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1 IntrodutionIn reent years, wireless ommuniations have beome very popular. The emergene ofpowerful portable omputers, along with advanes in wireless ommuniation tehnologies,has made mobile omputing a reality [3℄. Although a wireless network with mobile lientsis essentially a distributed system, there are some harateristi features that make thesystem unique and a fertile area of researh [7℄, inluding asymmetry in ommuniations,frequent disonnetions, power limitations and sreen size. Eah of these features has animpat on how data an be e�etively managed in a system with mobile lients [3℄.For example, beause of asymmetry in ommuniations, there has been onsiderableinterest in delivering information to distributed mobile lients via wireless broadast [16℄,inluding wireless appliations using palmtops to aess airline shedules, stok ativities,traÆ onditions and weather information on the road. In the wireless environments, theommuniation bandwidth from servers to lients is muh higher than that from lientsto servers. Under suh environments, with the limited bandwidth of the wireless hannel,using the broadast tehnique an serve with large numbers of mobile lients. That is, itis independent of the number of lients tuning to the hannel, i.e., salability [4, 5, 25℄. Bybroadasting the �le periodially, mobile lients an speify prede�ned ondition to �lterout the data they wanted [1, 2, 27℄. Mirosoft's smart personal objets tehnology (SPOT),for example, utilizes the broadast tehnique to provide wireless data servies [30℄. Witha wide-area network based on the FM subarrier tehnology, SPOT-based devies, e.g.,wathes, an ontinuously retrieve timely information suh as news, weather, sports, andstoks.Beause of power limits, power onservation is a key issue for the portable units (e.g.,palmtops). When a palmtop is listening to the hannel, its CPU must be in the ativemode to examine data pakets. This is a waste of energy, sine on average, only a very fewdata pakets are of interest to the partiular unit. It is de�nitely bene�ial if the palmtopan slip into the doze mode most of the time and wake up only when the data of interestis expeted to arrive [12, 13℄. This method is alled seletive tuning. As a onsequene,it is advantageous to use some speial data organizations, suh as tree-based, hash-basedand signature-based data organizations, to broadast data over the wireless hannel. In1



this way, those mobile units an be guided to the data of interest eÆiently and onlyneed to be atively listening to the broadasting hannel when the relevant information ispresent. As a result, those mobile units an save a lot of power energy while retrievingthe relevant information, and lengthen their operating time without reharging. For a �lebeing broadast on a hannel, the following two parameters are of onern [9, 10℄: (1)Aess time: The average time elapsed from the moment a lient wants a reord identi�edby a primary key, to the point when the required reord is downloaded by the lient. (2)Tuning time: The amount of time spent by a lient listening to the hannel. This willdetermine the power onsumed by the lient to retrieve the required data.Over the past few years, there have been many strategies for reduing power onsump-tion. For the uniform broadast in whih the same data item appears one in a broadastyle, the exible indexing [13℄, the hashing-based shemes [13℄, the tree-based indexing[6, 8, 12℄, signature shemes [17, 18, 19, 20℄, the mixture of the index tree and the signa-ture sheme [11℄, and the method using hashing and index tree tehniques [31℄ have beenproposed. A skewed index tree based on data popularity patterns was onsidered in [7℄. In[14℄, the nonlustered index and multiple indexes were addressed. For energy eÆient �l-tering of nonuniform broadast in whih data reords are broadast aording to the aessfrequeny, the studies in [25, 26, 28, 32℄ proposed indexing shemes. The above shemesonsidered that there is only one broadast hannel. However, data an be broadast overmultiple hannels; therefore, [24℄ studied alloating index, [21℄ disussed arranging data,and [15, 23℄ foused on index and data alloation. The work in [21, 22, 25℄ onerned onthe issue of fault tolerane. The researh work on [33, 34℄ onerned on spatial indexes forsupporting spatial queries on the wireless data broadast.Sine on the wireless broadast, the aess time is a�eted by the size of the broadast �le,adding the index inreases the aess time, reduing the tuning time. If the size of the indexis too large, the whole broadast �le inreases largely, resulting in the inrease of the aesstime. Moreover, if lients miss the orresponding index information to the requested data,the lients have to wait for the next yle to follow index probes, even though the requesteddata is not being broadast yet, i.e., a diretory miss. In a diretory miss, the lient annotget the requested data in one broadast yle. Among the strategies for seletive tuning,2



Chen et al.'s variant-fanout (VF ) index tree [7℄ takes the aess probabilities of data itemsinto onsideration. More popular data may be frequently aessed by the lients thanless popular ones, i.e., skewed data aess. For example, the weather onditions of hotattrations may be more frequently aessed than those of old ones.However, VF assumes that data items are sorted aording to aess probabilities, andan index tree is onstruted aording to this sorted order. In real-life appliations, theindex tree should be onstruted aording to key values of the data items, not aording toaess probabilities. Then, lients an eÆiently traverse the index tree to get the requesteddata aording to its key value. Moreover, VF does not onsider the repliation issue ofindex nodes. That means that lients always have to wait for the next yle to traversethe index tree to get the requested data, resulting in the inrease of the aess time. In[12℄, Imielinski et al. proposed the distributed indexing (DI ) onsidering the repliation ofindex nodes. However, DI does not onsider the aess probability of eah data item in abroadast yle and always repliates the index nodes of the �xed level. Therefore, in thispaper, we propose a skewed distributed indexing, SDI, onsidering the aess probability ofeah data item and the repliation of index nodes to redue the probability of the diretorymiss of popular data.The rest of this paper is organized as follows. In Setion 2, we give a brief desriptionof the VF index tree and the distributed indexing. In Setion 3, we present our proposedskewed distributed indexing. In Setion 4, we study the performane of the proposedalgorithm, and make a omparison with the distributed indexing by simulation. Finally, aonlusion is presented in Setion 5.2 BakgroundIn the wireless environments, a broadast yle onsists of a olletion of data items, whihare ylially broadast on the wireless hannel. Mobile lients listen to the wireless hannelto retrieve the data item of interest. In this setion, we �rst briey desribe the VF indextree [7℄, and then the distributed indexing [12℄, over the broadast yle.
3
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node a1 is traversed in preorder, resulting in < a1; 1; 2 >. After that, sine the root nodeR is in the repliated part, this node is broadast again. Furthermore, traversal sequene< a2; 3; 4 > of the subtree rooted by index node a2 is appended to the broadast yle.Eah data buket ontains the o�set to the nearest-repliated index buket.3 Skewed Distributed IndexingThe VF index tree does not onsider the repliation of index nodes, resulting in the dire-tory miss when lients tune into the broadast hannel to retrieve data. This will inreasethe aess time. The distributed indexing always determines the repliated part of an indextree by the �xed level. However, when some data nodes are more popular than the others,i.e., data nodes with di�erent aess probabilities, the aess time may be improved if werepliate the index nodes di�erent times aording to their di�erent aess probabilities.In this setion, we �rst state the assumptions of our proposed algorithm, and then presentthe proposed algorithm, the skewed distributed indexing, SDI.3.1 AssumptionsThis paper fouses on the wireless environment. Some assumptions should be restrited inorder to make our work feasible [5℄. These assumptions inlude:1. Data appears one in the whole broadast �le, i.e., the uniform broadast.2. Data is read-only; there are no updates either by the lients or at the servers.3. A buket is a logial transmission unit on a broadast hannel. An index node anbe put into a buket, the index buket, and a data node an be put into one or morebukets, the data buket.4. Clients make no use of their upstream ommuniations apability; that is, they pro-vide no feedbak to servers.5. When a lient swithes to the publi hannel, it an retrieve bukets immediately.The delay for hardware and software preparation to begin monitoring the broadasthannel is short. 6



6. The server broadasts bukets over a single hannel. All lients retrieve bukets fromthis single hannel.7. The wireless hannel is reliable; that is, lients reeive orret data and do not misstheir data.3.2 The Proposed AlgorithmNow, we present our proposed algorithm, the skewed distributed indexing, whih repliatesthe index nodes by onsidering the aess probabilities of data nodes. Assume that the rootnode is of level zero, its hildren are of level one, and so on. In the proposed algorithm,the following variables are used:1. n: the total number of data items in a broadast yle.2. Pr(i): the aess probability of eah data node i, 1 � i � n, Pni=1 Pr(i) = 1.3. d: the degree of an index node.4. h: the depth of an index tree.5. l: the level of an index tree, 0 � l < h.6. �l: the threshold for eah level l, i.e., �l = 1dl .The proposed algorithm is proessed as follows.1. Aumulate the aess probabilities of the hild nodes to their parent nodes in anindex tree in a bottom up manner.2. Set the root node of the index tree to be repliated.3. Traverse the index tree in preorder.(a) If the aess probability of an index node or a data node is greater than �l, setthe parent node of the urrent node to be repliated.4. Call proedure Mapping(the root node), as shown in Figure 3.7



1: proedure Mapping(v)2: if the parent node of v is set to be repliated then3: Put the orresponding ontrol index into the parent node of v4: if the last broadast node is not the same as the parent node of v then5: Broadast the parent node of v6: end if7: end if8: Broadast v9: for all  2 the hildren of v do10: Call proedure Mapping()11: end for12: end proedure Figure 3: Proedure MappingTake Figure 4 for example. The aess probability (Pr(i)) of eah data node i is labeledunder it, and the sum of the aess probabilities of all of data nodes ould be normalizedto equal 1. In Step 1, the aess probabilities of the hild nodes are aumulated to theorresponding parent nodes, as shown in Figure 4-(a). (Node that Figure 4-(b) also liststhe aess probability of eah node.) When a diretory miss of the root node (R) ours,the lient has to wait for the next yle to traverse the index bukets. If the root node isrepliated, the probability of the diretory miss in this yle ould be redued. Therefore,in Step 2, the root node in the index tree is set to be repliated. The dotted line underthe root node in Figure 4-(a) represents that the root node is in the repliated part; thatis, index node R will appear just before index nodes a1 and a2 in a broadast yle.In Step 3, the algorithm traverses the index tree in preorder to determine the repliatedindex node. Sine the aess probability (= 0:956) of index node a2 is greater than �1(= 1=21 = 0:5), the parent node (R) of index node a2 is set to be repliated before it. Butin this ase, index node R has already been set to be repliated in Step 2. When indexnode b3 is traversed, the parent node (a2) of index node b3 is set to be repliated before it,sine the aess probability (= 0:932) of b3 is greater than �2 (= 1=22 = 0:25). The dottedline between index nodes a2 and b3 in Figure 4-(a) depits this repliated information. The�nal result of Step 3 is shown in Figure 4-(a). (Note that Figure 4-(b) lists �1; �2; �3 and�4 for the index tree shown in Figure 4-(a).)8
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ontains the ontrol index, and go into the doze mode.3. Tune in to the broadast hannel reeiving the nearest repliated index node.(a) If the ontrol index indiates that the data item with key K was broadast, gointo the doze mode until the beginning of the next broadast yle.(b) If the ontrol index does not have information about the data item with key K,go to the higher level index node that ontains the ontrol index.() If the ontrol index indiates that the urrent index node an diret lients toget the data item with key K, proeed as in Step 4.4. Follow the sequene of index probes to obtain the data items with key K.Consider the broadast yle as shown in Figure 4-() for example. When tuning in atthe beginning of data buket 9, a lient wants to retrieve data buket 12. From data buket9, the lient gets the o�set to the nearest index buket that has the ontrol index, i.e.,index buket b30. After retrieving index buket b30, the lient knows that data buket 12 isovered by the urrent index buket through the seond tuple (as shown in Figure 6) of theontrol index. (Note that if an index node does not ontain the ontrol index to indiatethe index range, it annot diret lients to follow the remaining index probes.) Therefore,the lient then gets the o�set to index buket 6, and �nally retrieves data buket 12. Thetraversal sequene of this example in our skewed distributed indexing is < 9; b30; 6; 12 >.The result of the distributed indexing for the same example is shown in Figure 7, andthe traversal sequene in the distributed indexing is < 9; Rnext; a2; b3; 6; 12 >. Sine theaess probability of data buket 12 is high, reduing its probability of the diretory misswill derease the average aess time and tuning time. In this ase, the proposed algorithman retrieve the data of a high aess probability in the same yle, shortening the aesstime and tuning time.4 PerformaneIn this setion, we study the performane of the proposed algorithm. We �rst ompareour proposed algorithm with VF [7℄. The three variations of the distributed indexing [8℄12
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Table 1: ParametersParameter Desriptionn The total number of data itemsRDI The ratio of the size of the data page to that of the index node� The Zipf fatorexperimental results for 100 exeutions.4.2 Analysis of Aess Time and Tuning TimeFor simpliity, we assume that a full index tree is built and that the lients tune in at thebeginning of eah buket. Sine the size of an index node is smaller than that of a datanode, we assume that the ratio of the index node to the data node is 1 : RDI . That is, ifthe index node oupies one buket in the broadast yle, the data node will oupy RDIontiguous bukets. Eah data buket of RDI ontiguous bukets ontains the o�set to thenearest-repliated index node that is not broadast yet. Therefore, if the initial probe ofthe lients is in the data buket, they do not need to retrieve all RDI ontiguous buketsto get the o�set to the nearest-repliated index node; that is, they retrieve only one databuket. In the following disussion, we measure the aess time and the tuning time interms of bukets.The ontrol index in the repliated index nodes an diret the lients to reah the datanode that does not pass over. If the lients miss the orresponding repliated index node,they have to wait for the next yle to get the data buket of interest. For the analysisof the aess time, there are two ases: (1) The lients tune in before the orrespondingnearest-repliated index node to the wanted data node; (2) the lients tune in after theorresponding nearest-repliated index node. In the �rst ase, the lients an retrieve thedata node of interest in the same yle; in the seond ase, the lients have to wait for thenext yle to retrieve that data node.Assume that Distane(i; j) means the distane from the beginning of node i to the endof node j. For Case 1, the aess time, ATt;w, from the initial probe buket, t, to thewanted data node, w, is Distane(t; w), as shown in Figure 8. For Case 2, the aess14
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Figure 8: Case 1: The lient tunes in before the orresponding nearest-repliated indexnode, nrw, to the wanted data node, w.time, ATt;w, is Distane(t; e) + Distane(b; w), where b represents the beginning buketin a broadast yle, and e represents the end buket, as shown in Figure 9. Sine anindex node oupies one buket and a data node oupies RDI ontiguous bukets, theprobabilities of the initial probes in the index node and the data node are di�erent. If theinitial probe is in the index node, the fration of the average aess time, fATt;w, for thewanted data node, w, is ATt;w� 1BC , where BC is the size of the broadast yle; otherwise,fATt;w = ATt;w � RDIBC . Assuming that rIndex is the total number of the repliated indexnodes, we have BC = rIndex + dh�1 � 1d� 1 + dh�1 � RDI , where d is the degree of an indexnode and h is the depth of an index tree. The seond term represents the total numberof index nodes (bukets) in the original index tree, and the third term represents the totalnumber of data bukets. Let Sw represent the set of the initial probes that do not exeedthe orresponding nearest-repliated index node, nrw; to the wanted data node, w, andTw represent the set of the initial probes that exeed it. The average aess time, AATw,for the wanted data node, w, is Xt2Sw fATt;w + Xt2Tw fATt;w. Let D represent the set of alldata nodes in the broadast yle. The average aess time for the whole broadast yleis X8w2DPr(w)� AATw.Assume that Path(i; j) means the set of index nodes from node i to node j in an indextree, not inluding the data node. Let rt be the root node in the index tree, and nrw bethe nearest-repliated index node to the wanted data node, w. We have the set, U , of15
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bFigure 9: Case 2: The lient tunes in after the orresponding nearest-repliated index node,nrw, to the wanted data node, w.the index nodes from the root node, rt, to the nearest-repliated index node, nrw, to thewanted data node, w, i:e:, U = Path(rt; nrw). Let it;w be the losest-repliated indexnode in U that is not passed over in the broadast yle, from the initial probe buket, t,to the wanted data node, w. Figure 8 depits these de�ned variables. For the analysis ofthe tuning time, similar to the analysis of the aess time, there are two ases. For Case1, the tuning time, TTt;w, from the initial probe buket, t, to the wanted data node, w,is 1 + jPath(it;w; w)j + RDI . For Case 2, the tuning time, TTt;w, from the initial probebuket, t, to the wanted data node, w, is 1 + h+RDI .If the initial probe is in the index buket, the fration of the tuning time, fTTt;w, forthe wanted data node, w, is TTt;w � 1BC ; otherwise, fTTt;w = TTt;w � RDIBC . The averagetuning time, ATTw, for the wanted data node, w, isXt2S fTTt;w+Xt2T fTTt;w. Therefore, theaverage tuning time for the whole broadast yle is X8w2DPr(w)� ATTw.Assume that an index node and a data node are alloated to one buket, respetively.Following the analysis of the aess time and tuning time mentioned above, Table 2 summa-rizes the average aess time and the average tuning time for the whole broadast yle inFigures 7-(b) and 4-(). In Table 2, the perentage in parentheses represents the improve-ment perentage of the orresponding algorithm as the distributed indexing is the baseline.It is lear that our proposed skewed distributed indexing ould provide the better perfor-mane on the average aess time and the average tuning time for the whole broadast16



Table 2: Comparison of the average aess time and the average tuning timeAlgorithm Average aess time Average tuning timeDI 28:357 5:97SDI 20:383 (28%) 5:428 (9%)* DI : the distributed indexing* SDI : the skewed distributed indexingyle than the distributed indexing.4.3 Simulation Results: SDI vs. VFSine the data items for VF should be arranged in the desending order of aess prob-abilities, we generate n data items with their aess probabilities of the desending orderbased on the Zipf distribution. For our proposed algorithm, we build an index tree of atmost degree d for these n data items. Our proposed algorithm then traverses the index treeto determine whih index node should be repliated aording to aess probabilities of itshild nodes. For VF, it dynamially adjusts an index tree aording to aess probabilitiesof index or data nodes.To provide a fairly statisti basis for performane omparison between our proposedalgorithm and the ompared one, we present on�dene intervals for our experimentalresults. A on�dene interval for a population mean is an interval of values that is likelyto ontain the true value of the population mean [29℄. The 95% on�dene interval for thepopulation mean provides a good balane between preision and reliability. Therefore, wepresent the 95% on�dene interval for our experimental results. A 95% on�dene intervalfor the population mean is given by (x�1:96� spns; x+1:96� spns), where x is the samplemean, s is the sample standard deviation, and ns is the number of the samples [29℄. The�rst term is alled the lower on�dene limit and the seond is alled the upper on�denelimit. If the upper on�dene limit of the experimental results for our proposed SDI is lessthan the lower on�dene limit of these for the ompared algorithm, we an onlude thatSDI has a statistially signi�ant better performane than the ompared algorithm.Furthermore, to prove statistially signi�ant di�erenes of the experimental results17
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(a) (b)Figure 10: A omparison of SDI and VF with inreasing the number of data items: (a) theaverage aess time; (b) the average tuning time.between our proposed algorithm and the ompared one, we present an analysis of variane(ANOVA). ANOVA is a method of testing the equality of population means by analyzingsample varianes [29℄. If sample means that are lose in value result in an F test statistithat is lose to 1, we onlude that there is no signi�ant di�erene among the sample means.On the other hand, if the value of F is exessively large, then we rejet the lam of equalmeans. In our experimental results, we use a 5% signi�ant level; that is, the orrespondingritial value of F , F0:05, is 3.84 [29℄. If the observed value of F is greater than the valueof F0:05, we onlude that there is suÆient evidene to rejet the lam of equal means ofour proposed algorithm and the ompared one. That is, there is a signi�ant di�erenebetween the mean of our proposed algorithm and that of the ompared one. Otherwise, wefail to rejet the lam.For the �rst experiment, we inrease the total number of data items, n, from 200 to1200 under d = 4 and RDI = 5. Moreover, for eah �xed value of n, we randomly pik100 samples under � = [0:8::1℄; that is, the experimental result is an average of these 100samples. Figure 10-(a) shows the experimental result of the average aess time, and Table3 lists its orresponding details of the �gures. In Figure 10-(a), the x-axis represents thenumber of data items in one broadast yle, and the y-axis represents the average aesstime in terms of bukets. In Figure 10-(a), SDI L and SDI U represent the lower on�dene18



Table 3: The average aess time for the ases of inreasing the number of data itemsn SDI L SDI SDI U VF L VF VF U200 557:416 557:745 558:073 1059:342 1074:641 1089:941400 1187:448 1189:519 1191:589 2148:377 2188:314 2228:25600 1674:432 1677:7 1680:969 3138:693 3171:228 3203:764800 2226:986 2230:329 2233:672 4176:4 4236:891 4297:3811000 2732:492 2737:169 2741:847 5187:916 5228:216 5268:5171200 3644:478 3655:89 3667:303 6153:217 6231:154 6309:09Table 4: The values of F of the average aess time for the ases of inreasing the numberof data itemsn 200 400 600 800 1000 1200F 4382.951 2396.352 8014.341 4214.206 14482.474 4106.362limit and the upper on�dene limit for SDI under the 95% on�dene level, respetively.That is, the values of SDI L and SDI U indiate the on�dene intervals of the valuesof SDI. VF L and VF U represent the lower on�dene limit and the upper on�denelimit for VF under the 95% on�dene level, respetively. That is, the values of VF L andVF U indiate the on�dene intervals of the values of VF. As the value of n inreases,the average aess time of both our proposed SDI and VF inreases. We an observethat our proposed SDI outperforms VF in terms of the average aess time under all ofthe ases. This is beause VF does not repliate index nodes resulting in the diretorymiss. Moreover, the values of SDI U are always less than those of VF L. Furthermore, allthe orresponding values of F shown in Table 4 are extremely greater than the value ofF0:05(= 3:84). Therefore, we an onlude that SDI has a statistially signi�ant shorteraess time than VF.Figure 10-(b) shows the experimental result of the average tuning time, and Table 5 listsits orresponding details of the �gures. In Figure 10-(b), the x-axis represents the numberof data items in one broadast yle, and the y-axis represents the average tuning time interms of bukets. We an observe that the average tuning time of our proposed algorithm isshorter than that of VF. Moreover, the values of SDI U are always less than those of VF L.19



Table 5: The average tuning time for the ases of inreasing the number of data itemsn SDI L SDI SDI U VF L VF VF U200 8:851 8:874 8:897 10:812 10:852 10:892400 10:306 10:325 10:344 11:495 11:544 11:594600 10:012 10:048 10:084 11:869 11:92 11:971800 9:942 9:974 10:006 12:187 12:237 12:2871000 10:065 10:096 10:126 12:372 12:426 12:481200 11:652 11:662 11:673 12:53 12:589 12:647Table 6: The values of F of the average tuning time for the ases of inreasing the numberof data itemsn 200 400 600 800 1000 1200F 7033.342 2037.391 3407.423 5548.328 5409.219 932.173Furthermore, all the orresponding values of F shown in Table 6 are extremely greaterthan the value of F0:05(= 3:84). Therefore, we an onlude that SDI has a statistiallysigni�ant shorter tuning time than VF.For the seond experiment, we inrease the Zipf fator � from 0.6 to 0.9 under d = 4 andRDI = 5. For eah �xed value of �, we randomly pik 100 samples under n = [1000::1100℄;that is, the experimental result is an average of these 100 samples. As the value of �inreases, aess patterns beome more skewed. Figure 11-(a) shows the experimentalresult of the average aess time, and Table 7 lists its orresponding details of the �gures. InFigure 11-(a), the x-axis represents the value of the Zipf fator �, and the y-axis representsthe average aess time. We an observe that the average aess time of our proposedalgorithm is shorter than that of VF. Moreover, the values of SDI U are always less thanthose of VF L under the 95% on�dene level. Furthermore, all the orresponding valuesof F shown in Table 8 are extremely greater than the value of F0:05(= 3:84). Therefore, wean onlude that SDI has a statistially signi�ant shorter aess time than VF.Figure 11-(b) shows the orresponding average tuning time, and Table 9 lists its detailsof the �gures. In Figure 11-(b), the x-axis represents the value of the Zipf fator �, andthe y-axis represents the average tuning time. We an observe that the average tuning20
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(a) (b)Figure 11: A omparison of SDI and VF with inreasing the value of �: (a) the averageaess time; (b) the average tuning time.
Table 7: The average aess time for the ases of inreasing the value of �� SDI L SDI SDI U VF L VF VF U0:6 3363:575 3440:777 3517:979 7158:904 7197:816 7236:7280:65 3297:607 3374:157 3450:707 7287:141 7330:658 7374:1750:7 3238:029 3308:802 3379:574 7354:934 7393:653 7432:3720:75 3198:392 3264:053 3329:715 7160:913 7201:639 7242:3650:8 3206:383 3262:205 3318:026 5650:65 5680:901 5711:1530:85 3147:798 3201:831 3255:864 5568:705 5601:166 5633:6270:9 3070:17 3121:827 3173:484 5467:566 5497:455 5527:344

Table 8: The values of F of the average aess time for the ases of inreasing the value of� � 0:6 0:65 0:7 0:75 0:8 0:85 0:9F 7254.973 7755.937 9849.723 9976.879 5574.966 5566.040 6086.92821



Table 9: The average tuning time for the ases of inreasing the value of �� SDI L SDI SDI U VF L VF VF U0:6 11:077 11:279 11:481 13:815 13:824 13:8320:65 11:03 11:23 11:43 13:632 13:64 13:6470:7 11:008 11:207 11:406 13:394 13:4 13:4070:75 11:063 11:253 11:443 13:12 13:127 13:1340:8 11:226 11:395 11:564 13:003 13:007 13:0120:85 11:205 11:371 11:537 12:729 12:739 12:7480:9 11:138 11:305 11:472 12:485 12:49 12:494Table 10: The values of F of the average tuning time for the ases of inreasing the valueof � � 0:6 0:65 0:7 0:75 0:8 0:85 0:9F 606.838 556.844 466.452 373.748 350.674 259.078 193.273time of our proposed algorithm is shorter than that of VF under � = 0:6{0:9. Moreover,the values of SDI U are always less than those of VF L under the 95% on�dene level.Furthermore, all the orresponding values of F shown in Table 10 are extremely greaterthan the value of F0:05(= 3:84). Therefore, we an onlude that SDI has a statistiallysigni�ant shorter tuning time than VF under � = 0:6{0:9.4.4 Simulation Results: SDI vs. DIAfter generating n data items with the aess probability Pr(i), 1 � i � n, based on theZipf distribution, we randomly pik a permutation of these data items, and build an indextree of at most degree d for them. The aess probability of eah index node in this indextree is equal to the sum of the aess probabilities of its hild nodes. For our proposedalgorithm, the repliated index nodes are determined aording to the aess probabilitiesof their hild nodes by traversing the index tree. For the distributed indexing, the repliatedindex nodes are determined by the repliated level in the index tree. Therefore, parameterr is used to determine the repliated level in an index tree in the distributed indexing. Theoptimum value of r for ahieving the best aess time is de�ned as r = b12 � logd(n� (d�22
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Figure 12: A omparison of the average aess time of SDI and DI with inreasing thevalue of �.1) + dh+1d� 1)� 1)+ 1 [12℄.Aording to [13℄, the tuning time of suh tree-based indexes depends on the level of anindex tree, and is bounded by dlogdne+2+RDI . Therefore, there is a limited improvementon the tuning time among the tree-based indexes, and in our simulation results, we willnot show the omparison of the tuning time.For the �rst simulation experiment, we inrease the value of �, the Zipf fator, from1:5 to 3:0 under d = 6, n = 1000 and RDI = 5. Figure 12 shows the experimental resultsof the average aess time. In Figure 12, the x-axis represents the value of the Zipffator �, and the y-axis represents the average aess time. As the value of � inreases,the aess patterns beome very skewed. We an observe that the average aess time ofour proposed algorithm is shorter than that of DI. This is beause our proposed algorithmrepliates the index nodes with a higher aess probability, instead of always repliatingthe index nodes with the �xed level. In this way, our proposed algorithm inreases theprobability of aessing data items with a higher aess probability in one broadast yle,reduing the average aess time. Moreover, the values of SDI U are always less than thoseof DI L under the 95% on�dene level. Furthermore, all the orresponding values of Fshown in Table 11 are greater than the value of F0:05(= 3:84). Therefore, we an onludethat SDI has a statistially signi�ant shorter aess time than DI.23



Table 11: The values of F of the average aess time for the ases of inreasing the valueof � � 1:5 2:0 2:5 3:0F 41.252 40.664 34.059 29.375
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Figure 13: A omparison of the average aess time of SDI and DI with inreasing thevalue of n.For the seond simulation experiment, we vary the number of data items, n, from 400to 1200 under d = 6, RDI = 5, and � = 3. Figure 13 shows the experimental results of theaverage aess time. In Figure 13, the x-axis represents the number of data items, n, andthe y-axis represents the average aess time. Table 12 lists its orresponding details of the�gures. As the value of n inreases, the average time of both algorithms inreases. We anobserve that the average aess time of our proposed algorithm is shorter than that of DI.The reason is the same as mentioned before. Moreover, the values of SDI U are alwaysless than those of DI L under the 95% on�dene level. Furthermore, all the orrespondingvalues of F shown in Table 13 are greater than the value of F0:05(= 3:84). Therefore, wean onlude that SDI has a statistially signi�ant shorter aess time than DI.
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Table 12: The average aess time for the ases of inreasing the value of nn SDI L SDI SDI U DI L DI DI U400 876:974 888:549 900:124 921:329 933:52 945:712600 1309:834 1329:838 1349:841 1391:753 1413:155 1434:558800 1720:864 1747:377 1773:889 1830:106 1858:266 1886:4251000 2153:898 2184:653 2215:408 2291:697 2324:698 2357:6991200 2605:614 2642:7 2679:785 2769:944 2809:572 2849:201Table 13: The values of F of the average aess time for the ases of inreasing the valueof n n 400 600 800 1000 1200F 27.491 31.073 31.579 37.026 36.3155 ConlusionIn this paper, we proposed the skewed distributed indexing for data broadast with skewedaess patterns over the single hannel on wireless environments. Our proposed algorithmtakes the aess probability of eah data item into onsideration. Our proposed algorithmrepliates the index nodes with a higher aess probability, instead of always repliating theindex nodes with the �xed level as in the distributed indexing. From our simulation results,we have shown that the proposed algorithm needs the shorter average aess time than VFand the distributed indexing in many ases. How to investigate the index struture fordata with skewed aess patterns over multiple hannels is the possible future work.Referenes[1℄ S. Aharya, M. Franklin, and S. Zdonik, \Disseminating Updates on Broadast Disks,"Pro. of the 22rd VLDB Conf., pp. 354{365, 1996.[2℄ S. Aharya, M. Franklin, and S. Zdonik, \Prefething from a Broadast Disk," Pro. of the12th IEEE Int. Conf. on Data Eng., pp. 276{285, 1996.[3℄ D. Barbar�a, \Mobile Computing and Database|A Survey," IEEE Trans. on Knowledge andData Eng., Vol. 11, No. 1, pp. 108{117, Jan./Feb. 1999.25
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