 119174.63 94981.95 96945.73
0.3 83995.94 85818.85 128467.03 131234.25 113150.51 115611.09 91765.79 93756.96
0.4 82841.82 84499.74 127844.75 130384.44 112193.17 114442.83 90696.96 92511.74
0.5 79258.43 80852.61 123479.51 125944.49 107929.19 110104.44 86965.02 88713.91
0.6 77405.94 78922.93 121752.89 124121.14 106006.57 108088.66 85125.74 86793.75
0.7 76162.65 77813.57 120967.96 123570.67 104914.87 107193.61 83954.58 85774.08
0.8 74078.8 75597.73 118838.81 121257.46 102652.63 104761.98 81853.71 83531.78
0.9 T71507.6 73014.08 115886.91 118310.1 99689.68 101794.68 79206.73 80875.16
1.0 69769.7 71288.46 114227.27 116695.24 97864.52 99999.14 77474.51 79160.68
1.1 68144.63 69412.98 112711.6 114793.87 96177.46 97971.29 75860.89 77272.61
1.2 66905.27 68284.41 111791.73 114079.13 95015.35 96977.9 74670.07 76208.95
1.3 64884.06 66286.54 109524.79 111874.63 92714.35 94722.68 72598.27 74167.25

Table 10: Effect of : the average tuning time

¥ NI_L NI NI_U FI L FI FI.U FDI.L FDI FDI.U SIL SI SI.U
0.0 90301.72 91171.46 92041.2 407.24 408.29 409.35 27 27 27 26.75 26.75 26.75
0.1 88815.14 89722.45 90629.76 401.71 402.82 403.93 27 27 27 26.73 26.73 26.73
0.2 8r117.14 88017.89 88918.64 39594 397.05 398.16 27 27 27 26.71 26.71 26.71
0.3 83995.94 84907.39 85818.85 388.44 389.57 390.7 27 27 27 26.69 26.69 26.69
0.4 82841.82 83670.78 84499.74 383.42 384.46 385.5 27 27 27 26.66 26.66 26.66
0.5 79258.43 80055.52 80852.61 375.39 376.4 377.41 27 27 27 26.64 26.64 26.64
0.6 77405.94 78164.44 7892293 369.61 370.58 371.55 27 27 27 26.62 26.62 26.62
0.7 76162.65 76988.11 77813.57 364.7 365.77 366.83 27 27 27 26.59 26.59 26.59
0.8 74078.8 74838.27 75597.73 358.8 359.79 360.78 27 27 27 26.57 26.57 26.57
0.9 71507.6 72260.84 73014.08 352.35 353.34 354.33 27 27 27 26.54 26.54 26.54
1.0 69769.7 70529.08 71288.46 347.09 348.1 349.12 27 27 27 26.52 26.52 26.52
1.1 68144.63 68778.81 69412.98 342.11 342.96 343.82 27 27 27 26.5 26.5 26.5

1.2 66905.27 67594.84 68284.41 337.77 338.71 339.65 27 27 27 26.47 26.47 26.47
1.3 64884.06 65585.3 66286.54 332.5 333.46 334.43 27 27 27 26.45 26.45 26.45

tuning time than NI, FI and FDI.

In the fifth experimental result, we vary the value of n, the ratio of the size of a data node
to that of an index node, from 10 to 50, while the other parameters are set to the default
values. Figure 11 shows the average access time with the increase of the value of 7, in which
x-axis represents the value of n, and Tablell lists the corresponding lower confidence limit
and upper confidence limit for the average access time. In Figure 11, as the value of 7
increases, the average access time increases. For the same size of an index node and the
same total number of data items, as the value of n increases, the size of the broadcast cycle
increases, resulting in the increase of the average access time. In that figure, the average

access time of ST is shorter than that of FI and FDL. SI has average improvements of

23

300000

250000

200000

150000

100000

Average access time

50000 7

10 20 30 40 50

Figure 11: Effect of n: the average access time

Table 11: Effect of n: the lower confidence limit and the upper confidence limit for the
average access time

n NI_L NILU FI_L FILU FDI_L FDI.U SI_L SI_.U

10 36700.2 37515.61 59319.49 60617.89 58353.24 59653.95 40781.01 41686.76
20 73787.85 75257.54 118375.51 120715.76 102248.99 104289.63 81532.41 83156.06
30 111038.35 113274.87 177690.87 181252.17 144170.62 147079.21 122461.92 124928.21
40 147442.97 150342.41 235659.29 240276.17 184706.71 188343.81 162458.59 165653
50 183761.84 187368.51 293491.18 299234.22 224479.83 228891.3 202361.64 206333.07

31.11% and 17.47% on the average access time over FI and FDI, respectively. Moreover, in
Table 11, the values of SI_.U are always less than those of FI_L and FDL_L. Therefore, we
can conclude that SI has a statistically significant shorter access time than FI and FDL.
Table 12 shows the average tuning time with the increase of the value of . Among these
four algorithms, ST has the shortest average tuning time. SI has average improvements of
99.97%, 91.6% and 1.39% on the average tuning time over NI, FI and FDI, respectively.
Moreover, the values of SI_U are always less than those of NI_L, FI_L and FDI_L. Therefore,
we can conclude that ST has a statistically significant shorter tuning time than NI, FI and

FDI.

So far, we have shown that ST has a better performance than the compared ones. In the

24

Table 12: Effect of n: the average tuning time

n NI_L NI NI_U FI_L FI FILU FDI_L FDI FDI.U SI_L SI SI.U
10 36700.2 37107.91 37515.61 300.01 300.54 301.07 17 17 17 16.57 16.57 16.57
20 73787.85 74522.69 75257.54 358.42 359.38 360.33 27 27 27 26.57 26.57 26.57
30 111038.35 112156.61 113274.87 417.04 418.49 419.95 37 37 37 36.57 36.57 36.57
40 147442.97 148892.69 150342.41 474.55 476.44 478.33 47 47 47 46.57 46.57 46.57
50 183761.84 185565.18 187368.51 531.95 534.31 536.66 57 57 57 56.57 56.57 56.57
LT sl
83200 - 27.61
(0]
£ £
= S 2711
1)
& 82800 2
8 S 2661
e 2 26.6
(0]
2 &
& 82400 1 5 26.11
S >
P74 <
25.61
82000 -
T T T T 25.1 T T T T
5 10 15 20 5 10 15 20
d d

Figure 12: Effect of d: (a) the average access time; (b) the average tuning time.

last experimental result, we evaluate how the degree of an index node affects the average
access time and the average tuning time in our proposed SI. In this result, we vary the
degree of an index node, d, from 5 to 20, while the other parameters are set to the default
values. Figure 12-(a) and Figure 12-(b) show the average access time and the average
tuning time, respectively, with the increase of the value of d. In Figure 12-(a), ST has
the shortest average access time with d = 10 under the setting. The average access time
is affected by the index allocation so that there is no direct affection by the increase of
the value of d. Moreover, as the value of d increases, the more number of index entries
in a bucket should be examined. On the other hand, in Figure 12-(b), as the value of d
increases, the average tuning time decreases. For the same total number of data items, as
the value of d increases, the height of the skewed index tree may decrease, resulting in the

decrease of the average tuning time.

25

5 Conclusions

In this paper, we have proposed a skewed index over Broadcast Disks under skewed access
patterns on the nonuniform data broadcast. Our proposed algorithm allocates the index
nodes for the popular data items more times than those for the less popular ones in a
broadcast cycle. In this way, both the access time and the tuning time can be reduced in
the proposed algorithm. From our experimental results, we have shown that the proposed
algorithm has average improvements of up to 33.63% and 25.35% on the average access
time over the flexible index and the flexible distributed index, respectively. Moreover, the
proposed algorithm has average improvements of up to 93.89% and 2.59% on the average
tuning time over the flexible index and the flexible distributed index, respectively. How to
investigate the index structure for data with skewed access patterns over multiple channels

is the possible future work.

References

[1] S. Acharya, M. Franklin, S. Zdonik, and R. Alongso, “Broadcast Disks: Data Management for
Asymmetric Communications Environments,” Proc. of the 1995 ACM SIGMOD Int. Conf. on
Management of Data, pp. 199-210, 1995.

[2] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable Errors,” Comm. of
the ACM, Vol. 13, No. 7, pp. 422-426, July 1970.

[3] M. S. Chen, K. L. Wu, and P. S. Yu, “Optimizing Index Allocation for Sequential Data
Broadcasting in Wireless Mobile Computing,” IEEE Trans. on Knowledge and Data Eng.,
Vol. 15, No. 1, pp. 161-173, Jan./Feb. 2003.

[4] Y.D. Chung and M. H. Kim, “An Index Replication Scheme for Wireless Data Broadcasting,”
The Journal of Systems and Software, Vol. 51, No. 3, pp. 191-199, May 2000.

[5] Q. L. Hu, W. C. Lee, and D. L. Lee, “Indexing Techniques for Wireless Data Broadcast
Under Data Clustering and Scheduling,” Proc. of the 8th Int. Conf. on Information and
Knowledge Management, pp. 351-358, 1999.

[6] J.J. Hung and Y. Leu, “Efficient Index Caching for Data Dissemination in Mobile Computing
Environments,” The Journal of Systems and Software, Vol. 79, No. 1, pp. 93-106, Jan. 2006.

26

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Power Efficient Filtering of Data on
Air)” Proc. of the jth Int. Conf. on Extending DataBase Technology, pp. 245-258, 1994.

T. Imielinski, S. Viswanathan, and B. R. Badrinath, “Data on Air: Organization and Access,”

IEEE Trans. on Knowledge and Data Eng., Vol. 9, No. 3, pp. 353-372, May/June 1997.

S. Jung, B. Lee, and S. Pramanik, “A Tree-Structured Index Allocation Method with Repli-
cation over Multiple Broadcast Channels in Wireless Environments,” IEEE Trans. on Knowl-
edge and Data Eng., Vol. 17, No. 3, pp. 311-325, March 2005.

D. Katsaros, N. Dimokas, and Y. Manolopoulos, “Generalized Indexing for Energy-Efficient
Access to Partially Ordered Broadcast Data in Wireless Networks,” Proc. of the 10th Int.
Database Eng. and Applications Symp., pp. 89-96, 2006.

W. C. Lee and D. L. Lee, “Signature Caching Techniques for Information Filtering in Mobile
Environments,” ACM Wireless Networks, Vol. 5, No. 1, pp. 57-67, Jan. 1999.

S. C. Lo and A. L. P. Chen, “An Adaptive Access Method for Broadcast Data Under an
Error-Prone Mobile Environment,” IEEE Trans. on Knowledge and Data Eng., Vol. 12,
No. 4, pp. 609-620, July/Aug. 2000.

W. C. Peng and M. S. Chen, “Efficient Channel Allocation Tree Generation for Data Broad-
casting in a Mobile Computing Environment,” Wireless Networks, Vol. 9, No. 2, pp. 117-129,
March 2003.

A. Seifert and J. J. Hung, “FlexInd: A Flexible and Parameterizable Air-Indexing Scheme for
Data Broadcast Systems,” Proc. of the 10th Int. Conf. on Extending Database Technology,
LNCS, Vol. 3896, pp. 902-920, 2006.

J. H. Shen and Y. I. Chang, “A Skewed Distributed Indexing for Skewed Access Patterns on
the Wireless Broadcast,” The Journal of Systems and Software, Vol. 80, No. 5, pp. 711-723,
May 2007.

N. Shivakumar and S. Venkatasubramanian, “Efficient Indexing for Broadcast Based Wireless
Systems,” ACM/Baltzer Mobile Networks and Applications, Vol. 1, No. 4, pp. 433-446, Dec.
1996.

K. L. Tan and B. C. Ooi, “On Selective Tuning in Unreliable Wireless Channels,” Data and
Knowledge Eng., Vol. 28, No. 2, pp. 209-231, Nov. 1998.

27

[18]

[21]

[22]

[23]

[24]

[25]

K. L. Tan, J. X. Yu, and P. K. Eng, “Supporting Range Queries in a Wireless Environment
with Nonuniform Broadcast,” Data and Knowledge Eng., Vol. 29, No. 2, pp. 201-221, Feb.
1999.

M. F. Triola, Elementary Statistics. Addison Wesley Longman, Inc., 7 ed., 1998.

F. Tsakiridis, P. Bozanis, and D. Katsaros, “Interpolating the Air for Optimizing Wireless
Data Broadcast,” Proc. of the 5th ACM Int. Workshop on Mobility Management and Wireless
Access, pp. 112-119, 2007.

J. Xu, W. C. Lee, X. Tang, Q. Gao, and S. Li, “An Error-Resilient and Tunable Distributed
Indexing Scheme for Wireless Data Broadcast,” IEEE Trans. on Knowledge and Data Eng.,
Vol. 18, No. 3, pp. 392-404, March 2006.

X. Yang and A. Bouguettaya, “Adaptive Data Access in Broadcast-Based Wireless Envi-
ronments,” IEEFE Trans. on Knowledge and Data Eng., Vol. 17, No. 3, pp. 326-338, March
2005.

Y. Yao, X. Tang, E. P. Lim, and A. Sun, “An Energy-Efficient and Access Latency Optimized
Indexing Scheme for Wireless Data Broadcast,” IEEE Trans. on Knowledge and Data Eng.,
Vol. 18, No. 8, pp. 1111-1124, Aug. 2006.

W. G. Yee, S. B. Navathe, and E. Omiecinski, “Efficient Data Allocation over Multiple
Channels at Broadcast Servers,” IEEE Trans. on Computers, Vol. 51, No. 10, pp. 1231-
1236, Oct. 2002.

W. G. Yee, S. B. Navathe, E. Omiecinski, and C. Jermaine, “Bridging the Gap Between
Response Time and Energy-Efficiency in Broadcast Schedule Design,” Proc. of the 8th Int.
Conf. on Extending Database Technology, pp. 572-589, 2002.

J. X. Yu and K. L. Tan, “An Analysis of Selective Tuning Schemes for Nonuniform Broad-
cast,” Data and Knowledge Eng., Vol. 22, No. 3, pp. 319-344, May 1997.

B. Zheng and D. L. Lee, “Information Dissemination via Wireless Broadcast,” Comm. of the
ACM, Vol. 48, No. 5, pp. 105-110, May 2005.

B. Zheng, W. C. Lee, and D. L. Lee, “Spatial Queries in Wireless Broadcast Systems,”
Wireless Networks, Vol. 10, No. 6, pp. 723-736, Nov. 2004.

28

