
Mining Subspace Clusters from DNA
Microarray Data Using Large Itemset

Techniques

Ye-In Chang1, Jiun-Rung Chen2, and Yueh-Chi Tsai3

Dept. of Computer Science and Engineering, National Sun Yat-Sen University

No. 70, Lienhai Rd., Kaohsiung 80424, Taiwan, R.O.C.

Abstract

Mining subspace clusters from the DNA microarrays could help researchers identify those

genes which commonly contribute to a disease, where a subspace cluster indicates a subset

of genes whose expression levels are similar under a subset of conditions. Since in a DNA

microarray, the number of genes is far larger than the number of conditions, those previous

proposed algorithms which compute the maximum dimension sets (MDSs) for any two

genes will take a long time to mine subspace clusters. In this paper, we propose the

Large Itemset-Based Clustering (LISC) algorithm for mining subspace clusters. Instead of

constructing MDSs for any two genes, we construct only MDSs for any two conditions.

Then, we transform the task of finding the maximal possible gene sets into the problem of

mining large itemsets from the condition-pair MDSs. Since we are only interested in those

subspace clusters with gene sets as large as possible, it is desirable to pay attention to those

gene sets which have reasonable large support values in the condition-pair MDSs. From

our simulation results, we show that the proposed algorithm needs shorter processing time

than those previous proposed algorithms which need to construct gene-pair MDSs.

1Corresponding author. E-mail: changyi@cse.nsysu.edu.tw; Tel.: +886-7-5252000 (ext. 4334); Fax:
+886-7-5254301.

2E-mail: jiunrung@gmail.com
3E-mail: tsaiyc@db.cse.nsysu.edu.tw

(Key words: FP-tree, large itemset, microarray, pCluster, subspace clustering)

2

1 Introduction

DNA microarrays are one of the latest breakthroughs in experimental molecular biology

and have opened the possibility of creating datasets of molecular information to represent

many systems of biological or clinical interest (Lazzeroni and Owen, 2002; West et al.,

2001). Gene expression profiles can be used as inputs to large-scale data analysis, e.g., to

discover hidden taxonomies, or to increase our understanding of normal and disease states

(Tefferi et al., 2002). However, the large number of genes and the complexity of biological

networks greatly increase the challenges of comprehending and interpreting the resulting

cluster of data, which often consists of millions of measurements. Analysis of such data

is becoming one of the major bottlenecks in the utilization of the technology (Hakamada

et al., 2006; Jiang et al., 2004; Liu and Wang, 2007; Yang et al., 2002, 2003).

The gene expression data from a microarray experiment can be represented by a real-

value expression matrix, where rows represent genes, columns represent various samples,

and each element of this matrix represents the expression level of the particular gene in the

particular sample. Currently, a typical microarray experiment contains 103 to 104 genes,

and this number is expected to reach to the order of 106. However, the number of samples

involved in a microarray experiment is generally less than 100. Figure 1 shows an example

of the DNA microarray dataset, where M � N , where M > 103 and N < 102 (Yang et al.,

2002; Koo et al., 2006; Madeira and Oliveira, 2004; Wang et al., 2004; Yang et al., 2007).

Since the dataset which comes from the biological experiments is large, many data mining

techniques are used to study the data efficiently. Mining techniques, such as classification

and clustering, are proposed to analyze and predict the functions of newly found genes

or proteins (Agrawal et al., 1998; Chang et al., 2007; Golub et al., 1999). Clustering is

an important data mining problem (Aggarwal et al., 1999; Aggarwal and Yu, 2000; Cheng

et al., 1999; Ester et al., 1996; Pei et al., 2003). For a set of objects, clustering is the process

of grouping the objects into a set of disjoint classes, called clusters, such that objects within

a cluster have high similarity to each other, while objects in different clusters are dissimilar

(Jiang et al., 2005). Recent efforts in data mining have focused on methods for efficient and

effective cluster analysis (Zhang et al., 1996) in large databases, e.g., microarray datasets.

Clustering techniques have been proven to be helpful to understand gene function, gene

1

c 1� c 2� . . .� c �N�
Gene 1� 0.13� 2.55� . . .� 0.59�
Gene 2� 0.66� 1.31� . . .� 1.01�
Gene 3� 1.00� 0.45� . . .� 10.23�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�

.� .� .� . . .� .�
Gene �M� 0.38� 12.34� . . .� 5.12�

Figure 1: A DNA microarray dataset

regulation, cellular processes, and subtypes of cells. Genes with similar expression patterns

can be clustered together with similar cellular functions (Jiang et al., 2004; Sultan et al.,

2002). Moreover, investigations show that more often than not, several genes contribute to

a disease, which motivates researchers to identify a subset of genes whose expression levels

are similar under a subset of conditions; that is, they exhibit fluctuation of a similar shape

when conditions change (Brown and Botstein, 1999).

Most clustering models, including those used in subspace clustering, define similarity

among different objects by distances over either all or only a subset of the dimensions. Some

well-known distance functions include Euclidean distance, Manhattan distance, and cosine

distance. However, distance functions are not always adequate in capturing correlations

among the objects. In fact, strong correlations may still exist among a set of objects, even

if they are far apart from each other as measured by the distance functions (Wang et al.,

2002). This is demonstrated with an example in Figure 2 and Figure 3.

Figure 2 shows a data set with 3 genes and 10 conditions . No patterns among the 3

genes are visibly explicit. However, if we pick a subset of the conditions, {b, c, h, j, e},
and plot the values of the 3 genes on these conditions in Figure 3-(a), it is easy to see that

they manifest similar patterns. However, these genes may not be considered in a cluster

by any traditional clustering model, because the distance between any two of them is not

2

0�

10�

20�

30�

40�

50�

60�

70�

80�

90�

a� b� c� d� e� f� g� h� i� j�

Gene 1�
Gene 2�
Gene 3�

Figure 2: Raw data: 3 genes and 10 conditions

close. The same set of genes can form different patterns on different sets of conditions. In

Figure 3-(b), we show another pattern in subspace {c, e, g, b}. If we think of conditions

{c, e, g, b} as different environmental stimuli, the pattern shows that the 2 genes respond

to these conditions coherently. Our goal of this paper is to discover such subspace clusters

from raw data sets such as Figure 2.

Many techniques have been proposed to find subspace clusters with the coherence ex-

pression of a subset of genes on a subset of conditions. Some well-known subspace clustering

algorithms based on the main categories of approximate answers and complete answers are

shown in Figure 4. Cheng and Church (Cheng and Church, 2000) proposed the bicluster

model which captures the coherence of the genes and conditions in a submatrix of a DNA

microarray. Next, based on the same bicluster model, Yang et al. (Yang et al., 2002) pro-

posed a move-based algorithm, δ-cluster, to improve the performance of the biclustering

algorithm to find subspace clusters. Unlike the biclustering algorithm (Cheng and Church,

2000) and the δ-clusters algorithm (Yang et al., 2002), the pCluster algorithm (Wang et al.,

2002) simultaneously detects multiple clusters that satisfy the user-specified δ threshold.

Moreover, since the pCluster algorithm provides the complete answer, they will not miss

any qualified subspace clusters, while random algorithms, e.g., the biclustering algorithm

(Cheng and Church, 2000) and the δ-clusters algorithm, (Yang et al., 2002) provide only

an approximate answer.

3

0�
10�
20�
30�
40�
50�
60�
70�
80�
90�

b� c� h� j� e�

Gene 1�
Gene 2�
Gene 3�

(a)� (b)�

0�

10�

20�

30�

40�

50�

60�

c� e� g� b�

Gene 1�
Gene 3�

Figure 3: Genes from pattern on a set of conditions: (a) subspace cluster: (gene1, gene2,
gene3)×(b, c, h, j, e); (b) subspace cluster: (gene1, gene3)×(c, e, g, b).

Subspace�
Clustering�
Algorithms�

Approximate�
Answer�

Complete Answer�

bicluster�

-�
cluster�

pCluster�

zCluster�

Figure 4: Subspace clustering algorithms

4

The cluster search problem is in general NP-hard (Sultan et al., 2002), and the sub-

space clustering problem is no exception (Yang et al., 2002; Wang et al., 2002; Cheng and

Church, 2000). To cope with this computational challenge, the zCluster algorithm (Yoon

et al., 2005) exploits a compact data structure called zero-suppressed binary decision dia-

grams (ZBDDs) (Minato, 1993) to implicitly represent and manipulate massive data. The

ZBDDs have been used widely in other domains, namely, the computer-aided design of very

large-scale integration (VLSI) digital circuits, and can be useful in solving many practical

instances of intractable problems. The zCluster algorithm exploits this property of ZB-

DDs, and can find all the subspace clusters that satisfy specific input conditions without

exhaustive enumeration.

Although the pCluster algorithm (Wang et al., 2002) and the zCluster algorithm (Yoon

et al., 2005) provide the complete answer, they contain some time-consuming steps. First,

the pCluster algorithm and the zCluster algorithm equally use the clusters containing only

two genes or two conditions to construct larger clusters having more genes and conditions,

which are called gene-pair and condition-pair MDSs. However, this step of measuring

the difference of each gene-pair on the conditions of a DNA microarray is really time-

consuming, since the number of genes in the real life microarray is usually very large. A

typical microarray experiment contains 103 to 104 genes, and this number is expected to

reach to the order of 106, while the number of samples involved in a microarray experiment

is generally less than 100. Thus, the time complexity of constructing the gene-pair MDSs

is much higher than the time complexity of constructing the condition-pair MDSs in those

previous proposed clustering algorithms.

In addition, the pCluster algorithm (Wang et al., 2002) proposes a prefix tree structure

using the depth-first algorithm to mine the final subspace clusters. The zCluster algorithm

(Yoon et al., 2005) contains the similar step of mining. However, this step is the bottle-

neck of the mining. For each node, the pCluster algorithm has to examine the possible

combinations of genes on the conditions registered in the path. The algorithm distributes

the gene information in each node to other nodes which represent subsets of the condition

set along the path of this node. This distributing operation is the major cause that the

pCluster algorithm may not be efficient or scalable for large databases.

5

TID� Items�

100�
200�
300�
400�

ACD�
BCE�

ABCE�
BE�

Figure 5: A transaction database for mining association rules

Therefore, to avoid the above disadvantages, in this paper, we propose the Large Itemset-

Based Clustering (LISC) algorithm to mine the subspace clusters in the microarray. In our

proposed algorithm, first, we only consider the condition-pair MDSs, instead of construct-

ing the gene-pair MDSs. Second, we transform the task of mining the possible maximal

gene sets into the mining problem of the large itemsets (i.e. frequent patterns) from the

condition-pair MDSs. We make use of the concept of the large itemset which is used in

mining association rules, where a large itemset is represented as a set of items appearing

in a sufficient number of transactions. That is, given a database of sales transactions, it

is desirable to discover the important associations among items such that the presence of

some items in a transaction will imply the presence of other items in the same transaction.

For example, a transaction database is given in Figure 5. Assuming that the minimum

transaction support required is 2, the set of large itemsets, {A: 2, B: 3, C: 3, E: 3, AC:

2, BC: 2, BE: 3, CE: 2, BCE: 2}, composed with the minimum support required, can

then be determined. Since we are only interested in the subspace cluster with gene set as

large as possible, it is desirable to pay attention to those gene sets which have reasonably

large support from the condition-pair MDSs. In other words, we want to find the large

itemsets from the condition-pair MDSs; therefore, we obtain the gene set with respect to

enough condition-pairs. In this step, we efficiently use the revised version of the FP-tree

structure to find the large itemsets of gene sets from the condition-pair MDSs. The FP-tree

structure has been shown to be one of the most efficient data structures for mining large

itemsets, and is a extended prefix tree structure for storing compressed, crucial information

about large itemsets. Thus, we can avoid the complex distributing operation and reduce

the search space dramatically by using the FP-tree structure. Finally, we develop an algo-

6

rithm to construct the final clusters from the gene set and the condition-pair after searching

the FP-tree. From our simulation results, we show that our proposed algorithm is more

efficient than those previous proposed algorithms.

The rest of this paper is organized as follows. Section 2 gives a survey of two subspace

cluster algorithms. Section 3 presents the proposed large itemset-based clustering (LISC)

algorithm. In Section 4, we study the performance and make a comparison of the proposed

algorithm with other previous proposed algorithm. Finally, we give a conclusion in Section

5.

7

2 Related Work

In this section, we will describe two well-known subspace clustering algorithm, pCluster

(Wang et al., 2002) and zCluster (Yoon et al., 2005). In particular, pCluster algorithm

(Wang et al., 2002) will be examined in detail.

2.1 pCluster

Wang et al. (Wang et al., 2002) proposed a clustering model, namely the pCluster, to

capture not only the closeness of objects, but also the similarity of the patterns exhibited

by the objects. Let D be a set of objects, where each object is defined by a set of attributes

A. It is interested in objects that exhibit a coherent pattern on a subset of attributes of A.

Let O be a subset of objects in the database (O ⊆ D), and let T be a subset of attributes

(T ⊆ A). Pair (O, T) specifies a submatrix. Given x, y ∈ O, and a, b ∈ T , the pScore of

the 2 × 2 matrix is defined as:

pScore(

⎡
⎢⎢⎣

dxa dxb

dya dyb

⎤
⎥⎥⎦) = |(dxa − dxb) − (dya − dyb)|

Pair (O, T) forms a δ-pCluster if for any 2×2 submatrix X in (O, T), we have pScore(X) ≤
δ for some δ ≥ 0.

Figure 6-(a) shows a microarray matrix with ten genes (one for each rows) under five

experiment conditions (one for each column). This example is a portion of microarray data

that can be found in (Tavazoie et al., 2000). Figure 6-(b) shows that a pCluster (VPS8,

EFB1, CYS3, CH1I, CH1D, CH2B) is embedded in the microarray.

The algorithm is described in the following three steps.

Step 1: Finding attribute-pair and object-pair MDSs.

Clearly, a pCluster must have at least two objects and two attributes. Intuitively, we

can use those pClusters containing only two objects or two attributes to construct larger

pClusters having more objects and attributes.

8

conditions�

ge
ne

s�

CH1I� CH1B� CH1D� CH2I� CH2B�

CTFC3� 4392� 284� 4108� 280� 228�

VPS8� 401� 281� 120� 275� 298�

EFB1� 318� 280� 37� 277� 215�

SSA1� 401� 292� 109� 580� 238�

FUN14� 2857� 285� 2576� 271� 226�

SP07� 228� 290� 48� 285� 224�

MDM10� 538� 272� 266� 277� 236�

CYS3� 322� 288� 41� 278� 219�

DEP1� 312� 272� 40� 273� 232�

NTG1� 329� 296� 33� 274� 228�

CH1I� CH1B� CH1D� CH2I� CH2B�

CTFC3�

VPS8� 401� 120� 298�

EFB1� 318� 37� 215�

SSA1�

FUN14�

SP07�

MDM10�

CYS3� 322� 41� 219�

DEP1�

NTG1�

ge
ne

s�

conditions�

(a)� (b)�

Figure 6: A pCluster of yeast genes: (a) gene expression data; (b) a pCluster.

Given a pair of objects, we compute the object-pair MDS (Maximum Dimension Set)

efficiently. For example, Figure 7-(a) shows the attribute values of two objects. The last

row shows the differences of the attribute values.

To compute the object-pair MDS, the pCluster algorithm sorts the attributes in the dif-

ference ascending order, as shown in Figure 7-(b). Suppose δ = 2. The pCluster algorithm

runs through the sorted list using a sliding window of variable width. Clearly, the attributes

in the sliding window form a δ-pCluster provided the difference between the rightmost el-

ement and the leftmost one is no more than δ. For example, we firstly set the left edge

Object�
Attributes�

a�

13�

b� c� d� e� f� g� h�

11� 9� 7� 9� 13� 2� 15�

7� 4� 10� 1� 12� 3� 4� 7�

6� 7� -1� 6� -3� 10� -2� 8�

o�1�

o�1�

o�1 �-� o�2�

-3� -2� -1� 6� 6� 7� 8� 10�

e� g� c� a� d� b� h� f�

(a)� (b)�

Figure 7: Finding MDS for object-pair: (a) the attribute values of two objects; (b) finding
MDS: (e, g, c), (a, d, b, h), (h, f).

9

of the sliding window at the left end of the sorted list, and moves the right edge of the

window until it sees the first 6. The attributes in between, {e, g, c}, is the set of attributes

of an object-pair MDS. Then, we move the left edge of the sliding window to attribute g,

and repeats the process until the left end of the window runs through all elements in the

list. In total, three MDSs can be found, i.e., ({o1, o2}, {e, g, c}), ({o1, o2}, {a, d, b, h}) and

({o1, o2}, {h, f}).
A similar method can be used to find the attribute-pair MDSs.

Step 2: Pruning Unpromising MDS.

In an object-pair MDS ({o1, o2, D}), if the number of attributes in D is less than mina,

the user-specified minimum number of attributes, then o1 and o2 can not appear together

in any significant pCluster. Similarly, in an attribute-pair MDS (R, {a1, a2}), if the number

of objects in R is less than mino, the user-specified minimum number of objects, then a1

and a2 can not appear together in any significant pCluster. Based on this idea, pCluster

algorithm conducts the dual pruning between the object-pair MDSs and the attribute-pair

MDSs.

Step 3: Generating significant pClusters.

After pruning in Step 2, the pCluster algorithm inserts the surviving object-pair MDSs

into a prefix tree. For each object-pair MDS, all attributes are sorted according to a global

order � and then inserted into the tree. The two objects are registered in the last node of

the path corresponding to the sorted attribute list. If two object-pair MDSs share the same

prefix with respect to � , they share the corresponding path from the root in the tree.

Clearly, since every object-pair MDS surviving from the pruning step must have at least

mina attributes, no object will be registered in any node whose depth is less than mina.

After all object-pair MDSs are inserted into the tree, the pCluster algorithm treats each

node in the tree whose depth is at least mina as a candidate pCluster, and verifies whether

the objects registered at the node really form a pCluster. Moreover, if all objects at a

node in the tree form a pCluster, any ancestor of the node in the tree registering the same

set of objects also form a pCluster. Therefore, a post-order traversal of the prefix tree is

conducted to examine the nodes whose depths are no less than mina, and generate the

pClusters.

10

2.2 zCluster

Yoon et al. (Yoon et al., 2005) proposed the zCluster algorithm based on the pCluster

model that exploits the zero-suppressed binary decision diagrams (ZBDDs) data structure

to cope with the computational challenges. The ZBDDs have been used widely in other

domains, namely, the computer-aided design of very large-scale integration (VLSI) digital

circuits, and can be useful in solving many practical instances of intractable problems. The

zCluster algorithm exploits this property of ZBDDs, and can find all the subspace clusters

that satisfy specific input conditions without exhaustive enumeration.

Let UG = {g0, g1, ..., gn−1} and UE = {e0, e1, ..., em−1} represent a set of genes and a set

of experimental conditions involved in gene expression measurement, respectively. The first

step of zCluster is refering to 2 × |E| or |G| × 2 maximal clusters as maximum dimension

sets (MDSs). In order to generate MDSs, zCluster uses an approach similar to that used

in the pCluster algorithm. The zCluster algorithm differs in the remaining steps after

constructing the prefix tree used in pCluster.

The zCluster algorithm efficiently utilizes ZBDDs (Minato, 1993) in the remaining steps.

This ZBDD-based representation is crucial to keeping the entire algorithm computationally

manageable. The key observation is that a set of condition-pair MDSs can be regarded as

a set of combinations and represented compactly by the ZBDDs. Therefore, the symbolic

representation using ZBDDs is more compact than the traditional data structures for sets.

Moreover, the manipulation of condition-pair MDSs, such as union and intersection, is

implicitly performed on ZBDDs, thus resulting in high efficiency.

11

c0 c1 c2 c3 c4 c5

g0 2 2 9 2 3 4
g1 3 7 3 1 9 3
g2 2 2 7 2 6 3
g3 3 2 3 2 1 3
g4 2 1 5 1 0 4
g5 3 5 5 8 2 3
g6 2 9 7 4 0 0

Figure 8: Example 1: A gene expression data matrix

3 The LISC Algorithm

In this section, we introduce the Large Itemset-Based Clustering (LISC) algorithm to min-

ing subspace clusters from DNA microarray data.

3.1 Definitions and Problem Statement

Let G = {g0, g1, ..., gm−1} and C = {c0, c1, ..., cn−1} represent a set of genes and a set of

experimental conditions involved in gene expression measurement, respectively. The result

can be represented by the matrix GE ∈ �|G|×|C| with the set of rows G and the set of

columns C. Each element GE[x][a] ∈ GE corresponds to the expression information of

gene x in condition a (Yoon et al., 2005).

A subspace cluster is defined to be a subset of genes that exhibit similar behavior under

a subset of experimental conditions, and vice versa. Thus, in the gene expression data

matrix GE = (G, C), a subspace cluster will appear as a submatrix of GE. We denote this

submatrix by pair (R, D) where R ⊆ G and D ⊆ C. We specify the size of the cluster by

|R| × |D|.

Example 1 Let minG = 3, minC = 3, δ = 1, and an example of data matrix GE =

(G, C) as shown in Figure 8. The final subspace clusters are (g0, g2, g3, g4)× (c0, c1, c3) and

(g0, g2, g3) × (c1, c3, c5).

12

3.2 The Proposed Algorithm

In this subsection, we will present our proposed LISC algorithm. Basically, the algorithm

contains three steps: (1) finding condition-pair MDSs, (2) mining conditional pattern bases,

and (3) constructing subspace clusters. First, we will describe a similar algorithm with

pCluster (Wang et al., 2002) to generate the Maximum Dimension Sets (MDSs) for each

condition-pair. Next, we will find the large item set of the gene-condition pair using the

revised version of an efficient data structure called Frequent Pattern Tree (FP-tree) (Han

et al., 2000). Finally, we develop an algorithm to construct the final clusters from the gene

set and the condition-pair after searching the FP-tree.

3.2.1 Step 1: Finding Condition-Pair MDSs

Wang et al. (Wang et al., 2002) proposed a subspace clustering algorithm called pCluster.

The first step of their algorithm is to find all the Maximum Dimension Set (MDS) for gene-

pair and condition-pair in the polynomial time. In our algorithm, first, we use a similar

way to generate MDSs, but only for condition-pair. Then, our algorithm completely differs

in the remaining steps.

A subspace cluster (R, D) is a subset of genes R that exhibits a coherent pattern on a

subset of conditions D. To formulate the problem, it is essential to describe, given a subset

of genes R and a subset of conditions D, how coherent the genes are on the conditions.

The measure pScore (Wang et al., 2002) serves this purpose.

Definition 1 (H. Wang et al. (Wang et al., 2002)) Let R be a subset of genes in the

database (R ⊆ G), and let D be a subset of conditions (D ⊆ C). Pair (R, D) specifies a

submatrix. We assume that each condition is in the domain of real numbers. The value on

condition a of gene x is denoted as vxa. For any genes x, y ∈ G and any conditions a, b ∈
C, the pScore of the 2 × 2 matrix is defined as:

pScore(

⎡
⎢⎢⎣

vxa vxb

vya vyb

⎤
⎥⎥⎦) = |(vxa − vxb) − (vya − vyb)|

13

Pair (R, D) forms a subspace cluster, if for any 2 × 2 submatrix X in (R, D), we have

pScore(X) ≤ δ for some δ ≥ 0.

Given a set of genes G and a set of conditions C, it is not trivial to find all the MDSs

for C, since C can be clustered on any subset of G. Below, we study a special case where

C contains only two conditions. Given conditions a and b, and a gene set T , we define

S(a, b, T) as:

S(a, b, T) = {vxa − vxb|x ∈ T}

Based on Definition 1, we can make the following observation: Given conditions a and b,

and a gene set T , a and y form a subspace cluster on T iff the difference between the largest

and smallest value in S(a, b, T) is below δ.

We use
−→
S (a, b, T) to denote a sorted sequence of values in S(a, b, T):

−→
S (a, b, T) = s1, ..., sk

si ∈ S(a, b, T) and si ≤ sj where i < j

Thus, a and b forms a subspace cluster on T if (sk − s1) ≤ δ. Given a set of genes, G, it is

also not difficult to find the MDSs for conditions a and b.

Given a set of dimensions C, Ts ⊆ C is a MDS of a and b iff:

1.
−→
S (a, b, Ts) = si...sj is a (contiguous) subsequence of

−→
S (a, b, T) = s1...si...sj ...sk.

2. (sj − si) ≤ δ, whereas (sj+1 − si) > δ and (sj − si−1) > δ.

Therefore, we can find the MDSs for conditions a and b in the following manner: we

start with both the upper-end and the lower-end placed on the first element of the sorted

sequence, and we move the lower-end downward one position at a time. For every move-

ment, we compute the difference of the values at the two ends, until the difference is greater

than δ. At that time, the elements between the two ends form an MDS. To find the next

MDS, we move the upper-end downward one position, and repeat the above process. It

stops when the lower-end reaches the last element of the sorted sequence.

Figure 9 shows an example of the above process. We want to find MDSs for two con-

ditions c3 and c5 in Example 1. The values on the set of genes, G, are shown in Figure

14

-3�

-2�

-2�

-1�

-1�

4�

g�4�

g�0�

g�3�

g�5�

g�1�

g�2�

(a)� (b)�

Condition�

Gene�

g�0�

g�1�

g�2�

g�3�

g�4�

g�5�

c�3� c�5� c�3 �-� c�5�

2�

1�

2�

2�

1�

8�

4�

3�

3�

3�

4�

3�

-2�

-2�

-1�

-1�

-3�

5�

g�6� 4� 0� 4�

g�6�

5�

Figure 9: Finding MDSs for one condition-pair: (a) the gene expression data of two condi-
tions; (b) finding MDSs: (g0, g1, g4), (g0, g1, g2, g3).

9-(a). The patterns are hidden until we sort the values by the difference of c3 and c5 on

each gene. The sorted sequence
−→
S = −3,−2,−2,−1,−1, 4, 5 is shown in Figure 9-(b).

Assuming δ = 1, we start at the upper-end of S. We move downward until we stop at the

first (-1), since (−1)− (−3) > 1. The columns between the upper-end and (-1), (g4, g0, g1),

is an MDS. We move the upper-end to (-2) and repeat the process until we find all two

MDSs for c3 and c5: (g0, g1, g4) and (g0, g1, g2, g3). Note that maximum dimension sets

might overlap.

A formal description of the above process is given in Figure 10. We use the condi-

tion pairMDS procedure to find MDSs for conditions a and b, where minG is the user-

specified minimal number of genes in a subspace cluster, and δ is the user-specified clus-

tering threshold. We can find all condition-pair MDSs for Example 1 shown in Figure 10

based on the condition pairMDS procedure.

3.2.2 Step 2: Mining Conditional Pattern Bases

We transform the task of mining the possible maximal gene sets into the mining problem

of the large itemsets (i.e. frequent patterns) from the condition-pair MDSs. We efficiently

15

1: procedure condition pairMDS(a, b, G, minG, δ);
2: begin
3: for each (x ∈ G) do
4: DGE[x] := GE[x][a] - GE[x][b];
5: Sort array DGE, and let the sorted array be sortedDGE;
6: startP := 0; endP := 1;
7: cutf lag := TRUE;
8: while (endP < |G|)
9: begin

10: v := sortedDGE[endP] - sortedDGE[startP];
11: if (|v| ≤ δ) then
12: begin
13: endP := endP + 1;
14: cutf lag := TRUE;
15: end;
16: else
17: begin
18: if (endP - startP ≥ minG and cutf lag := TRUE) then
19: output condition-pair MDS;
20: startP := startP + 1;
21: cutf lag := FALSE;
22: end;
23: end;
24: if (endP - startP ≥ minG and cutf lag := TRUE) then
25: output condition-pair MDS;
26: end;

Figure 10: Procedure condition pairMDS

Condition-pair MDSs
(c0, c1) (g0, g2, g3, g4)
(c0, c3) (g0, g2, g3, g4), (g1, g3, g4)
(c0, c4) (g3, g4, g5, g6)
(c0, c5) (g0, g2, g4), (g1, g2, g3, g5)
(c1, c3) (g0, g2, g3, g4)
(c1, c5) (g0, g2, g3)
(c2, c5) (g1, g3, g4)
(c3, c5) (g0, g1, g4), (g0, g1, g2, g3)
(c4, c5) (g0, g3, g5), (g0, g5, g6)

Figure 11: Condition-pair MDSs

16

use the revised version of the Frequent Pattern Tree (FP-tree) structure (Han et al., 2000)

to find the large itemsets of the gene sets from the condition-pair MDSs. The FP-tree

structure has been shown to be one of the most efficient data structures for mining large

itemsets, and is a extended prefix tree structure for storing compressed, crucial information

about large itemsets.

Since only the frequent genes will play a role in the large itemsets mining, it is necessary

to perform one scan of the condition-pair MDSs table to identify the large 1-itemsets of

genes with frequency support obtained as a byproduct. If we store the large 1-itemsets

of genes of the condition-pair MDSs in some compact structure, it may avoid repeatedly

scanning the database. If multiple MDSs share an identical large 1-itemset, they can be

merged into one with the number of occurrences registered as the support. It is easy to

check whether two sets are identical, if the large 1-itemsets in all of the MDSs are sorted

according to a fixed order. With the above observation, we scan the condition-pair MDSs

table shown in Figure 11 once, and derive a list of large 1-itemsets of genes, 〈(g3: 10), (g0:

8), (g4: 8), (g2: 7), (g1: 5), (g5: 3), (g6: 2)〉, (the number after “:” indicates the support),

in which genes ordered in frequency descending order. This result is shown in Figure 12,

called large 1-itemsets, with genes denoted as frequent items listed according to the order of

the descending support. Note that the support of the large 1-itemsets must be larger than

or equal to CminC
2 = C3

2 = 3, since the support of genes means the occurrence of genes in

the condition-pair MDSs, and we are only interested in the subspace clusters with the size

of conditions ≥ minC. The gene with the occurrence less than CminC
2 can not construct

the subspace cluster with the size of conditions ≥ minC. Therefore, we prune (g6: 2) from

large 1-itemsets and condition-pair MDSs.

According to the large 1-itemset table, we transform the condition-pair MDSs table into

the transaction condition-pair MDSs table shown in Figure 13. We separate the MDSs of

each condition-pair into distinct Transaction ID (TID), and sort the genes according to the

descending order of supports, denoted as transMDSs. For example, we separte the MDSs

{(g0, g2, g3, g4), (g1, g3, g4)} of condition-pair (c0, c3), and sort the genes. As shown in Figure

13, the transMDSs of (c0, c3) are T2: (g3, g0, g4, g2) and T3: (g3, g4, g1).

Afterward, we use a similar algorithm with respect to the FP-tree construction algorithm

17

Large 1-itemset Support
g3 10
g0 9
g4 8
g2 7
g1 5
g5 4
g6 2

Figure 12: Large 1-itemsets

TID Condition-pair transMDSs
T1 (c0, c1) (g3, g0, g4, g2)
T2 (c0, c3) (g3, g0, g4, g2)
T3 (c0, c3) (g3, g4, g1)
T4 (c0, c4) (g3, g4, g5)
T5 (c0, c5) (g0, g4, g2)
T6 (c0, c5) (g3, g2, g1, g5)
T7 (c1, c3) (g3, g0, g4, g2)
T8 (c1, c5) (g3, g0, g2)
T9 (c2, c5) (g3, g4, g1)
T10 (c3, c5) (g0, g4, g1)
T11 (c3, c5) (g3, g0, g2, g1)
T12 (c4, c5) (g3, g0, g5)

Figure 13: TDB for Example 1

18

(Han et al., 2000) to construct a revised version of FP-tree from TDB and mine conditional

pattern bases, as shown in Figure 14 and Figure 15, respectively. In the revised version

of the FP-tree structure, every branch of the FP-tree represents an MDS, and the nodes

along the branches are stored according to the decreasing order of the corresponding genes

frequency, with leaves representing the condition-pairs. First, we create the root of a tree,

labeled with “null”. Scan the TDB once. The scan of T1 leads to the construction of the

first branch of the tree: 〈(g3: 1), (g0: 1), (g4: 1), (g2: 1)〉 with a leaf node labeled T1: (c0, c1).

Note that the gene in the transMDSs is ordered according to the order in the list of large

1-itemsets shown in Figure 12. Figure 16 shows the result of constructing the FP-tree of

T1. For T2, since its gene set (g3, g0, g4, g2) is identical to the gene set of T1, the path is

shared with the count of each node along the path increased by 1. The tree is denoted as

〈(g3: 2), (g0: 2), (g4: 2), (g2: 2)〉 with a leaf node labeled T1: (c0, c1) and T2: (c0, c3) shown

in Figure 17. For T3, since its gene set (g3, g4, g1) shares a common prefix node g3 with the

existing path 〈(g3: 2), (g0: 2), (g4: 2), (g2: 2)〉, the count of node g3 is increased by 1, and

one new node (g4: 1) is created and linked as a child of (g3: 3) and another new node (g1:

1) is created and linked as the child of (g4: 1). The leaf node of this branch is denoted

as T1: (c0, c1). Figure 18 shows the result after constructing the FP-tree of T1, T2 and T3.

Repeat the similar way above, and we can construct the FP-tree shown in Figure 14.

To facilitate tree traversal, an item header table is built in which each item points to its

occurrence in the tree via a head of node-link, where the items are listed according to the

large 1-itemsets shown in Figure 12. Nodes with the same item-name are linked in sequence

via such node-links. After scanning the TDB, the tree with the associated node-links is

constructed. Figure 19 shows the sub-tree of the FP-tree shown in Figure 14, where the

sub-tree contains g4, and partially presents the node-links of items, especially for g4.

Next, we use a similar algorithm with respect to FP-tree (Han et al., 2000) to mine the

large itemsets denoted as conditional pattern bases (CPB) for each large 1-itemset denoted

as gItem shown in Figure 15. For any gItem gi, all the possible CPBs that contain gi can be

obtained by following gi’s node-links, starting from gi’s head in the FP-tree header. This

is based directly on the construction process of FP-tree. It facilitates the access of all the

pattern information related to gi by traversing the FP-tree once following gi’s node-links.

19

root�

g�3�:10�

g�0�: 6�

g�4�: 3�

g�2�: 3�

T�1�: (c�0�, c�1�)�
T�2�: (c�0�, c�3�)�
T�7�: (c�1�, c�3�)�

g�2�: 2�

g�1�: 1�

T�11�: (c�3�, c�5�)�

T�8�: (c�1�, c�5�)� T�12�: (c�4�, c�5�)�

g�5�: 1�

g�4�: 3�

g�1�: 2� g�5�: 1�

T�3�: (c�0�, c�3�)�
T�9�: (c�2�, c�5�)�

T�4�: (c�0�, c�4�)�

g�2�: 1�

g�1�: 1�

g�5�: 1�

T�6�: (c�0�, c�5�)�

g�0�: 2�

g�4�: 2�

g�2�: 1�

T�5�: (c�0�, c�5�)�

g�1�: 1�

T�10�: (c�3�, c�5�)�

Figure 14: The FP-tree of TDB

20

gItem Conditional Pattern Base(CPB)
g5 (g3, g4) × (c0, c4)

(g3, g2, g1) × (c0, c5)
(g3, g0) × (c4, c5)

g1 (g3, g4) × (c0, c3)&(c2, c5)
(g3, g2) × (c0, c5)
(g0, g4) × (c3, c5)
(g3, g0, g2) × (c3, c5)

g2 (g3, g0, g4) × (c0, c1)&(c0, c3)&(c1, c3)
(g0, g4) × (c0, c5)
(g3, g0) × (c3, c5)&(c1, c5)

g4 (g3, g0) × (c0, c1)&(c0, c3)&(c1, c3)

Figure 15: Conditional Pattern Base Table for each gItem (gCPBT)

We collect all the CPBs that a node gi participates by starting from gi’s head (in the header

table) and following gi’s node-links. We examine the mining process by starting from the

bottom of the header table. For example, we derive the possible CPBs that contain g4 by

following g4’s node-links, starting from g4’s head in the FP-tree header. The CPBs of g4 are

the collocation of the ancestral nodes of g4 and the condition-pair of the leaf node in the

same path of the FP-tree: (g3,g0)×(c0,c1)&(c0,c3)&(c1,c3), (g3)×(c0,c3)&(c2,c5)&(c0,c4) and

(g0)×(c0,c5)&(c3,c5). Therefore, we only need the CPB whose gene set has the size larger

than or equal to (minG − 1), since a valid subspace cluster is constructed by the gene set

which is large enough. Accordingly, the CPBs of g4 are (g3, g0) × (c0, c1)&(c0, c3)&(c1, c3)

shown in Figure 15. We will mine the final subspace clusters based upon the CPBs in the

following subsection.

3.2.3 Step 3: Constructing Subspace Clusters

The final step of our algorithm is to construct the subspace clusters by Procedure FindCluster

shown in Figure 20, where C[k] means CandidateSet[k] and L[k] means LargeItemSet[k].

The flowchart of Procedure FindCluster is shown in Figure 21. According to the condition

pattern base table, the CPBs of each gItem are independent with those of the other gItem.

The process of constructing the eventual subspace clusters from the condition pattern base

of each gItem will be described in the following steps:

21

root�

g�3�:1�

g�0�: 1�

g�4�: 1�

g�2�: 1�

T�1�: (c�0�, c�1�)�

g�3�

g�0�

g�4�

g�2�

g�1�

g�5�

Large 1-�
itemsets�

Head of�
node-links�

Header table�

Figure 16: Constructing the FP-tree of T1: (g3, g0, g4, g2) × (c0, c1)

22

root�

g�3�:2�

g�0�: 2�

g�4�: 2�

g�2�: 2�

T�1�: (c�0�, c�1�)�
T�2�: (c�0�, c�3�)�

g�3�

g�0�

g�4�

g�2�

g�1�

g�5�

Large 1-�
itemsets�

Head of�
node-links�

Header table�

Figure 17: Constructing the FP-tree of T2: (g3, g0, g4, g2) × (c0, c3)

23

root�

g�3�:3�

g�0�: 2�

g�4�: 2�

g�2�: 2�

T�1�: (c�0�, c�1�)�
T�2�: (c�0�, c�3�)�

g�4�: 1�

g�1�: 1�

T�3�: (c�0�, c�3�)�

g�3�

g�0�

g�4�

g�2�

g�1�

g�5�

Large 1-�
itemsets�

Head of�
node-links�

Header table�

Figure 18: Constructing the FP-tree of T3: (g3, g4, g1) × (c0, c3)

24

root�

g�3�:10�

g�0�: 6�

g�4�: 3�

g�2�: 3�

T�1�: (c�0�, c�1�)�
T�2�: (c�0�, c�3�)�
T�7�: (c�1�, c�3�)�

g�4�: 3�

g�1�: 2� g�5�: 1�

T�3�: (c�0�, c�3�)�
T�9�: (c�2�, c�5�)�

T�4�: (c�0�, c�4�)�

g�0�: 2�

g�4�: 2�

g�2�: 1�

T�5�: (c�0�, c�5�)�

g�1�: 1�

T�10�: (c�3�, c�5�)�

g�3�

g�0�

g�4�

g�2�

g�1�

g�5�

Large 1-�
itemsets�

Head of�
node-links�

Header table�

Figure 19: Node-links of the FP-tree

25

1: procedure FindCluster(gCPBT , minG);
2: begin
3: for each (gItem ∈ gCPBT) do
4: begin
5: k := 2;
6: finalC := ∅;
7: C[k] := find all pairgene cond set(gCPBT [gItem]);
8: if (C[k] = ∅) then break;
9: else

10: begin
11: while (k ≥ 2)
12: begin
13: L[k] := CombineCondition(C[k]);
14: if (L[k] = ∅) then break;
15: else
16: begin
17: if (k ≥ minG − 1) then
18: begin
19: if (any subset of L[k] ∈ finalC) then
20: finalC :=finalC - (the subset of L[k]);
21: finalC :=finalC ∪ ((gItem ∪ L[k].g) × L[k].c);
22: end;
23: k++;
24: C[k] := enlarge geneset(L[k − 1]);
25: if (C[k] = ∅) then break;
26: end;
27: end;
28: end;
29: end;

Figure 20: Procedure FindCluster

26

Step (a): Finding all the combination of (minG-1)-length gene sets.

Since we are only interested in the subspace clusters with the size of genes ≥ minG, we

take the (minG − 1)-length gene sets from the CPBs except the gItem to construct the

clusters. In the light of the CPBs of each gItem, we take the (minG − 1)-length gene sets

as a unit to separate the gene set of each CPB. Therefore, the CPB will be represented as

the collocation of the gene-pair and the condition-pair called the CandidateSet[minG− 1]

on account of the genes with “(minG − 1)”-length of the combination. Figure 22 shows

the process of transforming the CPB to CandidateSet[2] with respect to g2 ∈ gItem with

minG = 3. The dashed line with an arrow means the action of “separation”, and the solid

line means the “collocation” of the gene-pair and the condition-pair. For example, the gene

set (g3, g0, g4) is separated to (g3, g0), (g3, g4) and (g0, g4) collocated with condition sets

(c0, c1), (c0, c3) and (c1, c3), respectively. Figure 23 shows CandidateSet[2] of all gItems.

Step (b): Constructing LargeItemSet[k] from CandidateSet[k].

We combine the condition set of CandidateSet[k] for each gene set. If all (i−1)-subsets

of an i-length condition set X exist in CandidateSet[k] for a gene set Y , we combine all the

(i − 1)-subset to form the i-length condition set X, and let the collocation of the gene set

Y and the condition set X belong to CandidateSet[k]. We repeat the combination until

no larger condition set could be created. For example, Figure 24 shows all the condition

set of gene set (g3, g0) belong to CandidateSet[2] of g2 ∈ gItem. The heavy solid line with

an arrow means the “combination”. We can combine the condition sets (c0, c1), (c0, c3)

and (c1, c3) to form the condition set (c0, c1, c3), and further combine the condition sets

(c1, c3), (c3, c5) and (c1, c5) to form the condition set (c1, c3, c5). However, condition sets

(c0, c1, c3) and (c1, c3, c5) can not be combined to a larger set, so the action of combination

stops. The gene-condition pairs (g3, g0)× (c0, c1, c3) and (g3, g0)× (c1, c3, c5) are denoted as

LargeItemSet[2] of g2 ∈ gItem. Then let the gene-condition pairs (g2, g3, g0) × (c0, c1, c3)

and (g2, g3, g0) × (c1, c3, c5) be the subspace clusters. Figure 25 shows the other example

of this step. In this example, we can combine the condition sets (c0, c1, c3), (c0, c1, c5),

(c0, c3, c5) and (c1, c3, c5) to form the condition set (c0, c1, c3, c5). The condition set (c0, c1, c4)

can not be combined the other condition sets to a larger one, so the action of combination

stops. Figure 26 shows LargeItemSet[2] of all gItems.

27

C�[�k�] is empty�

k� >= �minG �-1�

End�

L�[�k�] is empty� C�[�k�] is empty�

subset of �L�[�k�]�
belongs to �finalC�

Yes�

No�

Yes�

No�

No�

No� Yes�

Yes�

Yes�

Let �finalC� be empty, �k� := �minG �-1�
C�[�k�]� := �find_minG_geneset�(�gCPBT�[�gItem�])�

L�[�k�] := �CombineCondition�(�C�[�k�])�

k� := �k�+1�
C�[�k�] := �enlarge_geneset�(�L�[�k�-1])�

add ((�gItem�, �L�[�k�].�g�) *�
L�[�k�].�c�) to �finalC�

delete the subset�
of �L�[�k�] from �finalC�

Figure 21: The flowchart of the proposed FindCluster algorithm

28

g�3�, �g�0�

g�3�, �g�4�

g�0�, �g�4�

c�0�, �c�1�

c�0�, �c�3�

c�1�, �c�3�

c�0�, �c�1�

c�0�, �c�3�

c�1�, �c�3�

c�0�, �c�1�

c�0�, �c�3�

c�1�, �c�3�

g�0�, �g�4� c�0�, �c�5�

g�
3�
, �g�

0�
c�

3�
, �c�

5�

(�g�3�, �g�0�, �g�4�)�

(�g�0�, �g�4�)�

(�g�
3�
, �g�

0�
)�

c�
1�
, �c�

5�

g�2�

gItem� CandidateSet[2]�

Figure 22: CandidateSet[2] of g2

gItem CandidateSet [2]
g5 (g3, g4) × (c0, c4)

(g3, g2) × (c0, c5)
(g3, g1) × (c0, c5)
(g2, g1) × (c0, c5)
(g3, g0) × (c4, c5)

g1 (g3, g4) × (c0, c3)
(g3, g4) × (c2, c5)
(g3, g2) × (c0, c5)
(g0, g4) × (c3, c5)
(g3, g0) × (c3, c5)
(g3, g2) × (c3, c5)
(g0, g2) × (c3, c5)

gItem CandidateSet [2]
g2 (g3, g0) × (c0, c1)

(g3, g0) × (c0, c3)
(g3, g0) × (c1, c3)
(g3, g4) × (c0, c1)
(g3, g4) × (c0, c3)
(g3, g4) × (c1, c3)
(g0, g4) × (c0, c1)
(g0, g4) × (c0, c3)
(g0, g4) × (c1, c3)
(g0, g4) × (c0, c5)
(g3, g0) × (c3, c5)
(g3, g0) × (c1, c5)

gItem CandidateSet [2]
g4 (g3, g0) × (c0, c1)

(g3, g0) × (c0, c3)
(g3, g0) × (c1, c3)

Figure 23: CandidateSet[2] of all gItems

29

g�
3�
, �g�

0�

c�
0�
, �c�

1�

c�
0�
, �c�

3�

c�
1�
, �c�

3�

c�3�, �c�5�

c�
1�
, �c�

5�

(�c�
0�
, �c�

1�
, �c�

3�
)�

(�c�1�, �c�3�, �c�5�)�

Figure 24: CandidateSet[2]→ LargeItemSet[2]

g�
0�
, �g�

1�
, �g�

2�

c�
0�
, �c�

1�
, �c�

3�

(�c�
0�
, �c�

1�
, �c�

3�
, �c�

5�
)�

c�
0�
, �c�

1�
, �c�

4�

c�
0�
, �c�

1�
, �c�

5�

c�0�, �c�3�, �c�5�

c�
1�
, �c�

3�
, �c�

5�

Figure 25: CandidateSet[3]→ LargeItemSet[3]

gItem� LargeItemSet[2]�

(g�
3�
, g�

0�
) �x (c�

0�
, c�

1�
, c�

3�
)�

(g�3�, g�0�) x (c�0�, c�1�, c�3�)�
(g�

3�
, g�

0�
) x (c�

1�
, c�

3�
, c�

5�
)�

(g�
3�
, g�

4�
) x (c�

0�
, c�

1�
, c�

3�
)�

(g�
0�
, g�

4�
) x (c�

0�
, c�

1�
, c�

3�
)�

g�
2�

g�
4�

Figure 26: LargeItemSet[2] of all gItems

30

Step (c): Constructing CandidateSet[k+1] from LargeItemSet[k].

This step will be described in Function enlarge geneset shown in Figure 27. We first

check all the gene set of LargeItemSet[k] for x ∈ gItem if they can combine to form a

(k + 1)-length gene set. If we find a (k + 1)-length gene set J which is denoted as the gene

set of CandidateSet[k+1] for x ∈ gItem, we check which conditions of all the k-length gene

subsets of J in LargeItemSet[k] occur simultaneously. Those conditions will be denoted as

the condition set of J in CandidateSet[k +1]. Figure 28 shows how LargeItemSet[2] of g2

∈ gItem is transformed to CandidateSet[3]. The heavy solid line with an arrow means the

“combination”, and the dotted line with an arrow means the “intersection”. In this case,

we can combine the gene sets (g3, g0), (g3, g4) and (g0, g4) to form the gene set (g3, g0, g4),

and we find the condition set (c0, c1, c3) of those gene sets occur simultaneously. Thus,

(g3, g0, g4) × (c0, c1, c3) is denoted as CandidateSet[3].

We repeat Steps (b) and (c) until no more CandidateSet[j] or LargeItemSet[j] could

be created. In other words, if any CandidateSet[j] or LargeItemSet[j] does not exist or

can not be formed by LargeItemSet[j − 1] or CandidateSet[j], respectively, the algorithm

will stop. The subspace cluster which we found within the process of Step (b) are the

final solution. If any subset of LargeItemSet[j] is already determined as the final cluster

previously, we remove the subset from the result, and output LargeItemSet[j] as the final

cluster.

31

1: function enlarge geneset(L[k]: gene-condition pair);
2: begin
3: t := 0;
4: for each (L[k][x] of L[k]) do
5: begin
6: for each (L[k][y] of L[k]) do
7: begin
8: i := 0;
9: while (i ≥ 0)

10: begin
11: if (L[k][x].g[i] = L[k][y].g[i]) then i + +;
12: else break;
13: end;
14: if (i = k − 1) then C[k + 1][t].g := L[k][x].g ∪ L[k][y].g[k − 1]; t++;
15: if (any k-subset of C[k + 1][t].g /∈ L[k].g) then t−−;
16: else
17: C[k + 1][t − 1].c :=

⋂
condition-set of all k-subset of C[k + 1][t].g in L[k];

18: end;
19: end;
20: return C[k + 1];
21: end;

Figure 27: Function enlarge geneset

g�
3�
, �g�

0�

c�0�,� c�1�, �c�3�

(�c�0�, �c�1�, �c�3�)�(�g�3�, �g�0�, �g�4�)� g�3�, �g�4�

g�
0�
, �g�

4�

c�
1�
,� c�

3�
, �c�

5�

c�0�,� c�1�, �c�3�

c�
0�
,� c�

1�
, �c�

3�

Figure 28: LargeItemSet[2]→ CandidateSet[3]

32

4 Performance

In this section, we study the performance of our LISC algorithm. The algorithm is imple-

mented on an Intel Pentium 4 machine with a 1.60 GHz CPU, 768 MB of main memory,

and running under Windows XP Professional Edition. All experiments are implemented in

Java and compiled by JDK 1.5.0.

4.1 Data Sets

We experiment our LISC algorithm with the synthetic data and the real life data set.

First, we start our experiments with the synthetic data sets to validate the correctness of

our algorithm. In addition, the synthetic data sets can serve as convenient benchmarks to

compare different algorithms. We generate these synthetic data sets in matrix forms by

the algorithm introduced in (Wang et al., 2002). Initially, the matrix is filled with random

values ranged from 0 to 500, and then we embed a fixed number of the subspace clusters

in the raw data. Besides the size of the matrix, the data generator takes several other

parameters: (1) minG, the average number of genes of the embedded subspace clusters,

(2) minC, the average number of conditions, and (3) k, the number of the subspace clusters

embedded in the matrix. To make the generator algorithm easy to implement, and without

loss of generality, we embed the perfect subspace clusters in the matrix, i.e., each embedded

subspace cluster satisfies a cluster threshold δ = 0. We investigate the performance of our

LISC algorithm using the synthetic data.

Next, we investigate the performance of our algorithm with several combination of

δ, minG and minC from the yeast gene expression data (Tavazoie et al., 2000), leukemia

dataset (Golub et al., 1999) and breast cancer data (West et al., 2001) by our algorithm

and the other techniques. The gene expression data is generated by DNA chips and other

microarray techniques. The detailed information about these datasets is shown in Figure

29, where G is the number of genes and C is the number of conditions.

The yeast microarray is obtained from the yeast Saccharomyces cerevisiae cell cycle

expression levels. The data set is presented as a matrix. Each row corresponds to a

gene and each column represents a condition under which the gene is developed. Each

33

Dataset G C
yeast gene expression data 2884 17
leukemia dataset 5000 38
breast cancer data 7129 49

Figure 29: Description of real datasets

entry represents the relative abundance of the mRNA of a gene under a specific condition.

Biologists are interested in the finding of a subset of genes showing strikingly similar up-

regulation and down-regulation under a subset of conditions (Cheng and Church, 2000).

The leukemia dataset uses the bone marrow samples taken from 27 patients suffering from

acute lymphoblastic leukemia (ALL) and 11 patients suffering from acute myeloid leukemia

(AML) and analyzed using Affymetrix arrays. We wish to identify the genes that are up-

regulated or down-regulated in ALL relative to AML (i.e., to see if a gene is differentially

expressed between the two groups). The samples used in the breast cancer data are taken

from 49 breast cancer patients, before and after a course of doxorubicin chemotherapy,

and analyzed using microarray. There are two measurements from each patient, one before

treatment and one after treatment. These two measurements relate to one another. We are

interested in the difference between the two measurements to determine whether a gene has

been up-regulated or down-regulated in breast cancer following doxoruicin chemotherapy.

Our algorithm and the pCluster algorithm (Wang et al., 2002) do not take as input the

exact number of the subspace clusters to generate. Thus, we run these algorithms multiple

times with different values of δ, minG and minC to find the subspace clusters.

Both of the pCluster and the zCluster algorithms contain three steps to mine the sub-

space clusters: (1) generating the gene-pair MDSs, (2) generating the condition-pair MDSs,

and (3) constructing the tree to find the final clusters. We will compare the total process-

ing time of our proposed LISC algorithm with the processing time of the first step of the

pCluster and the zCluster algorithms, which is generating gene-pair MDSs.

34

0�

100�

200�

300�

400�

500�

600�

1000� 2000� 3000� 4000� 5000� 6000�

Data size (the number of genes)�

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)

 �

.� LISC�

Gene-pair MDS�

Figure 30: A comparison of the response time under different number of genes in data sets

4.2 Experiment Result

In this subsection, we show the experiment result of the synthetic data and the real life

data set.

4.2.1 Synthetic Data

In this subsection, we show the experiment results using the synthetic data. We evaluate

the performance of the LISC algorithm as we increase the number of genes and conditions

in the dataset. The results presented in Figure 30 and Figure 31 are the average response

time obtained from a set of 10 synthetic data.

Figure 30 shows the comparison of the average response time between the LISC algorithm

and the step of generating gene-pair MDSs. The pCluster and the zCluster algorithms

equally use the step of generating the gene-pair MDSs. Data sets used for the comparison

are generated with number of conditions fixed at 30. There is a total of 30 embedded

clusters in the data. The minimal number of conditions is 5, and the minimal number of

genes is set to 0.01N , where N is the number of genes of the synthetic data. The mining

algorithm is invoked with δ = 0. From this Figure, we show that the LISC algorithm always

35

0�

100�

200�

300�

400�

500�

20� 40� 60� 80� 100� 120�

Data size (the number of conditions)�

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)

 �

.� LISC�

Gene-pair MDS�

Figure 31: A comparison of the response time under different number of conditions in data
sets

requires less time than the step of generating gene-pair MDSs no matter what value of the

number of genes is. Moreover, as the number of the genes is increased, the difference of the

average response time is increased. The reason is that this step of measuring the difference

of each gene-pair on the conditions of a DNA microarray is really time-consuming, since

the number of genes is usually very large, about 103 to 104, and it is expected to reach to

the order of 106. Our algorithm avoids constructing the gene-pair MDSs. Therefore, our

algorithm is more efficient than the algorithm.

Data sets used in Figure 31 are generated in the same manner, except that the number

of genes is fixed at 3,000. The mining algorithm is invoked with δ = 0, ming = 30,

minc = 0.2C, where C is the number of conditions of the data set. From this Figure, we

show that the LISC algorithm always requires less time than the step of generating gene-

pair MDSs no matter what value of the number of conditions is. The number of conditions

in a real microarray data is usually less than 100. Even though we let the number of

conditions larger than 100, our algorithm is more efficient than the step of generating gene-

pair MDSs. Moreover, as the number of the conditions is increased, the difference of the

average response time between our algorithm and the step of generating gene-pair MDSs

is increased.

36

Step 1 Step 2 Step 3
Percentage 5 15 80

Figure 32: The percentage of time spent in each step of LISC

We now evaluate the percentage of the processing time of each step in our proposed

LISC algorithm. In Step 1, we generate the MDSs for each condition-pair. Then, we find

the large item set using the revised version of FP-tree in Step 2. Finally, we develop an

algorithm to construct the final clusters from the gene set and the condition-pair after

searching the FP-tree in Step 3. The size of data sets in use is 5, 000×30. Figure 32 shows

the result. The percentage of time spent in Step 3 is much longer than that in other steps.

4.2.2 Real Microarray Datasets

We apply the LISC algorithm on the yeast gene microarray (Tavazoie et al., 2000), the

leukemia dataset (Golub et al., 1999) and the breast cancer data (West et al., 2001). We

compare the total processing time of our proposed LISC algorithm with the processing time

of the first step of the pCluster and the zCluster algorithms, which is generating gene-pair

MDSs. We experiment our algorithm in several cases with different combination of the

parameters δ, minG and minC in each real dataset shown in Figure 33. The results of

experimenting our algorithm in these cases and generating gene-pair MDSs in the yeast

gene microarray, leukemia dataset and breast cancer data are shown in Figure 34, Figure

35 and Figure 36, respectively. From our simulation results, our algorithm has performance

advantage over the the pCluster and the zCluster algorithms, as the processing time spent

in their first step is longer than our total processing time.

37

Real Dataset� delta� minG� minC�

yeast�
microarray�

leukemia�
dataset�

breast cancer�
data�

1�

2�

2�

0�

1�

2�

0�

1�

2�

30�

40�

40�

50�

50�

50�

70�

70�

70�

5�

6�

7�

10�

10�

10�

15�

15�

15�

Case�

1�

2�

3�

4�

5�

6�

7�

8�

9�

Figure 33: Several cases in each real dataset

0�

10�

20�

30�

40�

50�

60�

70�

80�

90�

100�

Case 1� Case 2� Case 3� Gene-pair�
MDS�Cases�

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)

 �

.�

Figure 34: A comparison of the response time under different cases in the yeast gene
microarray and the step of generating gene-pair MDSs

38

0�

50�

100�

150�

200�

250�

300�

350�

400�

Case 4� Case 5� Case 6� Gene-pair MDS�

Cases�

A
ve

re
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)
�

Figure 35: A comparison of the response time under different cases in the leukemia dataset
and the step of generating gene-pair MDSs

0�

100�

200�

300�

400�

500�

600�

700�

800�

900�

Case 7� Case 8� Case 9� Gene-pair MDS�

Cases�

A
ve

re
ge

 R
es

po
ns

e
T

im
e

(s
ec

.)
�

Figure 36: A comparison of the response time under different cases in the breast cancer
data and the step of generating gene-pair MDSs

39

5 Conclusion

DNA Microarrays are one of the latest breakthroughs in experimental molecular biology

and have opened the possibility of creating datasets of molecular information to represent

many systems of biological or clinical interest. Clustering techniques have been proven to

be helpful to understand gene function, gene regulation, cellular processes, and subtypes

of cells. In this paper, we have proposed the LISC algorithm to mine the subspace clusters

from the microarray data. In the proposed algorithm, we consider only the condition-pair

MDSs, instead of constructing the gene-pair MDSs. Moreover, we transform the task of

mining the possible maximal gene sets into the problem of mining large itemsets from the

condition-pair MDSs. We efficiently utilize a revised version of the FP-tree structure to

find the frequent gene set from the condition-pair MDSs. In our performance study, we

have compared the total processing time of the proposed algorithm with the processing

time of the first step of the pCluster (Wang et al., 2002) and the zCluster algorithms (Yoon

et al., 2005), which generate gene-pair MDSs. We have experimented the algorithm with

both synthetic and real life data sets. From our simulation results, we have shown that our

proposed algorithm is more efficient than those previous proposed algorithms.

40

Acknowledgments

This research was supported in part by the National Science Council of Republic of China

under Grant No. NSC-95-2221-E-110-079-MY2. The authors also like to thank “Aim for

Top University Plan” project of NSYSU and Ministry of Education, Taiwan, for partially

supporting the research.

References

Aggarwal, C. C., Procopiuc, C., Wolf, J. L., Yu, P. S., Park, J. S., 1999. Fast Algorithms

for Projected Clustering. Proc. of ACM SIGMOD Conf. on Management of Data, 61–72.

Aggarwal, C. C., Yu, P. S., 2000. Finding Generalized Projected Clusters in High Dimen-

sional Spaces. ACM SIGMOD Record 29 (2), 70–81.

Agrawal, R., Gehrke, J., Gunopulos, D., Raghavan, P., Park, J. S., 1998. Automatic Sub-

space Clustering of High Dimensional Data for Data Mining Applications. Proc. of ACM

SIGMOD Conf. on Management of Data, 94–105.

Brown, P. O., Botstein, D., Jan. 1999. Exploring the New World of the Genome with DNA

Microarrays. Nature Genetics 21 (1), 33–37.

Chang, Y. I., Chen, J. R., Lee, L. W., 2007. An Efficient Union Approach to Mining Closed

Large Itemsets in DNA Microarray Datasets. Proc. of the Int. Medical Informatics Symp.

Cheng, C. H., Fu, A. W., Zhang, Y., 1999. Entropy-based Subspace Clustering for Min-

ing Numerical Data. Proc. of ACM SIGMOD Conf. on Knowledge Discovery and Data

Mining, 84–93.

Cheng, Y., Church, G. M., 2000. Biclustering of Expression Data. Proc. of the 8th

Int. Conf. on Intelligent System for Molecular Biology, 93–103.

Ester, M., Kriegel, H., Sander, J., Xu, X., 1996. A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise. Proc. of the 2nd Int. Conf. on Knowledge

Discovery and Data Mining, 226–231.

41

Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P.,

Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., Lander,

E. S., 1999. Molecular Classification of Cancer: Class Discovery and Class Prediction by

Gene Expression Monitoring. Science 286 (5439), 531–537.

Hakamada, K., Okamoto, M., Hanai, T., Jan. 2006. Novel Technique for Preprocessing

High Dimensional Time-course Data from DNA Microarray: Mathematical Model-based

Clustering. Bioinformatics 22 (7), 843–848.

Han, J., Pei, J., Yin, Y., 2000. Mining Frequent Patterns without Candidate Generation.

Proc. of ACM SIGMOD Int. Conf. on Management of Data, 1–12.

Jiang, D., Pei, J., Zhang, A., 2005. A General Approach to Mining Quality Pattern-based

Clusters from Microarray Data. Proc. of the 10th Int. Conf. on Database Systems for

Advanced Applications, 188–200.

Jiang, D., Tang, C., Zhang, A., Nov. 2004. Cluster Analysis for Gene Expression Data: A

Survey. IEEE Trans. on Knowledge and Data Eng. 16 (11), 1370–1386.

Koo, J. Y., Sohn, I., Kim, S., Lee, J. W., Feb. 2006. Structured Polychotomous Machine

Diagnosis of Multiple Cancer Types Using Gene Expression. Bioinformatics 22 (8), 950–

958.

Lazzeroni, L., Owen, A., Jan. 2002. Plaid Models for Gene Expression Data. Statistica

Sinica 12 (1), 61–86.

Liu, X., Wang, L., 2007. Computing the Maximum Similarity Bi-clusters of Gene Expres-

sion Data. Bioinformatics 23 (1), 50–56.

Madeira, S. C., Oliveira, A. L., Jan. 2004. Biclustering Algorithms for Biological Data

Analysis: A Survey. IEEE/ACM Trans. on Computational Biology and Bioinformatics

1 (1), 24–45.

Minato, S., 1993. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems.

Proc. of IEEE/ACM Design Automation Conf., 272–277.

42

Pei, J., Zhang, X., Cho, M., Wang, H., Yu, P. S., 2003. Maple: A Fast Algorithm for

Maximal Pattern-based Clustering. Proc. of the 3rd IEEE Int. Conf. on Data Mining,

259.

Sultan, M., Wigle, D. A., Cumbaa, C. A., Maziarz, M., Glasgow, J., Tsao, M. S., Ju-

risica, I., 2002. Binary Tree-Structured Vector Quantization Approach to Clustering and

Visualizing Microarray Data. Bioinformatics 18, 111–119.

Tavazoie, S., Hughes, J., Campbell, M., Cho, R., Church, G., 2000. Yeast Micro Data Set.

http://arep.med.harvard.edu/biclustering/yeast.matrix.

Tefferi, A., Bolander, M. E., Ansell, S. M., Wieben, E. D., Spelsberg, T. C., Sept. 2002.

Primer on Medical Genomics Part III: Microarray Experiments and Data Analysis. Mayo

Clinic Proc. 77 (9), 927–940.

Wang, H., Chu, F., Fan, W., Yu, P. S., Pei, J., 2004. A Fast Algorithm for Subspace

Clustering by Pattern Similarity. Proc. of the 16th Int. Conf. on Scientific and Statistical

Database Management, 51–60.

Wang, H., Wang, W., Yang, J., Yu, P. S., 2002. Clustering by Pattern Similarity in Large

Data Sets. Proc. of ACM SIGMOD Int. Conf. on Management of Data, 394–405.

West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., Zuzan, H., Marks,

J. R., Nevins, J. R., 2001. Predicting the Clinical Status of Human Breast Cancer Using

Gene Expression Profiles. Proc. of the National Academy of Science, 11462–11467.

Yang, E., Foteinou, P. T., King, K. R., Yarmush, M. L., Androulakis, I. P., Sept. 2007.

A Novel Non-overlapping Bi-clustering Algorithm for Network Generation Using Living

Cell Array Data. Bioinformatics 23 (17), 2306–2313.

Yang, J., Wang, H., Wang, W., Yu, P. S., 2003. Enhanced Biclustering on Expression Data.

Proc. of the 3rd IEEE Int. Symposium on BioInformatics and BioEngineering, 321–327.

Yang, J., Wang, W., Wang, H., Yu, P. S., 2002. δ-Clusters: Capturing Subspace Correlation

in a Large Data Set. Proc. of the 18th Int. Conf. on Data Eng. , 517–528.

43

Yoon, S., Nardini, C., Benini, L., Micheli, G. D., Oct. 2005. Discovering Coherent Bi-

clusters from Gene Expression Data Using Zero-Suppressed Binary Decision Diagrams.

IEEE/ACM Trans. on Computational Biology and Bioinformatic 2 (4), 339–354.

Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: An Efficient Data Clustering

Method for Very Large Databases. Proc. of ACM SIGMOD Int. Conf. on Management

of Data, 103–114.

44

