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Abstract

Location-dependent spatial query in the wireless
environment is that mobile users query the spatial objects
dependent on their current location. The window query is
one of the essential spatial queries, which finds spatial
objects located within a given window. In this paper, we
propose a Hilbert curve-based distributed index for
window queries in the wireless data broadcast systems.
Our proposed algorithm allocates spatial objects in the
Hilbert-curve order to preserve the spatial locality.
Moreover, to quickly answer window queries, our
proposed algorithm utilizes the neighbor-link index, which
has knowledge about neighbor objects, to return the
answered objects. From our experimental study, we have
shown that our proposed algorithm outperforms the
distributed spatial index.

Keywords: Location-dependent spatial query, power
constraint, space-filling curve, spatial index, wireless data
broadcast.

1 Introduction
Recently, location-dependent spatial query (LDSQ) on the
wireless data broadcast is a new concerned issue in the
wireless environment. LDSQ in the wireless environment
is that mobile users query the spatial objects dependent on
their current location. Examples of LDSQs include
querying local traffic reports and the nearest restaurants
with respect to user's current location [7]. Because of its
high scalability, wireless data broadcast is an efficient way
to disseminate data to a large number of mobile users.
Therefore, wireless data broadcast is particularly suitable
for providing spatial objects for a tremendous number of
mobile users. Since mobile users may move (mobility),
many existing techniques for processing spatial objects
and queries in the tradition spatial databases may not fit
with the wireless environment. Moreover, because of the
power constraint of mobile devices, an important
challenge is to provide efficient indexing and searching
mechanisms for energy efficient querying of LDSQs [3].

LDSQs include window queries, nearest-neighbor (NN)
queries, and k-nearest-neighbor (kNN) queries. Window
queries find data items that are located within a given
window, which is a rectangle in a 2-dimensional space [8].
NN queries return only one data item in the spatial space
closest to a given query point. kNN queries return k data

items in the spatial space closest to a given query point [8].
Among them, the window query, one of the essential
spatial queries, is very useful for spatial selection. In this
paper, we focus on the window query.

For a file being broadcast on a channel, the following
two parameters are of concern [6]: (1) Access time: The
average time elapsed from the moment a client wants a
record identified by a primary key, to the point when the
required record is downloaded by the client. (2) Tuning
time: The amount of time spent by a client listening to the
channel. This will determine the power consumed by the
client to retrieve the required data. Since battery power is a
scarce resource in mobile devices, it is crucial for saving
energy consumption of the devices during the query
process. Therefore, in this paper, the main concern is to
reduce the tuning time.

In the literature, there has been much work providing
index structures to support the efficient access on LDSQs
on the wireless data broadcast. In [9], Zheng et al.
proposed the grid-partition index to support NN queries.
The studies in [3, 7] are specified for kNN queries. The
Hilbert curve index [8] provides an index structure to
support window queries and kNN queries. In [5], Lee and
Zheng proposed the distributed spatial index (DSI) to
improve the performance of the Hilbert curve index.

Among the above work, DSI [5] can provide a good
performance for window queries on the wireless data
broadcast. However, this work does not utilize the
property that the answered objects for window queries
may be the neighbor of each other to further reduce the
tuning time. Therefore, in this paper, we propose a Hilbert
curve-based distributed index (HCDI) to support window
queries by using the mentioned property. In our
experimental results, we have shown that our proposed
algorithm can perform better than the distributed spatial
index.

The rest of this paper is organized as follows. In
Section 2, we give a brief description of the Hilbert curve.
In Section 3, we present our proposed Hilbert curve-based
distributed index. In Section 4, we study the performance
of the proposed algorithm, and make a comparison with
the distributed spatial index by simulation. Finally, a
conclusion is presented in Section 5.

2 Background
In the wireless environments, a broadcast cycle consists of
a collection of data items, which are cyclically broadcast
on the wireless channel. Mobile clients listen to the
wireless channel to retrieve the data item of interest. In this



section, we briefly describe the Hilbert curve, one kind of
space-filling curves.

A space-filling curve is a continuous path which passes
through every point in a multi-dimensional space once to
form a one-one correspondence between the coordinates of
the points and the one-dimensional sequence numbers of
the points on the curve [4]. Some examples of space-filling
curves are the Peano curve, the RBG curve and the Hilbert
curve. Among them, the Hilbert curve can preserve the
spatial locality of points. The spatial locality means that
points that are close to each other in a multi-dimensional
space are remained to close to each other in a
one-dimensional space. Figure 1-(a) shows the Hilbert
curve of order 1. The curve can keep growing recursively
by following the same rotation and reflection pattern at
each point of the basic curve. Figures 1-(b) and 1-(c) show
the Hilbert curves of orders 2 and 3, respectively. In this
paper, to preserve the spatial locality, we allocate spatial
objects to the broadcast channel in the ascending order of
the Hilbert curve.
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Figure 1. The Hilber curve: (a) order 1;
(b) order 2; (c) order 3.

3 The Hilbert Curve-Based
Distributed Index
To provide an efficient way to process window queries in
the wireless broadcast environments, we propose a Hilbert
curve-based distributed index (HCDI). In this section, we
first state the assumptions of our proposed algorithm and
then present our proposed algorithm.

3.1 Assumptions
This paper focuses on the wireless environment. Some
assumptions should be restricted in order to make our work
feasible [1]. These assumptions include:

1. Spatial objects are represented as a point in a
two-dimensional space.

2. Spatial objects appear once in a broadcast cycle, i.e.,
the uniform broadcast.

3. A bucket is a logical transmission unit on a broadcast
channel. Index tuples can be put into an index bucket
and a spatial object can be put into a data bucket. The
size of a data bucket is far larger than that of an index
bucket, and the size of a data bucket is a multiple of
that of an index bucket.

4. Clients make no use of their upstream
communications capability.

5. When a client switches to the public channel, it can
retrieve buckets immediately.

6. The server broadcasts buckets over a reliably single
channel.

3.2 Neighbor Links
For a window query of spatial objects, the answered
objects may be the neighbors of each other. To provide an
efficient way to support the window query, we propose
neighbor links to guide clients to receive related objects.
The policy for adding neighbor links to the base unit is that
the base unit has neighbor links pointing to the neighbor
units of the northern, southern, eastern, western,
northeastern, southeastern, northwestern and southwestern
directions that have the Hilbert-curve value greater than its
one. The efficient way to find these neighbor units of the
current base unit in the Hilbert curve can be found in [2].
In [2], Chen and Chang presented a method to find the
sequence numbers of the neighboring blocks next to the
current base unit based on its bit shuffling property in the
Peano curve, and the transformation rules between the
Peano curve and the Hilbert curve. That is, the sequence
numbers of the neighboring blocks next to the current base
unit can be easily found in the Peano curve, and then
transformed to the ones in the Hilbert curve.

3.3 The Proposed Algorithm
The proposed algorithm for efficiently processing window
queries is proceeded as follows.
1. Allocate spatial objects in the ascending order of the

Hilbert curve of order s.
2. Allocate one index bucket before each data bucket.

Each index bucket contains the neighbor-link index
and the local index. Let the objects covered by the
same Hilbert-curve value of order (s-1) as a group.
The allocation of the index bucket is processed as
follows.
a. Add neighbor links (the neighbor-link index) to

the corresponding index buckets from base units
(blocks) of order (s-1) to those of order 1.

b. Check if the index tuples of the neighbor-link
index in the index buckets have the same pointer
(offset).If it is true, remove the index tuples with
the short range.

c. Add the local index, which has information about
the objects in the same group, to the
corresponding index buckets
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Figure 2. A Hilbert curve of order 3

Now, we use an example to illustrate our proposed
algorithm. Figure 2 shows an example of the Hilbert curve
of order 3, where the gray block contains a spatial object
inside and the white one contains no object. In Step 1, we
allocate spatial objects to the one-dimensional space in the
order of the Hilbert curve of order s (= 3).
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Figure 3. Block levels: (a) order 3; (b)
order 2; (c) order 1.

Next, in Step 2, we allocate one index bucket before
each data bucket. The objects covered by the same
Hilbert-curve value of order (s-1) (= 2) are considered as a
group. Block j of order (i+1), 0 < j < 2(i+1) 2(i+1), is
covered in block (j/4) of order i. Take objects 8, 9 and 11
shown in Figure 3-(a) for example. Their Hilbert-curve
values are covered by block 2 (= 8/4= 9/4= 11/4) of
order 2 shown in Figure 3-(b). Therefore, these objects are
in the same group.

Then, in Step 2-(a), to provide an efficient way to
support the window query, neighbor links (the
neighbor-link index) are allocated to the corresponding
index buckets for each object in the group from base

blocks of order (s-1) (= 2) to those of order 1. Consider the
group containing objects 8, 9 and 11 shown in Figure 3-(a)
for example. The neighbor links of their corresponding
block 2 of order 2 shown in Figure 3-(b) are pointing to
blocks 4, 7, and 8 of order 2, which contain objects inside.
Moreover, the neighbor links of their corresponding block
0 (= 2/4) of order 1 shown in Figure 3-(c) are pointing to
blocks 1, 2 and 3 of order 1, which contain objects inside.
The neighbor links of the corresponding blocks of order 1
and order 2 for the objects shown in Figure 2 are listed in
Table 1. Note that in Table 1, the range in parentheses
following the neighboring block indicates the
Hilbert-curve values of order 3 of the objects covered by
this neighboring block. In Figure 3, we can observe that
blocks 3, 5, 9, 11, 13 and 14 of order 2 contain no object
inside; therefore, Table 1 has no information about these
blocks.

Table 1. Neighbor links

Order Start Block Neighboring Blocks (Range)
1 0

1
2
3

1 ([17,31]), 2 ([32,40]), 3 ([51,61])
2 ([32,40]), 3 ([51,61])
3 ([51,61])
-

2 1
2
4
6
7
8
10
12
15

2 ([8,11])
4 ([17,17]), 7 ([28,31]), 8 ([32,32])
6 ([27,27]), 7 ([28,31])
7 ([28,31]), 8 ([32,32])
8 ([32,32])
10 ([40,40]), 12 ([51,51])
-
15 ([61,61])
-

*“-”: no neighbor link

The index tuples of the index buckets are shown in
Figure 4. Take index bucket I1 for object 8 shown in
Figure 4 for example. From Figures 3-(a) and 3-(b), we get
that object 8 is covered in block 2 of order 2. Moreover, in
Table 1, we get the neighboring blocks of block 2 of order
2 and their corresponding ranges, 4 ([17, 17]), 7 ([28, 31]),
and 8 ([32, 32]). Therefore, in index bucket I1, the
neighbor-link index has these three index tuples pointing
to the index buckets for the first objects in these ranges, i.e.,
[17, 17], I4, [28, 31], I6, and [32, 32], I9shown in
Figure 4. (Note that since the size of a data bucket is a
multiple of that of an index bucket, it is easy to convert the
pointer of an index tuple to an offset to the corresponding
bucket.) Furthermore, from Figures 3-(a), 3-(b) and 3-(c),
we get that object 8 is contained in block 0 of order 1. In
Table 1, we get the neighboring blocks of block 0 of order
1 and their corresponding ranges, 1 ([17, 31]), 2 ([32, 40]),
3 ([51, 61]). As a result, in index bucket I1, the
neighbor-link index has these three index tuples, [17, 31],
I4, [32, 40], I9, and [51, 61], I11shown in Figure 4.

In Step 2-(b), to save the space in the index bucket, we
check if the index tuples of the neighbor-link index in the
index buckets have the same pointer (offset). For the index
tuples with the same pointer, since the index tuple with the



wide range can contain more information about the
neighboring objects than that with the short one, the latter
one is removed from the index bucket. Take index tuples
[17, 17], I4and [17, 31], I4in index bucket I1 for
example. Range [17, 31] of index tuple [17, 31], I4is
wider than range [17, 17] of index tuple [17, 17], I4.
Therefore, index tuple [17, 17], I4is removed from
index bucket I1. The removed index tuples are the ones
with a strikethrough line shown in Figure 4.
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Figure 4. The allocation of the Hilbert curve-based
distributed index

In Step 2-(c), we add the local index, which has
information about the objects in the same group, to the
corresponding index buckets. Take index bucket I1 for
object 8 shown in Figure 4 for example. Since objects 8, 9,
and 11 are in the same group, the local index in index
bucket I1 has three index tuples pointing to the data
buckets containing these objects, i.e., [8, 8], 2, [9, 9], 3,
and [11, 11], 4shown in Figure 4. Note that in Figure 4,
when index bucket I2 is broadcast, bucket number 2
containing object 8 has been broadcast; therefore, index
tuple [8, 8], 2'in index bucket I2 points to bucket number
2 in the next cycle. The index tuples of the local index in
index buckets I3, I7 and I8 are in the same manner.

Each index bucket has an index tuple pointing to the
beginning of the next cycle to retrieve objects that have
been broadcast. Each data bucket has an offset to direct
clients to the nearest index bucket to start receiving the
related buckets.

3.4 Window Queries

To process a window query with our proposed algorithm,
all the segments along the Hilbert curve that are intersected
with a given query window should be found [5]. The
access protocol for window queries is proceeded as
follows.
1. Tune in to the broadcast channel to receive the

current bucket to get the offsets to the nearest index
bucket and the beginning of the next cycle, and then
go into the doze mode.

2. Tune in to receive the bucket, a data bucket or an
index bucket. If an index bucket is received, index
tuples should be examined.

a. Check index tuples of the neighbor-link index,
which have the shortest range covering one of the
intersected segments, to get the offsets to the
related index buckets.

b. Check index tuples of the local index to get the
offsets to the related data buckets.

3. Determine the nearest offset of the related bucket to
tune in, and then go into the doze mode to save
power consumption.

4. Repeat Step 2 to Step 3 until all the intersected
segments are checked.

Take the query window (the dash-line box) in Figure 2
for example. This query window can be divided into three
segments covered with the Hilbert curve, [10, 11], [30, 33]
and [52, 53]. Assume that the client first tunes in to the
channel at the beginning of the index bucket I0 in Figure 4.
After checking this bucket, the client gets the offsets to
index buckets I1, I4, I9 and I11, which have information
about the intersected segments. Next, the client tunes in at
the nearest-related index bucket I1. By examining the
neighbor-link index in this bucket, the client finds tuple
[28, 31], I6that has the shortest range covering segment
[30, 33]. Since the range covering segment [30, 33] of
index bucket I4 is longer than that of index bucket I6, the
offset to index bucket I4 is replaced by that to index bucket
I6. At the same time, from the local index of index bucket
I1, the client gets the offset to object 11, which is in [10,
11].

After receiving object 11, the client reaches index
bucket I6. From the local index of this bucket, the client
gets the offset to receive object 31, which is in [30, 33].
After that, the client reaches object 32 through index
bucket I9. The client finally examines index bucket I11
and knows that there is no object in segment [52, 53]. Up
to this point, all the intersected segments have been
checked and the query processing is terminated. The
answered objects for this query are objects 11, 31, and 32.

4 Performance
In this section, we study the performance of the proposed
algorithm. We compare our proposed algorithm with the
distributed spatial index, DSI [5]. DSI divides the spatial
objects, which are allocated in the Hilbert-curve order, into
frames. Each frame has an index table that maintains
information about spatial objects which are exponentially
away from the current frame.



4.1 The System Model
In our simulation model, two integer numbers of IntSize (=
1) byte are used to represent two coordinates in a
two-dimensional space, so that an integer number of 2
bytes is used to represent a Hilbert-curve value. Each
spatial object occupies DataSize (= 1024) bytes. The
search region of a window query is controlled by
WinSideRatio, the ratio of the side length of a window
query to that of the search space. Given WinSideRatio =
0.1 and the side length of the search space is equal to 28 (=
256), the search region of a window query is a 26 (256 
0.1) 26 square. In our simulation, 10,000 points are
uniformly generated in a square Euclidean space [5], and
10,000 queries are randomly issued. Therefore, our
experimental results are the average of 10,000 queries. The
average tuning time is measured in terms of bytes.

4.2 Experimental Results
For the distributed spatial index (DSI), we set the number
of objects in a frame and the exponential base for index
tuples to 8 and 2, respectively. In this performance
evaluation, we vary WinSideRatio from 0.1 to 0.3. Figure 5
shows the average tuning time. In this figure, as the value
of WinSideRatio increases, the average tuning time of both
algorithms increases. As the value of WinSideRatio
increases, the search region increases.

It means that the objects in the search region to be
examined increase, resulting in the increase of the average
tuning time. In Figure 5, we can observe that the average
tuning time of our proposed algorithm is shorter than that
of DSI. Our proposed algorithm has an average
improvement of 36% on the average tuning time over DSI.
This is because our proposed HCDI utilizes the
neighbor-link index to reduce the number of the tune-in
buckets, resulting in the reduction of the tuning time.

Figure 5. The average tuning time

5 Conclusion
In this paper, we have proposed a Hilbert curve-based
distributed index with neighbor links for window queries
over the single wireless broadcast channel. For a window
query of spatial objects, the answered objects may be the
neighbors of each other. Our proposed algorithm utilizes
neighbor links, which point to the neighbor objects of the

current object, to efficiently process the window query.
From our simulation results, we have shown that the
proposed algorithm needs the shorter average tuning time
than the distributed spatial index.
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