
An Efficient Iconic Indexing Strategy for Image
Rotation and Reflection in Image Databases 1

Wei-Horng Yeh and Ye-In Chang

Dept. of Computer Science and Engineering
National Sun Yat-Sen University

Kaohsiung, Taiwan
Republic of China

{E-mail: yehwh@mail.cse.nsysu.edu.tw}
{Tel: 886-7-5254350}
{Fax: 886-7-5254301}

Abstract

Spatial relationships are important issues for similarity-based retrieval in many image
database applications. With the popularity of digital cameras and the related image pro-
cessing software, a sequence of images are often rotated or flipped. That is, those images
are transformed in the rotation orientation or the reflection direction. However, many
iconic indexing strategies based on symbolic projection are sensitive to rotation or reflec-
tion. Therefore, these strategies may miss the qualified images, when the query is issued in
the orientation different from the orientation of the database images. To solve this problem,
some researchers proposed a function to map the spatial relationship to its transformed one.
However, this mapping consists of several conditional statements, which is time-consuming.
Thus, in this paper, we propose an efficient iconic indexing strategy, in which we carefully
assign a unique bit pattern to each spatial relationship and record the spatial information
based on the bit patterns in a matrix. Without generating the rotated or flipped image, we
can directly derive the index of the rotated or flipped image from the index of the original
one by bit operations and matrix manipulation. In our performance study, we analyze the
time complexity of our proposed strategy and show the efficiency of our proposed strategy
according to the simulation results. Moreover, we implement a prototype to validate our
proposed strategy.

(Keywords: iconic indexing, image databases, image rotation and reflection, query by image
content, similarity retrieval)

1This research was supported in part by the National Science Council of Republic of China under Grant
No. NSC-87-2213-E-110-014.

1 Introduction

High dimensional digital data in image database systems are popular in the image anal-

ysis, computer graphics, pattern recognition, geographic information system and several

industrial domains [20]. Content-based retrieval plays an important role in multimedia

database applications [2, 10, 16, 24, 25]. It can be classified into two fields: one includes

the color, texture, and shape features, the other includes the spatial relationships between

objects. Retrieval by Spatial Similarity (RSS) is used to process a number of queries that

is based on spatial relationships among the domain objects. The goal of RSS is to retrieve

database images that satisfy the spatial relationships specified in the query. Generally, an

image database system stores images with the corresponding image indexing techniques

concerning querying the database. An example of the query could be “find all pictures

showing a house to the right of a river.” Thus, the spatial information must be preserved

by the index data structure. Methods for RSS can be roughly divided into symbolic pro-

jection [7, 17, 18], graph-matching [11, 26], and geometric [13, 29] categories. Since the

symbolic projection can simplify the complexity of describing the positions of the objects

in an image, in this paper, we focus on the symbolic projection category.

In the 3D animation field [15, 27], the sequence of images performed by computers are

often operated by a number of basic transformations, e.g., rotation and reflection. Figure 1-

(a) is the original image. Figure 1-(b) to Figure 1-(f) show the results of five different basic

transformations applied to the original one. Similarly, we often have to rotate or flip images

in our real life. For example, when we scan a picture, we may get the image in the reverse

orientation. The image processing software can employ the 180-degree rotation for us.

As in robotic scenes and virtual reality applications, they require to solve queries like

this: “find those images that are satisfied with a given pattern even if it shows in a rotation

orientation.” However, indexing methods based on symbolic projection are sensitive to

rotation or reflection. If we want to retrieve an image which is rotated and stored in the

database and we have only the index that represent the image before being rotated, we must

have the new index of the rotated image such that we can retrieve the image. There are

two approaches to solve this problem. The first approach is that we reconstruct the image

from the original index, rotate the image and construct the index of the rotated image as

1

A

B

A

B
A

B

(a) (b) (c)

A

B A

B

A

B

(d) (e) (f)

Figure 1: Image transformation: (a) the original image; (b) flipped horizontally; (c) flipped
vertically; (d) rotated by 90◦; (e) rotated by 180◦; (f) rotated by 270◦.

shown in Figure 2-(a). In order not to miss the qualified database images, we need to do

steps 2 and 3 five times to derive the five indexes, i.e., the indexes of the image rotated by

90, 180, and 270 degrees, and the indexes of the image flipped horizontally and vertically.

Figure 2-(b) shows the second approach, in which we find a corresponding strategy such

that the new index of the rotated image can be constructed by the original index. The

first approach is time-consuming as compared to the second approach. Therefore, finding

a good strategy such that we can efficiently get the new index of the adjusted image from

the original index is important.

Petrakis [23] described that one of classes of the spatial image content representation

and matching is symbolic projection. However, strategies based on symbolic projection,

e.g., [6, 14], cannot recognize similarity between two indexes corresponding to an image

and one of its possible transformations, e.g., rotation and reflection. To solve this problem,

Nabil et al. [21] and Petraglia et al. [22] proposed a similar mapping for the rotation

and reflection of the spatial relationships. However, the process of the index mapping is

time-consuming. Thus, in this paper, we classify the mapping into three cases and carefully

assign a 16-bit unique bit pattern to each spatial relationship. Based on the assignment, we

2

Original index

Original image
Transformed

image

Transformed
index

Transform the image

(1)

(2)

(3)
Original index

Transformed
index

(a) (b)

Figure 2: The process for obtaining the rotated or flipped index: (a) the original three
steps; (b) the second approach.

can easily do the mapping with our proposed bit operation, intra-exchange. Moreover, we

propose an efficient iconic index strategy, called Unique Bit Pattern matrix strategy (UBP

matrix strategy) to record the spatial information. In this way, when doing similarity

retrieval, we do not need to reconstruct the original image from the UBP matrix in order

to obtain the indexes of the rotated and flipped image. Conversely, we can directly derive

the index of the rotated or flipped image from the index of the original one through bit

operations and the matrix manipulation. Thus, our proposed strategy can do similarity

retrieval without missing the qualified database images. From our performance study, we

show that our strategy outperforms those mapping strategies [21, 22] based on different

number of objects in an image. The percentage of improvement is between 13.64% and

53.23%. Moreover, we implement a prototype to validate our proposed strategy.

The rest of this paper is organized as follows. Section 2 gives a brief description about

some related work and image rotation/reflection. Section 3 presents our proposed strategy

in detail. In Section 4, we make a simulation study to show that our proposed strategy

is efficient, and present a prototype system. Finally, concluding remarks are made in

Section 5.

2 Background

To reduce the complexity of constructing iconic indexes, each object in an image is ab-

stracted as a Minimum Boundary Rectangle (MBR) to represent the size and position of

the object. Table 1 shows the meaning of the spatial operators proposed by Lee and Hsu

3

Table 1: Definitions of Lee et al.’s spatial operators

Notation Condition Meaning
A < B end(A) < begin(B) A disjoins B
A|B end(A) = begin(B) A is edge to edge with B
A/B begin(A) < begin(B) A is partly overlapping with B

< end(A) < end(B)
A]B begin(A) < begin(B) A contains B and they have the same end bound

end(A) = end(B)
A[B begin(A) = begin(B) A contains B and they have the same begin bound

end(A) > end(B)
A%B begin(A) < begin(B) A contains B and they do not have the same bound

end(A) > end(B)
A = B begin(A) = begin(B) A is at the same position as B

end(A) = end(B)

[18], where the notation “begin(A)” and “end(A)” denotes the beginning and ending points

of the object A, respectively. Then, Chang and Lee [4] extended those 7 spatial operators

to 13 ones by adopting Allen’s 13 types of interval relationships [1] and introduced the

inverse operators. Figure 3 shows the spatial operators and the inverse ones. Let us denote

the white rectangle by A and the gray rectangle by B. If the spatial relationship between

A and B is “B < A” as shown in the second row and the first column in Figure 3, then

we could use the inverse operator to represent the spatial relationship as “A <∗ B”. Ac-

cording to the combination of those 13 spatial relationships in x- and y-axes, there are 169

spatial relationships in 2D space. They can be classified into five spatial categories, disjoin,

join, contain, belong, and partial overlapping. The criterion for the spatial categories is the

intersection area between each two objects. Figure 4 shows some examples of those five

spatial categories.

Chang et al. [8] proposed an index structure called unique-ID-based matrix (UID matrix)

for symbolic pictures, in which each spatial relationship between any two objects is assigned

to a unique identifier and is recorded in a matrix. Table 2 shows the unique identifiers for

those 13 spatial relationships. The entry mij in a UID matrix is the spatial relationship

between objects i and j in x-axis when i > j. Otherwise, mij is the spatial relationship

in y-axis when i < j. For example, the related UID matrix M for the symbolic image as

4

< | / [] % =

<∗ |∗ /∗ [∗]∗ %∗

Figure 3: 13 types of spatial operators in one dimension (horizontal projection)

A

B
A

B B
A

(a) (b) (c)

B
A

A
B

(d) (e)

Figure 4: Examples of spatial categories: (a) disjoin; (b) join; (c) partial overlapping; (d)
contain; (e) belong.

5

Table 2: Unique identifiers

operator < <∗ | |∗ / /∗] [% =]∗ [∗ %∗

UID 1 2 3 4 5 6 7 8 9 10 11 12 13

A

B C

Figure 5: An example of a symbolic image presented by MBRs

shown in Figure 5 is as follows.

M =

A B C
A 0 1 12
B 5 0 13
C 1 3 0

The lower left triangular area of the matrix M records the spatial relationships among

the x-axis, and the upper right one records the spatial relationships among the y-axis. For

example, the unique identifiers for the objects A and B among the x- and y-axes are 5 and

1, respectively. Thus, this means that the object B is above the object A.

To deal with the change of spatial relationships between objects in rotation and reflec-

tion, Nabil et al. [21] introduced the condition function as shown in Figure 6. In Figure 6,

g(h) is a spatial relationship, and gi(hi) is the inverse of g(h). On the other hand, Petraglia

et al. [22] presented a mapping table as shown in Table 3 to deal with the linear trans-

formation. For example, the transformed operator of the spatial operator “<” is “<∗”.

The operator “]∗” is the transformed operator of the spatial operator “[∗”. Comparing the

condition function with the mapping table, they obtain the same transformed operator.

3 The Unique Bit Pattern Matrix Strategy

In this section, first, we describe the rules of transformation of the spatial relationships

among objects. Next, we introduce the concept of the transpose of a matrix and propose a

6

ξ(g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gi if g ∈ {<, |, /}
g if g ∈ {%, %∗, =}
h where g = hi and g ∈ {<∗, |∗, /∗}
k where g ∈ {[, [∗} and k ∈ {],]∗}
l where g ∈ {],]∗} and l ∈ {[, [∗}

Figure 6: The condition function for linear transformations

Table 3: Transformed operators

operator < <∗ | |∗ / /∗] [% =]∗ [∗ %∗

transformed operator <∗ < |∗ | /∗ / [] % = [∗]∗ %∗

bit operation. Then, we propose special bit patterns to represent the spatial relationships.

Finally, we present our proposed index structure and the relevant algorithms.

3.1 Rules of Image Rotation and Reflection

From Table 3, we observe that the transformed operators can be classified into three cases

as shown in Table 4. In Case 1, the related transformed operator is the same as the related

inverse operator. For example, in Figure 7, “<∗” is both of the transformed operator and the

inverse operator of the spatial operator “<”. In Case 2, the related transformed operator

is different from the related inverse operator. For example, in Figure 8, the transformed

operator of the spatial operator “]” is “[”, but the inverse operator is “]∗”. In Case 3, the

related transformed operators are themselves. For example, in Figure 9, the transformed

operator of the spatial operator “%” is itself, i.e., “%”.

When we rotate an image in the clockwise direction as shown in Figure 10-(a), the

spatial relationships between objects A and B in the x- and y-axes are mutually exchanged.

Table 4: Transformed operators divided into 3 cases

Case 1 Case 2 Case 3
operator < | /]]∗ % = %∗

transformed operator <∗ |∗ /∗ [[∗ % = %∗

7

A

B

A

B

(a)
A

B

A

B

(b)

Figure 7: Example of Case 1: (a) A < B vs. A <∗ B (transformed); (b) A < B vs. A <∗ B
(inverse).

A

B

A

B

(a)
A

B

A

B

(b)

Figure 8: Example of Case 2: (a) A[B vs. A]B (transformed); (b) A[B vs A[∗B (inverse).

A

B

A

B

(a)
A

B

A

B

(b)

Figure 9: Example of Case 3: (a) A%B vs. A%B (transformed); (b) A%B vs. A%∗B
(inverse).

8

A

B

A

B

x-axis

y-axis

x-axis

y-axis
<*

/* <

/*(X)

(Y)

(Y)

(X')

(a)

A

B

x-axis

y-axis

x-axis

y-axis

A

B

<*

/*

<

/*

(X)

(Y)

(X')

(Y)

(b)

A

B

x-axis

y-axis

x-axis

y-axis

A

B

<*

/*

<*

/

(X)

(Y)

(X)

(Y')

(c)

X ′ (Y ′): The transformed operator of X (Y)

Figure 10: Examples of rotation and reflection: (a) rotating 90◦ clockwise; (b) flipping
horizontally; (c) flipping vertically.

9

Table 5: Rules of transformation: X ′ and Y ′ are the transformed operators related to X
and Y , respectively.

operator

x-axis y-axis
functions X Y

Rotate 90◦ Y X ′

Rotate 180◦ X ′ Y ′

Rotate 270◦ Y ′ X
Flip horizontally X ′ Y
Flip vertically X Y ′

Moreover, the beginning and the ending points of any object in the y-axis are mutually

exchanged. Thus, the crossed arrows in Figure 10-(a) show the exchange of the spatial

operators in the x- and y-axes. Moreover, the gray arrow shows the spatial operator, i.e.,

“A <∗ B”, changes to the related transformed operator, i.e., “A < B”, in the rotated

image. When we flip an image horizontally as shown in Figure 10-(b), the beginning and

ending points of any object in the x-axis are mutually exchanged. Thus, the gray arrow in

Figure 10-(b) shows the spatial operator, i.e., “A <∗ B”, changes to the related transformed

operator, i.e., “A < B”, in the horizontally flipped image. When we flip an image vertically

as shown in Figure 10-(c), the beginning and ending points of any object in the y-axis are

mutually exchanged. Thus, the gray arrow in Figure 10-(c) shows the spatial operator,

i.e., “A/∗B”, changes to the related transformed operator, i.e., “A/B”, in the vertically

flipped image. According to the above observation, we present rules for transformation

(rotation and reflection) as shown in Table 5. It is obvious that rotating an image by 180◦

and 270◦ clockwise are equivalent to rotating the image by 90◦ clockwise twice and three

times, respectively. Thus, it is trivial to derive the rules of rotating images by 180◦ and

270◦ clockwise.

3.2 The Matrix Manipulation and the Proposed Bit Operation

In Table 5, we observe that the spatial relationships in x- and y-axes will be mutually

exchanged, when the image is rotated by 90◦ or 270◦ clockwise. Similar to the UID matrix

10

procedure Transpose(M) /* M is an n × n UBP matrix */

1: for i := 1 to n do

2: for j := i + 1 to n do

3: begin

4: temp := M [i, j];

5: M [i, j] := M [j, i];

6: M [j, i] := temp;

7: end

8: return (M);

end procedure

Figure 11: Procedure Transpose

strategy [8], we will use a matrix, called unique bit pattern matrix (UBP matrix), to record

the spatial relationships among objects. The entry mij in a UBP matrix is the spatial

relationship between objects i and j in x-axis when i > j. Otherwise, mij is the spatial

relationship in y-axis when i < j. Because we use a matrix to be as the index structure, we

introduce the concept of the transpose of a matrix to deal with the mutual exchange of the

spatial relationships in x- and y-axes. Definition 1 describes the meaning of the transpose

of a matrix. Figure 11 shows the procedure to obtain the transpose of a matrix.

Definition 1. The matrix B is the transpose of the matrix A, written B = AT , if each

entry bij in B is the same as the entry aji in A, and conversely [12].

Suppose M is a UBP matrix, and N is the transpose of the matrix M , i.e., N = MT .

According to the definition of the transpose of a matrix, mij in M is the same as nji in N .

mij is the spatial relationship between the objects i and j in x-axis when i > j. Then, nji

which is the same as mij is to be the spatial relationship between objects i and j in y-axis.

This means that the spatial relationships between the two objects in x-axis in M are to

be the spatial relationships in y-axis in N . As the same result, the spatial relationships in

y-axis in M are to be the spatial relationships in x-axis in N . In this way, the meaning of

the transpose of a UBP matrix is to mutually exchange the spatial relationships in x- and

y-axes.

11

B7 B6 B5 B4 B3 B2 B1 B0

B6 B7 B4 B5 B2 B3 B0 B1

Figure 12: Intra-exchange of the odd and even bits

When doing the rotation or flip operations, we need to change the spatial relationships

to their related transformed spatial relationships by following the rules shown in Table 5.

Thus, we propose a bit operation and use bit patterns to present those 13 spatial relation-

ships to make the change more efficient.

There are several bit operations, e.g., bit shift, and, or, and exclusive or, etc. We propose

a bit operation, called intra-exchange, as shown in Figure 12. The bits Bi and Bi+1 are

mutually exchanged, where i is an even number. Figure 13 shows the procedure to do the

intra-exchange operation. W1 and W2 are the bit patterns, where the odd and even bits

are set to 1, respectively.

We use an example as shown in Figure 14 to describe the steps of Procedure In-

tra Exchange. First, we shift left the bit string “0000 1001” by 1 to obtain Tleft, i.e.,

“0001 0010”. Second, we shift right the bit string “0000 1001” by 1 to obtain Tright, i.e.,

“0000 0100”. To extract the values of the odd bits in Tleft, we do the AND operation with

Tleft and W1 to obtain Todd, i.e., “0000 0010”. Similarly, to extract the values of the even

bits in Tright, we do the AND operation with Tright and W2 to obtain Teven, i.e., “0000

0100”. Finally, we do the OR operation with Teven and Todd to obtain the intra-exchanged

bit string, i.e., “0000 0110”.

3.3 Unique Bit Patterns

Chang et al. [8] assigned 13 different numbers, i.e., from 1 to 13, to those 13 spatial oper-

ators as shown in Table 2. We observe that those operators and their related transformed

operators shown in Cases 1 and 2 in Table 3 are adjacent to each other. Although the

12

procedure Intra Exchange(bit string)

1: Tleft := bit string shift left by 1;

2: Tright := bit string shift right by 1 ;

3: Todd := Tleft AND W1; /* W1 = 101010. . . 10, where |W1| = |bit string| */

4: Teven := Tright AND W2; /* W2 = 010101. . . 01, where W2 = W1 */

5: result := Teven OR Todd;

6: return (result);

end procedure

Figure 13: Procedure Intra Exchange

0000 10010001 0010 0000 0100

1010 1010 0101 0101

0000 0010 0000 0100

Shift left Shift right

AND AND

(a)

(b)

0000 0010

0000 0100

(a)

OR

0000 0110

W1 W2

(b)

Figure 14: Example of applying Procedure Intra Exchange to bit string 0000 1001

13

Table 6: New order of operators

Case 1 Case 2 Case 3 Case 2
operator < <∗ | |∗ / /∗] [% = %∗]∗ [∗

order 1 2 3 4 5 6 7 8 9 10 11 12 13

related transformed operators of those three operators shown in Case 3 in Table 3 are

themselves, we change the order of the last three operators shown in Table 2 to make these

three operators of Case 3, i.e., “%”, “=”, “%∗”, be adjacent to each other. Table 6 shows

the 13 spatial operators in the new order.

According to the order of the spatial operators shown in Table 6, We assign a unique 16-

bit pattern, instead of a unique number, to each spatial operator as shown in Table 7. The

second column shows the spatial operators, and the third column shows their corresponding

bit patterns. The last column shows the decimal numbers, when we view the bit patterns

as binary numbers. There is only 1 bit set to 1 in the bit patterns of those operators in

Case 1 and 2. However, the bit patterns of those operators in Case 3 are assigned with two

of 1’s. That is why we need total (10 × 1 + 3 × 2) bits to represent each spatial operator.

In this assignment, we observe that the 1’s in the bit patterns are adjacent to each other

with the operator and the related transformed operator. For example, for the operator

“<” and its related transformed operator “<∗”, the bit which is set to 1 is in B0 and B1

bit, respectively, where B0 is the right most bit of a bit pattern. In this way, by applying

the Intra Exchange procedure to the bit patterns of the spatial operators, the result is the

bit pattern of the related transformed operators. For example, in Figure 15-(a), doing the

intra-exchange operation on the bit pattern of the operator “<” results in the bit pattern of

the transformed operator, “<∗”. Figure 15-(b) shows the example of doing intra-exchange

operation on the operators “]” and “[” which belong to Case 2. In Figure 15-(c), the

transformed operator of “%” is itself, and doing the intra-exchange operation on the bit

pattern of “%” also generates the bit pattern of itself.

14

Table 7: Bit patterns of operators

Case Operator Unique bit pattern Decimal number

1

< 0000 0000 0000 0001 1
<∗ 0000 0000 0000 0010 2
| 0000 0000 0000 0100 4
|∗ 0000 0000 0000 1000 8
/ 0000 0000 0001 0000 16
/∗ 0000 0000 0010 0000 32

2
] 0000 0000 0100 0000 64
[0000 0000 1000 0000 128

3
% 0000 0011 0000 0000 768
= 0000 1100 0000 0000 3072
%∗ 0011 0000 0000 0000 12288

2
]∗ 0100 0000 0000 0000 16384
[∗ 1000 0000 0000 0000 32768

0000 0000 0000 0001

0000 0000 0000 0010

<

<*

0000 0000 0100 0000

0000 0000 1000 0000

]

[

0000 0011 0000 0000

0000 0011 0000 0000

%

%

(a) (b) (c)

Figure 15: Three cases of bits intra-exchange: (a) Case 1; (b) Case 2; (c) Case 3.

15

Table 8: Category table

< < <* < | < |* < / < /* <] < [< % < = <

< <* <* | |* / /*] [% =<* <*<* <* <* <* <*<* <*

< <* | |* / /*] [% =| | | | | | | | | |

< <* | |* / /*] [% =|* |* |* |* |* |* |* |* |* |*

< <* | |* / /*] [% =/ / / / / / / / / /

< <* | |* / /*] [% =/* /* /* /* /* /* /* /* /* /*

< <* | |* / /*] [% =

< <* | |* / /*] [% =

< <* | |* / /*] [% =

< <* | |* / /*] [% =

]]]]]]]]]]

[[[[[[[[[[

% % % % % % % % %%

= = = = = = = = ==

<

<* %*| |* / /*] [% =]* [*

%*

<*

|

|*

/

/*

]

[

%

=

]*

[*

<
 r x

A,B

 r y
A,B

2 327684 8 16 32 64 128 768 3072 12288 163841

1

32768

2

4

8

16

32

64

128

768

3072

12288

16384

]* < [* <%* <

]* <*

]* |

[* <*

[* |

%* <*

%* |

%* |*

%* /

%* /*

[* |*

[* /

[* /*

]* |*

]* /

]* /*

%*

%*

%*

]

[

%

[*

[*

[*

]

[

%

]*

]*

]*

]

[

%

]*]* [*]*%*]*

%* %* [* %*]* %*

= [*]* [* [* [*%* [*

]* = [* =%* =

=]*

= %*/ /*] [%%* %* %* %* %*

/ /*] [%[* [* [* [* [*

/ /*] [%]*]*]*]*]*

< <* | |*%* %*%* %*

< <* | |*[* [* [*[*

< <* | |*]*]*]*]*

3.4 Spatial Categories

According to the order of our proposed unique bit patterns, we can arrange those 169 spatial

relationships into a Category table as shown in Table 8. Those 169 spatial relationships are

grouped together into 5 different categories, highlighted by the bold lines. For example, the

spatial relationships in the first, second rows and the first, second columns are the disjoin

spatial category. Thus, we can use a range checking algorithm as shown in Figure 16 to

distinguish the spatial category between each two objects. The parameters ubpx and ubpy

are the unique bit patterns among x- and y-axes, respectively. The corresponding decision

tree is shown in Figure 17.

16

procedure Category(ubpx, ubpy)

1: if (ubpx > 8) and (ubpy > 8) then

2: if (64 ≤ ubpx ≤ 3072) and (64 ≤ ubpy ≤ 3072) then

3: return (‘contain’)

4: else if (3072 < ubpx ≤ 32768) and (3072 < ubpy ≤ 32768) then

5: return (‘belong’)

6: else return (‘partial overlapping’)

7: else if (ubpx > 2) and (ubpy > 2)then

8: return (‘join’)

9: else return (‘disjoin’);

end procedure

Figure 16: Procedure Category

ubpx, ubpy > 8

Contain

Belong Part_Overlap

Join Disjoin

T

T

T

T

F

F

F

F

ubpx, ubpy > 264 < ubpx, ubpy < 3072

3072 < ubpx, ubpy < 32768

Figure 17: Decision tree of procedure Category

17

L

Y

T

(a) (b)

Figure 18: Example: (a) an image; (b) the symbolic representation.

3.5 The Unique Bit Pattern Matrix

Similar to previous iconic index strategies [5], we assume that there are at least two objects

in an image. The spatial information between any two objects can derived. Thus, we

propose a unique-bit-pattern matrix (UBP matrix) to preserve the spatial information of

the objects in an image. Suppose an image p contains m objects and let O = {o1, o2, ..., om}.
Let A be the set of 13 spatial operators { <,<∗, |, |∗, [, [∗,],]∗, %, %∗, /, /∗, = }. An m × m

spatial matrix S [8] of the image p is defined as follows:

S =

o1 o2 · · · om−1 om

o1 0 ry
1,2 · · · · · · ry

1,m

o2 rx
1,2 0

. . .
...

...
...

. . . 0
. . .

...

om−1
...

. . . 0 ry
m−1,m

om rx
1,m · · · · · · rx

m−1,m 0

where the lower triangular matrix stores the spatial information along the x-axis, and

the upper triangular matrix stores the spatial information along the y-axis. That is, rx
i,j and

ry
i,j are the spatial operators between objects oi and oj along the x- and y-axes, respectively.

For the image shown in Figure 18, the corresponding spatial matrix S is shown as follows:

18

S =

L T Y
L 0 /∗ /∗

T |∗ 0 /∗

Y / < 0

Objects L, T , and Y stand for the lighthouse, the tree, and the person, respectively.

According to the assignments of the unique bit patterns for those 13 spatial operators

shown in Table 7, we can transform the spatial matrix S of the image p into a UBP matrix

M by replacing each spatial operator with its corresponding unique bit pattern (in decimal

representation) as follows:

M =

L T Y
L 0 32 32
T 8 0 32
Y 16 1 32

Then, we use the UBP matrix M to record the relative position of all objects. Moreover,

the storage space of the matrix M is 32 × 16 bits. In other words, if an image p contains

m objects, then we use an m×m UBP matrix with m2 × 16 bits of storage space to index

the image p. Note that although the strategies recording spatial information in a matrix,

e.g., [3, 9], require more storage space than the strategies recording spatial information in

strings, e.g., [7, 18], the matrix-based strategies do similarity retrieval more efficiently than

the string-based strategies [8].

3.6 Similarity Retrieval

For the similarity retrieval, because we can distinguish the spatial relationships and the

spatial categories according to the UBP matrix, we can apply the same definition of the

similarity measures [18], which is described in Definition 2, to determine the similarity

degrees among images.

Definition 2. Picture f ′ is a type-i unit picture of f , if

1. all objects in f’ are also in f,

2. for any two objects A and B, the spatial bit patterns among x- and y-axes between

the objects A and B in f and f ′ are represented as (ubpx, ubpy) and (ubpx′, ubpy′),

respectively, then

19

T
L

Figure 19: Symbolic representation of a query

type-0: Category(ubpx, ubpy) = Category(ubpx′, ubpy′);

type-1: (type-0) and (ubpx = ubpx′ or ubpy = ubpy′);

type-2: ubpx = ubpx′ and ubpy = ubpy′.

For example, to find an image where there is a tree beside a lighthouse (type-0 similar-

ity), the query may be issued by the symbolic representation as shown in Figure 19. The

corresponding UBP matrix Q generated by the system is as follows:

Q =
L T

L 0 32768
T 8 0

Following procedure Category as shown in Figure 16, the spatial category between the

tree and the lighthouse in the matrix Q is Category(8, 32768), i.e., join. Then, the spatial

category between the two objects in the corresponding matrix M of the image shown in

Figure 18 is Category(8, 32), i.e., join. Thus, the image shown in Figure 18 qualifies the

query in type-0 similarity based on the Definition 2.

3.7 Deriving Indices of The Rotated and Flipped Images

We propose algorithms to derive the UBP matrices of the rotated and flipped images

from the UBP matrix of the original image. Table 9 shows the definition of the sym-

bols, M90, M180, M270, MH , and MV . In our proposed algorithms, we will use those

two procedures as shown in Figures 20 and 21. Procedures Upper Right Triangular and

Lower Left Triangular do the intra exchange operation on each entry in the upper right

triangular and the lower left triangular area of a matrix, respectively. According to the

20

Table 9: The definition of the matrix symbols

Symbol Definition
P a database image
M the UBP matrix of P
MT the transpose of the matrix M
M90 The UBP matrix of P rotated by 90◦ clockwise
M180 The UBP matrix of P rotated by 180◦ clockwise
M270 The UBP matrix of P rotated by 270◦ clockwise
MH The UBP matrix of P flipped horizontally
MV The UBP matrix of P flipped vertically

rules of transformation shown in Table 5, we describe the algorithms to derive the matrices

M90, M180, M270, MH , and MV as follows.

1. Matrix M90: Apply Procedure Intra Exchange to each entry in the upper right tri-

angular matrix of MT , and the details are described in Procedure M 90 shown in

Figure 22.

2. Matrix M180: Apply Procedure Intra Exchange to each entry of M , and the details

are described in Procedure M 180 shown in Figure 23.

3. Matrix M270: Apply Procedure Intra Exchange to each entry in the the lower left

triangular matrix of MT , and the details are described in Procedure M 270 shown

in Figure 24.

4. Matrix MH : Apply Procedure Intra Exchange to each entry in the lower left triangu-

lar matrix of M , and the details are described in Procedure M H shown in Figure 25.

5. Matrix MV : Apply Procedure Intra Exchange to each entry in the upper right tri-

angular matrix of M , and the details are described in Procedure M V shown in

Figure 26.

We use an example shown in Figure 27 to describe the steps of deriving the matrix

M90. The UBP matrix M is the index of the image in the left hand side of Figure 9.

Then, the rotated image by 90◦ clockwise is shown in the right hand side of Figure 9.

21

procedure Upper Right Triangular(M) /* M is an n × n UBP matrix */

1: for i := 1 to n do

2: for j := i + 1 to n do

3: M [i, j] := Intra Exchange(M [i, j]);

4: return (M);

end procedure

Figure 20: Procedure Upper Right Triangular

procedure Lower Left Triangular(M) /* M is an n × n UBP matrix */

1: for i := 1 to n do

2: for j := i + 1 to n do

3: M [j, i] := Intra Exchange(M [j, i]);

4: return (M);

end procedure

Figure 21: Procedure Lower Left Triangular

procedure M 90 (M) /* M is a UBP matrix */

1: MT := Transpose(M);

2: M90 := Upper Right Triangular(MT);

3: return (M90);

end procedure

Figure 22: Procedure M 90

procedure M 180 (M) /* M is a UBP matrix */

1: M180 := Upper Right Triangular(M);

2: M180 := Lower Left Triangular(M180);

3: return (M180);

end procedure

Figure 23: Procedure M 180

22

procedure M 270 (M) /* M is a UBP matrix */

1: MT := Transpose(M);

2: M270 := Lower Left Triangular(MT);

3: return (M270);

end procedure

Figure 24: Procedure M 270

procedure M H (M) /* M is a UBP matrix */

1: MH := Lower Left Triangular(M);

2: return (MH);

end procedure

Figure 25: Procedure M H

procedure M V (M) /* M is a UBP matrix */

1: MV := Upper Right Triangular(M);

2: return (MV);

end procedure

Figure 26: Procedure M V

23

041

12288016

3276810

C

B

A

M

CBA

01228832768

401

1160

C

B

A

M

CBA

T

transpose Intra_Exchange

01228832768

801

2320
90

C

B

A

M

CBA

upper right
triangular

(x, y) (y, x)

A

B C
A

B

C

Figure 27: Process of deriving the matrix of rotated image

According to Table 5, the spatial relationships in x- and y-axes are mutually exchanged in

the rotated image. Moreover, the spatial relationships in the y-axis of the rotated image

are the transformed spatial relationships in the x-axis of the original image. Thus, first, we

obtain the transpose of the matrix, MT , to exchange the spatial relationships in the x- and

y-axes. Then, we apply procedure Intra Exchange to the upper right triangular area of the

matrix MT to change the original spatial relationships to their corresponding transformed

spatial relationships. Finally, we obtain the index of the rotated image, i.e., the matrix

M90.

4 Performance Study

In this section, first, we will analyze the time complexity of our proposed strategy. Then,

we show the simulation results and discuss the properties of the results. In this simulation,

we consider the CPU-time and the average search time as our performance measures. The

CPU-time is the time to generate the corresponding index of the rotated or flipped image.

The average search time is the time to find all qualified database for one query. Finally,

we present a system prototype based on our proposed strategy.

4.1 Analysis

First, we analyze the complexity of generating the matrices, M90, M180, M270, MH , and

MV . Then, we analyze the complexity of searching a database image, when the query is

24

issued in the orientation different from that of the database image.

There are two basic operations to generate the above matrices. One is procedure In-

tra Exchange, the other is to obtain the transpose matrix, MT . In procedure Intra Exchange,

from step 1 to step 5, each step is a CPU bit operation, the complexity is O(1). Thus, the

complexity of procedure Intra Exchange is 5×O(1) = O(1). Suppose M is an n×n matrix,

there are n2 entries. To get the matrix MT , we go through a loop to exchange the content

of the entries, mij and mji. The complexity of the exchange is O(1). The number of the

exchange is n2/2. Thus, the complexity of getting the matrix MT is n2/2×O(1) = O(n2).

According to the algorithm to obtain the matrices M90, M180, M270, MH , and MV , we list

the complexity as follows.

1. M90: n2/2 × O(1) + O(n2) = O(n2).

2. M180: n2 × O(1) = O(n2).

3. M270: n2/2 × O(1) + O(n2) = O(n2).

4. MH : n2/2 × O(1) = O(n2).

5. MV : n2/2 × O(1) = O(n2).

Chang et al. [8] have proved that to answer a query of similarity retrieval, the com-

plexity of matching the index of the query with the index of a database image is O(m2),

where m is the number of objects common to the database image and the query. Similarly,

if the query is issued in the different orientation, in order not to miss the qualified database

images, we need to compare another five indexes, i.e., the matrices M90, M180, M270, MH ,

and MV , with the index of an image. Thus, the complexity is O(m2)+5×O(m2) = O(m2).

4.2 Simulation Results

We set the number of different objects appearing in the database be 100. For each object,

the width and height of which are bounded between 1 and 100,000 units. We generate

images with 10, 20, 30, 60, and 90 objects which are randomly chosen from those 100

different objects. In each case, 100,000 images are generated. Thus, we use 500,000 images

25

Table 10: The percentage of the improvement of our proposed algorithm as compared to
the condition function

10 objects 20 objects 30 objects 60 objects 90 objects
rotated by 180◦ 23.56% 36.45% 44.21% 47.29% 53.23%
flipped horizontally 13.64% 22.45% 28.82% 31.83% 36.72%

to calculate the average CPU-time of obtaining the index of the rotated and flipped images.

Nabil et al. [21] and Petraglia et al. [22] used a condition function as shown in Figure 6

to deal with the linear transformation. This function does not show a straightforward way

to change the spatial relationship to its related transformed spatial relationship. When

we implement this function, we need to use conditional statements, such as if-then-else,

to deal with the transformation. Thus, when the number of spatial relationships which

need to be changed to its transformed one is huge, the process of this function is time-

consuming. Instead of using the condition function, our strategy employs the intra-exchange

bit operation to change the spatial relationship directly. In the following five cases, Rotate in

90◦, Rotate in 180◦, Rotate in 270◦, Flip horizontally, and Flip vertically, we will compare

the average CPU-time with different number of objects in an image. We show the two

cases of the improvement of our proposed algorithm in Table 10. The more the number of

objects in an image, the better improvement of our proposed algorithm is. Our proposed

algorithm can reach more than 50% improvement as compared to those strategies based on

the condition function, when there are 90 objects in an image.

The average search time is the time to search all the qualified images for one query. To

evaluate the average search time, we prepare 100,000 images for each of the following cases

in the database. We consider cases of 10, 20, 30, 60, and 90 different objects randomly

chosen with the uniform distribution to appear in each image, respectively. There are

1,000 query images which contains 2 different objects. Each query is a sub-image randomly

chosen from the database images. Each query image with 10%, 20%, and 50% probability

to be given in the rotation ordination or the reflection direction. Then, we compare the

average search time of each combination.

Table 11 shows the simulation results. For the same number of objects in a database

26

Table 11: The average search time (in seconds) of different combinations

10% 20% 50%
10 objects 6.80 6.85 6.85
20 objects 17.53 18.34 18.30
30 objects 32.80 32.62 32.76
60 objects 105.63 103.28 104.80
90 objects 219.45 217.08 219.50

image, we observe that no matter what the value of the probability is, the average search

time is almost the same. This is because we have to check the five cases to prevent from

missing the qualified database images. We also observe that the more the number of

objects in a database image, the longer the search time is. We have shown that the time

complexity to do the similarity is O(m2), where m is the number of objects common to the

query and the database image. Thus, the query time should be the same, when m is 2 in

this simulation. However, before comparing the UBP matrix of the query with that of a

database image, we need to obtain the UBP matrices of the rotated and flipped versions

of the original image. Then, we have to obtain the sub-UBP matrix of the database image

with the same objects information as the query. This is the reason why the more the

number of objects in a database image, the longer the search time is. Note that, in fact, in

the image database searching, the signature strategy [28] will be applied to prune off many

unsatisfied images before comparing the indices of the candidate images with the index of

the query one by one. Thus, the search time will be much less than that shown in Table 11.

4.3 The System Prototype

We use our proposed strategy, the UBP strategy, to implement a system, Interactive Image

Retrieval System (IIRS), to validate the effectiveness of our proposed strategy. There are

two subsystems, image indexing and query, in the IIRS. The image indexing subsystem

extracts the representative objects in the images. Automatical extraction by image seg-

mentation and object recognition is beyond our research scope [14], the subsystem provides

a human-assisted interface to do it as shown in Figure 28-(a). Various techniques of image

segmentation and object recognition can be found in [19]. We use this subsystem to store

27

(a) (b) (c)

Figure 28: User interface of the prototype system: (a) the extraction of key objects; (b) a
query; (c) the query result.

some images in advance, and their related UBP matrices will be generated automatically.

Some images are stored in the rotated or the flipped version in order to validate our pro-

posed strategy. The query subsystem supports queries issued in the rotation orientation

or the reflection direction. For example, in Figure 28-(b), the spatial relationship between

the two objects in x-axis is the flipped version as compared to the spatial relationship of

the objects shown in Figure 28-(a). Then, Figure 28-(c) shows that the system can find

the qualified image.

5 Conclusions

In this paper, we have presented an efficient iconic indexing strategy, i.e., unique bit pattern

matrix (UBP matrix), to derive the index of rotated and flipped images from the original

index directly. In this way, our proposed strategy will not miss the qualified images when

the query is issued in the different orientation as compared to the database images. By

observing the order of the unique identifiers of the spatial relationships proposed in the UID

matrix strategy, we have proposed a new order for those 13 spatial relationships to make

the spatial relationship and its related transformed spatial relationship be adjacent to each

other. Then, we have designed special 16-bit patterns to represent those spatial relation-

ships. Based on these carefully designed bit patterns and our proposed bit operation, i.e.,

intra-exchange, each bit pattern can be easily changed to another bit pattern of the related

transformed spatial relationship. Although we reorder the spatial relationships, by viewing

28

the bit patterns as digital numbers, we can distinguish the spatial category between each

two objects by range checking algorithm. In the simulation study, we have shown that

our proposed strategy makes a great improvement as compared to the strategies based on

the condition function, when deriving the index of the rotated or flipped image from the

original index . So far, our proposed strategy can answer queries with at least two objects

with their relative position. Future work includes dealing with the query with only one

object and its relative position in the whole image. For example, finding all images which

have a circle at the border.

6 Acknowledgement

The authors also like to thank “Aim for Top University Plan” project of NSYSU and

Ministry of Education,Taiwan, for partially supporting the research.

References

[1] J. F. Allen, “Maintaining Knowledge about Temporal Intervals,” Comm. of the ACM,

Vol. 26, No. 11, pp. 832–843, Nov. 1983.

[2] F. Cannavale, A. Casanova, M. Fraschini, and V. Savona, “Content Image Retrieval

Based on Topological Information,” Journal of Visual Languages and Computing,

Vol. 15, No. 5, pp. 347–359, Oct. 2004.

[3] C. C. Chang, “Spatial Match Retrieval of Symbolic Pictures,” Journal of Information

Science and Engineering, Vol. 7, No. 3, pp. 405–422, Sept. 1991.

[4] C. C. Chang and C. F. Lee, “Relative Coordinates Oriented Symbolic String for Spatial

Relationship Retrieval,” Pattern Recognition, Vol. 28, No. 4, pp. 563–570, April 1995.

[5] S. K. Chang and E. Jungert, Symbolic Projection for Image Information Retrieval and

Spatial Reasoning. London, U.K.: Academic Press, April 1996.

[6] S. K. Chang, E. Jungert, and G. Tortora, Intelligent Image Database Systems. Singa-

pore: World Scientific Press, July 1996.

29

[7] S. K. Chang, Q. Y. Shi, and C. W. Yan, “Iconic Indexing by 2D Strings,” IEEE

Trans. on Pattern Analysis and Machine Intelligence, Vol. 9, No. 3, pp. 413–428, May

1987.

[8] Y. I. Chang, H. Y. Ann, and W. H. Yeh, “A Unique-ID-Based Matrix Strategy for

Efficient Iconic Indexing of Symbolic Pictures,” Pattern Recognition, Vol. 33, No. 8,

pp. 1263–1276, Aug. 2000.

[9] Y. I. Chang, B. Y. Yang, and W. H. Yeh, “A Bit-Pattern-Based Matrix Strategy for

Efficient Iconic Indexing of Symbolic Pictures,” Pattern Recognition Letters, Vol. 24,

No. 1–3, pp. 537–545, Jan. 2003.

[10] Y. Chen and J. Z. Wang, “A Region-Based Fuzzy Feature Matching Approach to

Content-Based Image Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelli-

gence, Vol. 24, No. 9, pp. 1252–1267, Sept. 2002.

[11] E. A. El-kwae and M. R. Kabuka, “Efficient Content-Based Indexing of Large Image

Databases,” ACM Trans. on Information Systems, Vol. 18, No. 2, pp. 171–210, April

2000.

[12] J. B. Fraleigh and R. A. Beauregard, Linear Algebra. Addison Wesley, third ed., 1995.

[13] V. N. Gudivada, “θR-String: A Geometry-Based Representation for Efficient and

Effective Retrieval of Images by Spatial Similarity,” IEEE Trans. on Knowledge and

Data Engineering, Vol. 10, No. 3, pp. 504–512, May 1998.

[14] P. W. Huang and C. H. Lee, “Image Database Design Based on 9D-SPA Representation

for Spatial Relations,” IEEE Trans. on Knowledge and Data Engineering, Vol. 16,

No. 12, pp. 1486–1496, Dec. 2004.

[15] M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz, “Rotaion Invariant Spherical Har-

monic Representation of 3D Shape Descriptions,” Proc. of Eurographics/ACM SIG-

GRAPH Symposium on Geometry Processing, pp. 156–164, 2003.

30

[16] L. J. Latecki and R. Lakamper, “Application of Planar Shape Comparison to Object

Retrieval in Image Databases,” Pattern Recognition, Vol. 35, No. 1, pp. 15–29, Jan.

2002.

[17] A. J. T. Lee and H. P. Chiu, “2D Z-String: A New Spatial Knowledge Representation

for Image Databases,” Pattern Recognition Letters, Vol. 24, No. 16, pp. 3015–3026,

Dec. 2003.

[18] S. Y. Lee and F. J. Hsu, “Spatial Reasoning and Similarity Retrieval of Images Using

2D C-String Knowledge Representation,” Pattern Recognition, Vol. 25, No. 3, pp. 305–

318, March 1992.

[19] H. H. Lu, J. C. Woods, and M. Ghanbari, “Binary Partition Tree for Semantic Object

Extraction and Image Segmentation,” IEEE Trans. on Circuits and Systems for Video

Technology, Vol. 17, No. 3, pp. 378–383, March 2007.

[20] T. Marco, L. Hendrik, G. Michael, and S. Hans-Peter, “3D Acquisition of Mirroring

Objects Using Striped Patterns Pages,” Graphical Models, Vol. 67, No. 4, pp. 233–259,

2005.

[21] M. Nabil, A. H. H. Ngu, and J. Shepherd, “Picture Similarity Retrieval Using the 2D

Projection Interval Representation,” IEEE Trans. on Knowledge and Data Engineer-

ing, Vol. 8, No. 4, pp. 533–539, Aug. 1996.

[22] G. Petraglia, M. Sebillo, M. Tucci, and G. Tortora, “Virtual Images for Similarity

Retrieval in Image Databases,” IEEE Trans. on Knowledge and Data Engineering,

Vol. 13, No. 6, pp. 951–967, Nov./Dec. 2001.

[23] E. G. M. Petrakis, “Design and Evaluation of Spatial Similarity Approaches for Image

Retrieval,” Image and Vision Computing, Vol. 20, No. 1, pp. 59–76, Jan. 2002.

[24] A. Rao, R. K. Srihari, L. Zhu, and A. Zhang, “A Method for Measuring the Complexity

of Image Databases,” IEEE Trans. on Knowledge and Data Engineering, Vol. 14, No. 5,

pp. 979–987, Sept. 2002.

31

[25] M. Saadatmand-Tarzjan and H. A. Moghaddam, “A Novel Evolutionary Approach

for Optimizing Content-Based Image Indexing Algorithms,” IEEE Trans. on Systems

Man and Cybernetics Part B-Cybernetics, Vol. 37, No. 1, pp. 139–153, Feb. 2007.

[26] E. D. Sciascio, M. Mongiello, F. M. Donini, and L. Allegretti, “Retrieval by Spa-

tial Similarity: An Algorithm and a Comparative Evaluation,” Pattern Recognition

Letters, Vol. 25, No. 14, pp. 1633–1645, Oct. 2004.

[27] J. C. Wong and A. Datta, “Animating Real-time Realistic Movements in Small Plants,”

Proc. of the 2nd Int. Conf. on Computer Graphics and Interactive Techniques in Aus-

tralasia and South East Asia, pp. 182–189, 2004.

[28] W. H. Yeh and Y. I. Chang, “An Efficient Signature Extraction Method for Image

Similarity Retrieval,” Journal of Information Science and Engineering, Vol. 22, No. 1,

pp. 63–94, Jan. 2006.

[29] X. M. Zhou, C. H. Ang, and T. W. Ling, “Image Retrieval Based on Object’s Orien-

tation Spatial Relationship,” Pattern Recognition Letters, Vol. 22, No. 5, pp. 469–477,

April 2001.

32

