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Abstract

Nearest neighbor-finding is one of the most important spatial operations in the field of spa-
tial data structures concerned with proximity. Because the goal of the space-filling curves
is to preserve the spatial proximity, the nearest neighbor queries can be handled by these
space-filling curves. When data is ordered by the Peano curve, we can directly compute
the sequence numbers of the neighboring blocks next to the query block in 8 directions in
the 2D-space based on its bit shuffling property. But when data is ordered by the RBG
curve or the Hilbert curve, neighbor-finding is complex. However, we observe that there is
some relationship between the RBG curve and the Peano curve, as with the Hilbert curve.
Therefore, in this paper, we first show the strategy based on the Peano curve for the nearest
neighbor query. Next, we present the rules for transformation between the Peano curve
and the other two curves, including the RBG curve and the Hilbert curve, such that we
can also efficiently find the nearest neighbor by the strategies based on these two curves.
From our simulation, we show that the strategy based on the Hilbert curve requires the
least total time (the CPU-time and the I/O time) to process the nearest neighbor query
among our three strategies, since it can provide the good clustering property.

(Key Words: Hilbert curve, neighbor-finding, Peano curve, RBG curve, space-filling
curves, spatial proximity.)
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1 Introduction

With the proliferation of wireless communications and the rapid advances in GIS sys-

tems, a very common spatial query is the “Nearest Neighbor Query” which seeks for the

objects residing more closely to a given object. For example, when driving a car in a

highway, the driver may ask where the nearest gas station is. In other words, nearest

neighbor-finding is one of the most important spatial operations in the field of spatial data

structures regarding proximity.

Basically, spatial data consists of objects in space made up of points, lines, regions,

rectangles, and data of higher dimensions. Access methods are required to support efficient

manipulation of the multi-dimensional spatial objects in the secondary storage. Several

schemes [2, 3, 4, 8, 12, 13, 14] for the linear mapping of a multi-dimensional space have

been proposed for various applications, such as access methods for traditional databases,

geographic information systems (GIS) and spatio-temporal databases. However, in spa-

tial applications, the structure of databases become larger and more complex and means

for extracting valuable information become more sophisticated [8]. The design of multi-

dimensional access methods is difficult compared to one-dimensional cases because there

is no total ordering that preserves spatial locality [12]. Once a total ordering is found for

a given spatial database, one can use any one-dimensional access method which may yield

good performance for multi-dimensional queries. Thus, what is needed is a mapping from a

higher dimensional space to a one-dimensional space. In this mapping, the elements which

are close in space are mapped into nearby points on the line to preserve the spatial locality.

A space-filling curve passes through every point in the space once. It is one kind of mapping

to give an one to one correspondence between the coordinates and the sequence numbers

of the points on the curve [8].

Because the goal of the space-filling curves is to preserve spatial proximity, they can

handle nearest neighbor queries. Some examples of space-filling curves are the Peano curve,

the RBG curve and the Hilbert curve. The Peano curve [13, 14] (or the Z-order curve)

has the bit shuffling property, which means interleaving the bits from two coordinates of

the point in base 2 in the 2D-space. An improvement of the Peano curve is the Reflected

Binary Gray-code (RBG) curve [2, 3] which uses Gray coding on the interleaved bits to
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reduce random accesses on the disk for range queries. Based on the Peano curve, the

Hilbert curve was proposed with superior data clustering properties, which means that the

locality between objects in the multi-dimensional space is preserved in the linear space

[4, 6, 7, 8, 12].

When the data is linearly ordered by the Peano curve, we can directly compute the

sequence numbers of the neighboring blocks next to the query block in 8 directions based

on its bit shuffling property, even the order is greater than 1. (Note that the order of a

curve deals with how many sequence numbers be necessary to uniquely define that curve.)

But with the data ordered by the RBG curve or the Hilbert curve, neighbor-finding would

be complex. However, we also observe that there is some relationship between the RBG

curve and the Peano curve, as with the Hilbert curve. Therefore, in this paper, we first

show how these space-filling curves are derived and discuss the relationships between them.

Next, we describe the effects on nearest neighbor queries by using different curves. Then,

we show the way to find the nearest neighbor by our strategy based on the Peano curve,

and present the rules for transformation between the Peano curve and others. Finally, we

compare the performance of our strategy for the nearest neighbor-finding based on different

space-filling curves.

The rest of paper is organized as follows. In Section 2, we briefly describe three space-

filling curves, the Peano curve, the RBG curve, the Hilbert curve, and their spatial prop-

erties. In Section 3, we present our strategies for the nearest neighbor-finding, based on

the Peano curve and the transformation rules between the Peano curve and the others. In

Section 4, we describe the simulation experiment performed to compare different strategies,

and results obtained therefrom. Finally, we provide conclusions for this paper.

2 Space-Filling Curves

The design of multi-dimensional access methods is difficult compared to one-dimensional

cases because there is no total ordering that preserves spatial locality [12]. One way is to

look for a mapping which preserves spatial proximity at least to some extent. In this

section, we discuss the properties of the Peano curve, the RBG curve, and the Hilbert

curve.
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Figure 1: Peano curves of order: (a) 1; (b) 2; (c) 3.

2.1 Properties

A space-filling curve orders points linearly to preserve the distance between two points

in the 2D-space. This means that points which are close in space and represent similar data

should be stored together in the linear sequence. Some examples of space-filling curves are

the Peano curve, the RBG curve and the Hilbert curve [2, 3, 4, 6, 7, 12, 13, 14]. In general,

a space-filling curve starts with a basic path on a k-dimensional square grid of side 2. The

path visits every point in the grid exactly once without crossing itself. It has two free ends

which may be joined with other paths. The basic curve is said to be of order 1. To derive

a curve of order i, each vertex of the basic curve is replaced by the curve of order i − 1,

which may be appropriately rotated and/or reflected to fit the new curve [4].

For the Peano curve, the 1D-number (one-dimensional sequence number) of a point is

obtained by bit shuffling on the X and Y coordinates of the point in the 2D-space (two-

dimensional space). The basic Peano curve of order 1 for a 2 × 2 grid, denoted as P1, is

shown in Figure 1-(a). To derive higher orders of the Peano curve, we replace each vertex

of the basic curve with the previous order curve. Figures 1-(b) and (c) show the Peano

curves of order 2 and 3, respectively [4, 6].

For the RBG curve, numbers are coded into binary gray-codes such that successive

numbers differ in exactly one bit position. Faloutsos [2, 3, 4] observed that in the RBG

curve, the difference in only one bit position has a relationship with locality. He proposed a

formula to transform the Peano curve into the RBG curve such that the property of locality

can be preserved. The basic RBG curve of order 1 for a 2× 2 grid, denoted as R1 is shown

in Figure 2-(a). Higher orders of this curve are derived by reflecting the previous order
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Figure 2: RBG curves of order: (a) 1; (b) 2; (c) 3.
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Figure 3: Hilbert curves of order: (a) 1; (b) 2; (c) 3.

curve over x-axis and then over the y-axis. Figures 2-(b) and (c) show the RBG curve of

orders 2 and 3, respectively [2, 3, 4, 6].

The Hilbert curve is a space-filling curve used to preserve spatial locality as much as

possible. Thus, the Hilbert curve has the important property that consecutively ordered

points are adjacent in space [8], as shown in Figure 3-(a). As in the case of the previous

two curves, it replicates in four quadrants. While replicating, the lower left quadrant is

rotated clockwise 90◦, the lower right quadrant is rotated anti-clockwise 90◦, and the sense

(the direction of traversal) of both lower quadrants are reversed. The two upper quadrants

do not rotate and change the sense. Thus we obtain Figure 3-(b). Because all rotation

and sense computations are relative to previously obtained ones in a particular quadrant,

a repetition of this step gives rise to Figure 3-(c) [2, 3, 4, 6, 7].

Space-filling curves are based on the assumption that any attribute value can be rep-

resented with some fixed number of bits. In the 2D-space, there are two attributes: the

horizontal and vertical directions which are called the X and Y axes, respectively. The

whole space is split into equal-sized sub-regions, and the direction of splitting alternates
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between X and Y axes. A vertical split through the middle of the space amounts to

discrimination in the value of x0. If the resulting sub-regions are split horizontally, this

corresponds to discrimination on the value of y0. At this point, there are four equal-sized

sub-regions, corresponding to the possible values of x0 and y0.

In general, each split on X or Y axis is characterized by one bit. After splitting k times

in each direction, a grid can be specified by 2k bits of two coordinates, (xk−1xk−2....x1x0,

yk−1yk−2...y1y0)2. The bit string obtained by bit shuffling on these 2k bits uniquely identifies

one sub-region. The z-value is represented as the decimal value of the bit string. This means

that there is a concise description of the shape, size and position of the sub-region. All

points inside the sub-region have the same coordinates as the sub-region [14]. Consider the

point or the region with X = (1)10 = (0 1)2 = (x1x0)2 and Y = (3)10 = (11)2 = (y1y0)2

in Figure 4-(a), where ( )2 represents the binary form of the number, and ( )10 represents

the decimal form of the number. The point or the region has the bit string (0111)2 =

(x1y1x0y0)2, obtained by bit shuffling, which represents the splitting process on X and Y

axes. In the decimal representation, the z-value of the bit string (0111)2 is equal to (7)10.

Orenstein [13, 14] used the z-values and z-ordering to refer to the ordering of the Peano

curve (Figure 4-(a)), which is a total ordering of elements that combines with the highly

constrained splitting policy and preserves proximity. Similarly, r-ordering and r-values are

used for the RBG curve, and h-ordering and h-values are used for the Hilbert curve, as

shown in Figures 4-(b) and (c), respectively.

3 Nearest Neighbor-Finding

Nearest neighbor-finding is one of the most important spatial operations in the field

of spatial data structures which is concerned with proximity [1, 5]. Because the goal of

the space-filling curves is to preserve spatial proximity, nearest neighbor queries can be

handled by the space-filling curves. An example of the nearest neighbor query shown in

Figure 5 is to find the closest hydrant to the point of a fire by using three different curves.

The entire grid is a map of a neighborhood, which is stored in a database. There exists

F , which represents the point of the fire, and H , which represents a hydrant in the area.

The lines represent street blocks and the numbers represent the orders that are stored in
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Figure 4: Space-filling curves of order 2: (a) z-ordering: Peano curve; (b) r-ordering: RBG
curve; (c) h-ordering: Hilbert curve.

the database. In order to find the nearest data point H to the query point F , we briefly

describe the conventional approach as follows.

In the conventional approach [4], we first compute the sequence number of F , and find

H which has the closest sequence number (either in the preceding or succeeding order) to

that of F along the curve path. Then, we calculate the actual distance d in the 2D-space

between the query point and the retrieved data point, and issue a range query centered

at the query point with radius d. In this way, we need to check all points and return the

closest point to the query point. In Figure 5-(a) (Peano curve of order 2), we calculate

the sequence number of the query point, i.e., F9. We find the proceeding and succeeding

sequence numbers on the curve path until one of the points corresponds to H . In this case,

H10 is the first one found to be the nearest neighbor to F9. The distance from H10 to F9

is 2 (= d) blocks in the 2D-space shown in Figure 5-(a). Then, we check all points which

are within two blocks of F9 to see if any closer hydrant exists by performing a range query.

From Figure 5-(a), we see that a hydrant H3 exists which is only one block away from F9 in

the 2D-space. But in the 1D-diagram shown in Figure 6-(a), which represents the ordering

of the curve, we need to check six points (from 9 to 3) for the range query to obtain the

data point H3, which is the nearest neighbor (one block away from F9) in the 2D-space.

Similarly, in Figure 5-(b) (the RBG curve of order 2), H2 is the nearest neighbor, which
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Figure 5: An example of the nearest neighbor query which is represented by three kinds of
ordering: (a) z-ordering; (b) r-ordering; (c) h-ordering.
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Figure 6: The shaded regions of one-dimensional diagrams illustrate the hydrants H which
are within two blocks of the fire F in the 2D-space, as shown in Figure 5: (a) z-ordering;
(b) r-ordering; (c) h-ordering.

is only one block away from F13 in the 2D-space. But in the 1D-diagram shown in Figure

6-(b), we need to check eleven points (from 13 to 2) for the range query to obtain the

data point H2. In Figure 5-(c) (the Hilbert curve of order 2), H2 is the nearest neighbor,

which is only one block away from F13 in the 2D-space. But in the 1D-diagram shown in

Figure 6-(c), we need to check eleven points (from 13 to 2) for the range query to obtain

the data point H2. Thus, when the data is linearly ordered by the space-filling curves, it

is time-consuming in the nearest neighbor finding to check all the data in the database by

using the conventional approach.

In this section, we first show how to find the nearest neighbor based on the property

of the Peano curve. Then, we present the neighbor-finding algorithm based on the RBG

curve and the Hilbert curve. We also present the transformation rules between the Peano

curve and the other two curves in the neighbor-finding process.
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3.1 Based on the Peano Curve

In each of the space-filling curves, the block is characterized by the unique value, i.e.,

the sequence number. The Peano curve uses the z-value to linearly order the blocks. As

mentioned in Section 2, the z-value in base 2 of the Peano curve can be easily obtained by

interleaving the bits from xi bits and then yi bits of two coordinates in base 2. (Note that

the value in base 2 is represented with the base 2 bits, i.e., 0 or 1. A base 2 bit represents

that bit times a power of 2.) The relationship between the z-value and the coordinates can

be shown in Figure 4-(a). The value in parentheses denotes the value in base 2, and the

mark ( ) denotes the bit obtained from the X coordinate in base 2. However, it is not so

straightforward to obtain the two coordinates in base 2 from the r-value of the RBG curve

or from the h-value of the Hilbert curve in the same way. To obtain the two coordinates

in base 2 from the r-value requires the reflection recursively on the basic RBG curve of

order 1, as shown in Figure 2. To obtain the two coordinates in base 2 from the h-value

requires the reflection and rotation recursively on the basic Hilbert curve of order 1, as

shown in Figure 3. As compared to the r-value or the h-value, the z-value has a direct

relationship with the coordinates through the bit shuffling, even when the order is greater

than 1. Therefore, in this section, we first describe the process of neighbor-finding based

on the z-value of the Peano curve.

To simplify our presentation, we let z2 be the z-value in base 2, i.e., the binary form,

and z10 be the z-value in base 10, i.e., the decimal form. (Note that the value in base 10

is represented with base 10 digits from 0 to 9. A base 10 digit represents that digit times a

power of 10.) For the query block numbered as (Z)z10, it is the z-value of the block in the

2n × 2n image space which is ordered by the Peano curve. The value (Z)z2 is represented

in base 2 with 2n (= n+n) bits. So, the sequence numbers for the image space range from

0 to 22n − 1. The nearest neighbor algorithm based on the Peano curve is shown in Figure

7.

In Step 1, we separate (Z)z2, e.g., (x2y2x1y1x0y0)z2, into two parts. One part concate-

nates the odd bits to the X-coordinate, i.e, Xc2 = (x2x1x0)c2, where c2 denotes that the

value of the coordinate is represented in base 2. The other part concatenates the even

bits to the Y -coordinate, i.e., Yc2 = (y2y1y0)c2. Then, we convert the coordinates (X, Y )c2
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into (X, Y )c10, where c10 denotes that the value of the coordinate is represented in base

10. In Step 2, we use (X, Y )c10 to find the neighbor in a certain direction. The variables

HD and V D mean the horizontal and vertical directions, respectively. For example, if

we want to find the west neighbor, we let HD = ‘west’ and V D = ‘NULL’. Then, we

obtain the resulting coordinates (NX, NY )c10 of the neighbor, e.g., NXc10 = Xc10 − 1 and

NYc10 = Yc10 for the case of the west neighbor. It should be noticed that either NXc10

or NYc10 of the neighbor must not be beyond the range of the image space in Step 2. If

either one of them is beyond the range, there is no neighbor in a certain direction. In Step

3, we convert (NX, NY )c10 into (NX, NY )c2, e.g., (x′
2x

′
1x

′
0, y

′
2y

′
1y

′
0)c2. Then, we interleave

the bits from NXc2 and NYc2 to form the corresponding (NZ)z2 for the west neighbor, i.e,

(x′
2y

′
2x

′
1y

′
1x

′
0y

′
0)z2.

Taking Figure 8-(a) as an example, the width d of each block is 1. For the query

block (45)z10 = (x2y2x1y1x0y0)z2 = (101101)z2, one of its equal-sized neighbors in the west

direction can be obtained by following the steps shown in Figure 9. Let X((45)z10) and

Y ((45)z10) denote the X-coordinate and the Y -coordinate of block (45)z10 = (101101)z2,

respectively. First, we separate (45)z10 = (101101)z2 into X((45)z10) and Y ((45)z10), i.e.,

X((45)z10) = X((101101)z2) = X((x2y2x1y1x0y0)z2) = (x2x1x0)c2 = (1 1 0)c2 = (6)c10,

Y ((45)z10) = Y ((101101)z2) = Y ((x2y2x1y1x0y0)z2) = (y2y1y0)c2 = (0 1 1)c2 = (3)c10.

Next, the NXc10 and NYc10 values of the west neighbor are shown as follows:

NXc10 = X((45)z10) − d = (6)c10 − (1)c10 = (5)c10,

NYc10 = Y ((45)z10) = (3)c10.

There is no change in the Y coordinate of the west neighbor. Then, we convert (NX, NY )c10 =

(5, 3)c10 into (NX, NY )c2 = (1 0 1, 0 1 1)c2 = (x′
2x

′
1x

′
0, y

′
2y

′
1y

′
0)c2. Finally, we inter-

leave the bits from NXc2 and NYc2 to obtain the NZz2 of the west neighbor equal to

(x′
2y

′
2x

′
1y

′
1x

′
0y

′
0)z2 = (100111)z2. Finally, we convert NZz2 into NZz10 to obtain the west

neighbor, and the resulting block (39)z10 is shown in Figure 8-(a). Similarly, the neighbors

in the other directions can also be obtained by function Peano NN, as shown in Figure 7.
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Function Peano NN((Z)z2, HD, V D): string;
/* Find the nearest neighbor next to block (Z)z2 based on the Peano curve in the certain direction. */
/* l0 and h0 are the lower and upper bounds of coordinates along the X-axis. */
/* l1 and h1 are the lower and upper bounds of coordinates along the Y -axis. */
/* Zz2 is the z-value (in base 2) of the query block. */
/* HD and V D are the horizontal and vertical directions. */
/* (X, Y )c2 is the coordinates (in base 2) of the query block. */
/* (X, Y )c10 is the coordinates (in base 10) of the query block. */
/* (NX, NY )c10 is the coordinates (in base 10) of the resulting neighboring block. */
/* (NX, NY )c2 is the coordinates (in base 2) of the resulting neighboring block. */
/* (NZ)z2 is the z-value (in base 2) of the resulting neighboring block. */

begin
/* Step 1: Bit Separation */
Separate the binary code of Zz2 into the odd bits and the even bits;
Concatenate the odd bits to Xc2;
Concatenate the even bits to Yc2;
Convert Xc2 into Xc10;
Convert Yc2 into Yc10;

/* Step 2: Neighbor Decision */
if (HD = ‘west’)

then Xc10 := Xc10 - 1
else if (HD = ‘east’)

then Xc10 := Xc10 + 1
if (V D = ‘south’)

then Yc10 := Yc10 - 1
else if (V D = ‘north’)

then Yc10 := Yc10 + 1;
if (Xc10 < l0) or (Xc10 > h0) or (Yc10 < l1) or (Yc10 > h1) then

begin
show an error message; /* There exists no neighbor. */
Return(‘ ’);

end
else begin

NXc10 := Xc10;
NYc10 := Yc10;

end;

/* Step 3: Bit Shuffling */
Convert NXc10 into NXc2;
Convert NYc10 into NYc2;
Interleave the bits from NXc2 and NYc2 to form (NZ)z2;
Return ((NZ)z2);

end;

Figure 7: Function Peano NN
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curve; (b) the RBG curve; (c) the Hilbert curve.
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Figure 9: Illustration of the west neighbor-finding process for the query block (45)z10 =
(101101)z2
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3.2 Neighboring-Finding Based on the Other Two Curves

Based on the Peano curve, we can efficiently and directly find the neighbors next to the

query block by function Peano NN (Figure 7). But it is not so straightforward to answer

the nearest neighbor queries based on the RBG curve or the Hilbert curve, as mentioned

above. However, we observe that there is some relationship between the RBG curve and

the Peano curve, and between the Hilbert curve and the Peano curve. The r-value in the

RBG curve can be represented as the binary gray-code (R)r2 (also called gray code), where

r2 denotes the r-value in base 2. The formulas presented in [2, 3, 15] can transform (R)r2

into its order in the binary form as (z)z2. The h-value in the Hilbert curve can be obtained

by some transformation, reflection, and rotation on the z-value. So, for the RBG curve (or

the Hilbert curve), we can develop some transformation rules between the Peano curve and

itself, and use function Peano NN to help answer the nearest neighbor query. Therefore,

we can first transform the r-value (or h-value) of the query block into the z-value. Then, we

use the corresponding z-value to find the neighbors based on the Peano curve. We finally

transform the z-value of the neighbor back into the corresponding r-value (or h-value) of

the neighbors based on the transformation rules. In this section, we first briefly describe

the process of the neighbor-finding based on the RBG curve. Then, we show how to find

the nearest neighbor based on the Hilbert curve.

3.2.1 Based on the RBG Curve

As mentioned before, for the r-value of the 2D-space RBG curve in the 2n × 2n image

space, we can consider the value (R)r2 as the gray code, where r2 denotes the r-value in

base 2. That is the bit string (R2n−1...R1R0)r2. The neighbor-finding algorithm based

on the RBG curve is shown in Figure 10. Basically, we first transform (R)r2 into the

corresponding z-value, i.e., (Z)z2, by the formulas presented in [2, 3, 15]. That is, we

perform the transformation between the gray code and the binary code. Then, we use (Z)z2

to generate one of the neighbors in a certain direction by function Peano NN . Finally, we

transform (NZ)z2 of the neighbor back into the corresponding (NR)r2 by again using the

formulas presented in [2, 3, 15].

Take Figure 8-(b) as an example. It is a 23 × 23 image space which is ordered by the
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Function RBG NN((R)r2, HD, V D): string;
/* Find the nearest neighbor next to block (R)r2 based on the RBG curve in a certain direction. */
/* (R)r2 is the gray code of length 2n-bits for the query block in the RBG curve. */
/* (Z)z2 is the z-value in base 2 of length 2n-bits for the query block in the Peano curve. */
/* (NR)r2 is the gray code of the neighboring block in the RBG curve. */
/* (NZ)z2 is the z-value in base 2 of the neighboring block in the Peano curve. */

begin
/* Step 1: Transformation from Gray Code into Binary Code */
/* In other words, to transform the RBG curve into the Peano curve */
/*

⊕
is the exclusive-or operator. */

the left significant bit of (Z)z2 := the left significant bit of (R)r2;
for the following bits of (Z)z2

(Z)z2(2n−1−i) := (R)r2(2n−1−i)

⊕
(Z)z2(2n−i);

/* Step 2: Neighbor Decision */
(NZ)z2 := Peano NN((Z)z2, HD, V D);

/* Step 3: Transformation from Binary Code into Gray Code */
/* In other words, to transform the Peano curve into the RBG curve */
the left significant bit of (NR)r2 := the left significant bit of (NZ)z2;
for the following bits of (NR)r2

(NR)r2(2n−1−i) := (NZ)z2(2n−1−i)

⊕
(NZ)z2(2n−i);

Return ((NR)r2);
end;

Figure 10: Function RBG NN
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(NZ)�z2� := �Peano_NN((Z)�z2� , 'west', 'Null')�

Step 2�
Step 3�

1� 0� 0� 1� 1� 1�(� )�z2�(NZ)�z2�:�

1� 1� 0� 1� 0� 0�(� )�r2�(NR)�r2�:�

Step 1�

1� 1� 1� 0� 1� 1�(� )�r2�(R)�r2�:�

1� 0� 1� 1� 0� 1�(� )�z�2�(Z)�z2�:�

(* Thta is, (R)�r10�: (59)�r10�. *)�

(* That is, (NR)�r10�: (52)�r10�.*)�(* That is, (Z)�z10�: (45)�z�10�. �*)�

(* That is, (NZ)�z10�: (39)�z�10�.�*)�

Figure 11: Illustration of the west neighbor-finding process for the query block
(59)r10=(111011)r2

RBG curve of order 3. The query point is located in block (59)r10, where r10 denotes the

r-value in base 10. We use block (59)r10 as the query block which has the same coordinates

(X, Y )c10 = (6, 3)c10 as the example shown in Figure 8-(a). We represent the r-value (59)r10

in base 2 as the gray code, i.e., (R5R4R3R2R1R0)r2 = (111011)r2. The west neighbor

finding process of block (59)r10 is shown in Figure 11. In Step 1, we transform the gray

code (R)r2 = (111011)r2 into the z-value in base 2, i.e., (Z)z2 = (101101)z2. In Step 2, we

use the z-value (101101)z2 = (45)z10 to find the west neighbor by function Peano NN. Then,

we find the z-value (100111)z2 = (39)z10 of the neighboring block. In Step 3, we transform

the z-value (100111)z2 back into the r-value (110100)r2. Finally, we convert the r-value

(110100)r2 into the decimal (52)r10 which is the neighbor lies the west of the query block

(59)r10 in Figure 8-(b). Note that block (52)r10 also locates at (NX, NY )c10 = (5, 3)c10, so

we have the same answer as the previous example shown in Figure 8-(a).

3.2.2 Based on the Hilbert Curve

For the h-value of the 2D-space Hilbert curve in the 2n × 2n image space, we consider

the value H in base 2 as a Hilbert code, i.e., (h2n−1...h1h0)h2, where h2 denotes the h-value

in base 2. The pseudo codes for the neighbor-finding process is shown in Figure 12, and

the related source codes about the transformation rules between the Peano curve and the

Hilbert curve are shown in Appendix A. Basically, similar to the previous function, from

Step 1 to Step 4, we first transform the h-value into the z-value. Then, in Step 5, we use

the z-value to generate the requested neighbor based on the Peano curve. Finally, from
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Step 6 to Step 9, we transform the z-value of the neighbor into the corresponding h-value.

However, in this case, it is not so straightforward to do the transformation between the

Hilbert curve and the Peano curve since the coordinates in base 2 from the h-value require

the reflection and rotation recursively on the basic Hilbert curve of order 1.

Take Figure 8-(c) as an example. It is a 23 × 23 image space which is ordered by the

Hilbert curve of order 3. The query point is located in block (51)h10, where h10 denotes

the h-value in base 10. We use block (51)h10 as the query block, which has the same

coordinates (X, Y )c10 = (6, 3)c10 as the example shown in Figure 8-(a). The west neighbor-

finding process of block (51)h10 is shown in Figure 13. We first represent the h-value, i.e.,

(51)h10, in base 2 as the Hilbert code (h5h4h3h2h1h0)h2 = (110011)h2. We describe the

neighbor-finding process of block (51)h10 in the following steps.

Step 1: We divide the Hilbert code (110011)h2 into pairs of bits from left to right and

store the corresponding decimal value for each pair of bits in array d. Those are

d0 = (11)2 = 3, d1 = (00)2 = 0, and d2 = (11)2 = 3. The decimal value denotes the

sequence number (0, 1, 2, or 3) in one quadrant ordered by the Hilbert curve, as shown

in Figure 3-(a). We also let another array e be same as array d, i.e., e0 = d0 = 3,

e1 = d1 = 0, e2 = d2 = 3. (Note that array e is used for storing the temporary result

in the following steps.) Array d is represented as (d0d1d2)hp = (3 0 3)hp, where hp

denotes the code composed of the sequence numbers in base 10 for pairs of bits in

(H)h2, and so is array e. Note that since all reflections and rotations in the Hilbert

curve of order p, p > 1 are relative to the previously obtained curve of order p − 1,

array d is the input used to store the sense of order p, and array e is the output used

to store the sense of order p − 1. In other words, for the following step, there will

be no change to array d to keep the information about reflection and rotation in the

curve of order p. And array e will be repeatedly updated (if necessary) to show the

sense in the curve of order p − 1.

Step 2: We call procedure Rotate Reflect, as shown in Figure 14, to perform the task of

reducing the Hilbert curve from order i (i > 1) to order 1. For each element in

array d, we first consider the value of di to decide which case to follow in procedure

Rotate Reflect, as shown in Figure 14. Arrays d and e are the input and output,
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Function Hilbert NN((H)h2, HD, V D): string;
/* Find the nearest neighbor next to block (H)h2 based on the Hilbert curve in the certain direction. */
/* (H)h2 is the Hilbert code of the query block. */
/* (Z)z2 is the z-value in base 2 of the query block. */
/* (NH)h2 is the Hilbert code of the neighboring block. */
/* (NZ)z2 is the z-value in base 2 of the neighboring block. */
/* c, d, e are arrays to store the decimal values. */

begin
/* Step 1: Bit Division */
for each pair i of bits in (H)h2 from left to right
begin

Convert them into the decimal value di;
ei:=di;

end;

/* Step 2: Reducing the Hilbert curve from order i to order 1, i > 1 */
Call Rotate Reflect(d, e);

/* Step 3: Transformation from the Hilbert Curve into the Peano Curve */
Call PHTransformation(e);

/* Step 4: Bit Concatenation */
for each ei in e

Concatenate the binary bits of ei to (Z)z2;

/* Step 5: Neighbor Decision based on the Peano curve */
(NZ)z2 := Peano NN((Z)z2, HD, V D);

/* Step 6: Bit Division */
for each pair i of bits in (NZ)z2 from left to right

Convert them into the decimal value ci;

/* Step 7: Transformation from the Peano Curve into the Hilbert Curve */
Call PHTransformation(c);

/* Step 8: Generating the Hilbert curve of order i from order 1, i > 1 */
Call Rotate Reflect(c, c);

/* Step 9: Bit Concatenation */
for each ci in c

Concatenate the binary bits of ci to (NH)h2;
Return ((NH)h2);

end;

Figure 12: Function Hilbert NN

16



(H)�h2�: (� �1 1� �0 0� �1 1� )�h2�

(� � 3  0  3 � )�hp�

(� � �3�  0  3  �)�hp�Input�

(� � 3  2* 3 �)�hp�Output�

(� � �3� � �0�  3  �)�hp�Input�

(� � 3  2  1*�)�hp�Output�

(Z)�z2�: (� �1 0� �1 1� �0 1� )�z2�

(NZ)�z2� �:= �Peano_NN((Z)�z2� , 'west', 'Null')�

(NZ)�z2�: (� �1 0� �0 1� �1 1� )�z2�

(� � �3� � 1�  2  �)�hp�Input�

(� � 3  1  0*�)�hp�Output�

(� � �3� � �1�  0  �)�hp�Input�

(� � 3  1  0 �)�hp�Output�

(� � 3  1  0 �)�hp�

(NH)�h2�: (� �1 1� �0 1� �0 0� )�h2�

case 2�

case 1� case 2�

(* That is, (H)�h10�:� (51)�h10�. *)� (* That is, (NH)�h10�: (52)�h10�. *)�

Step 1: Bit Division�

Step 2: Rotate_Reflect�

Step 3: PHTransformation� Step 8: Rotate_Reflect�

Step 9: Bit Concatenation�

Step 5:�

Step 4: Bit Concatenation�

(� � 2*  3*  1�)�zp�Output�

Step 6: Bit Division�

 (� 2�  1�  3� )�zp�

Input: (� 3*�  1�  2*� )�hp�

Step 7: PHTransformation�

(* That is, (Z)�z10�: (� 45� )�z10�. *)� (* That is, (NZ)�z10�: (� 39� )�z10�. *)�

Figure 13: Illustration of the west neighbor-finding process for the query block (51)h10 =
(110011)h2

17



Procedure Rotate Reflect(input, output);
/* Transformation between the Hilbert curve of order p and order q */
/* input is an array to store the sequence numbers for the curve of order p. */
/* output is an array to store the sequence numbers for the curve of order q. */
begin

for i = 1 to |input| - 1 do
begin

/* Case 1 */
if (input[i] = 0) then

for the following element j := i + 1 to |output| do
begin

if (output[j] = 1) then output[j] := 3
else if (output[j] = 3) then output[j] := 1;

end;
/* Case 2 */
else if (input[i] = 3) then

for the following element j := i + 1 to |output| do
begin

if (output[j] = 0) then output[j] := 2
else if (output[j] = 2) then output[j] := 0;

end;
end;

end;

Figure 14: Procedure Rotate Reflect

respectively. In Case 1, if the value of di is 0, then we should change the value of

the following element ej from 1 to 3, or from 3 to 1, j > i. In Case 2, if the value

of di is 3, then we should change the value of the following element ej if the value is

from 0 to 2, or from 2 to 0, j > i. In Figure 13, the input is array d = (3 0 3)hp and

the output is array e = (3 0 3)hp initially, where the mark represents the processing

point. First, we process the first value of the input, i.e., d0 (= 3). Since it is 3, which

is Case 2, we change the second value of the output (e1) from 0 to 2. Since there is no

other 0 or 2 in the remaining ej , j > i, we do not do any other update to the output

for the input d0. (Note that in Figure 13, the mark * represents the changed value.)

Next, we process the second value of the input, i.e., d1 (= 0). Since it is 0, which is

Case 1, we change the third value of the output (e2) from 3 to 1. Up to this point,

we have finished the process of all elements of the input, and the resulting output is

(3 2 1)hp.

The reason for the change operation for Case 1 and Case 2 is as follows. In order
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to preserve the proximity, the order p (p > 1) of the Hilbert curve is derived from the

rotation and reflection on the basic curve of order 1 continuously in each quadrant.

The sense, i.e., the direction of traversal [6], in each quadrant is not always the same.

However, different from the Hilbert curve, the Peano curve recursively shows the same

sense as the basic curve of order 1 to form the curve of order p, p > 1. So, during

the process of the transformation between the h-value and the z-value, we need to

perform the rotation and reflection in reverse order such that each divided quadrant

will have the same sense as the basic Hilbert curve of order 1.

Take Figure 15 as an example. Figures 15-(a) and (b) show the Hilbert curves of

order 1 and 2, respectively. The ( ) denotes the sequence number of the quadrant in

the Hilbert curve of order 1, in which the quadrant has four blocks. Each block has

the sequence number ordered by the Hilbert curve of order 2. We can observe that the

sense of block (0) of order 2 in Figure 15-(b) is different from the sense of order 1 in

Figure 15-(a), as is block (3). That is, in block (0), the position of sequence number 1

is different from its position in Figure 15-(a), as is the position of sequence number 3.

It is just the sense of block (0) of order 2 (Figure 15-(b)) as derived from the the sense

of one of order 1 (Figure 15-(a)) by right-reflection (Figure 16-(a)) and 90◦-clockwise-

rotation (Figure 16-(b)). After processing the reflection and rotation, the result is

shown in Figure 16-(c). This is Case 1 in procedure Rotate Reflect. Similarly, for block

(3) in Figure 15-(b), the position of sequence number 12 (= 4 × 3 + 0) is different

from its position (sequence number 0) in Figure 15-(a), so is the position of sequence

number 14 (= 4 × 3 + 2) vs. the position of sequence number 2. This is because the

sense of block (3) (Figure 15-(b)) is derived from the the sense of order 1 (Figure 15-

(a)) by left-reflection (Figure 17-(a)) and 90◦-anticlockwise-rotation (Figure 17-(b)).

After processing the reflection and rotation, the result is shown in Figure 17-(c).

This is Case 2 in procedure Rotate Reflect. However, the sense of block (1) in Figure

15-(b) is the same as that of order 1 (Figure 15-(a)) without processing rotation and

reflection, so is block (2). Therefore, to reduce the Hilbert curve of order p (p > 1) to

the basic curve of order 1, we have to perform procedure Rotate Reflect. In this way,

after all senses in the Hilbert curve of order p (p > 1) have been reduced to the ones
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(N1): N1 is the sequence number of the quadrant in the curve of order 1.

Figure 15: Hilbert curves of order: (a) 1; (b) 2.

in the basic Hilbert curve of order 1, we can do the transformation from the Hilbert

curve into the Peano curve.

Step 3: Up to this point, we have the code of (3 2 1)hp, which is the code of the Hilbert

curve of order 1. Note that in procedure PHTransformation, as shown in Figure 18,

we observe that the position of sequence number 2 in the basic Hilbert curve of order 1

(Figure 19-(a)) is different from its position in the basic Peano curve of order 1 (Figure

19-(b)), as is sequence number 3. Therefore, we change the position of sequence

numbers 2 and 3 in the basic Hilbert curve of order 1 to those in the basic Peano

curve to obtain the z-value. So, we transform (3 2 1)hp into the corresponding code of

the z-value, i.e., (2* 3* 1)zp, according to Table 1 by procedure PHTransformation,

where zp denotes the code composed of sequence numbers in base 10 for pairs of bits

in (Z)z2.

Step 4: We transform each number of (2 3 1)zp into the corresponding pair of bits. Then,

we concatenate them to form (10 11 01)z2.

Step 5: We use the z-value (101101)z2 = (45)z10 to find the nearest neighbor to the west

based on the Peano curve by function Peano NN. We find the west neighbor which

is (100111)z2 = (39)z10 in Figure 8-(a).
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N2(N1): N1 is the sequence number of the block in the curve of order 1,
and N2 is the sequence number of the block in the curve of order 2.

Figure 16: The process of reflection and rotation on block (0) in the Hilbert curve of order
2 in Figure 15: (a) before the right reflection; (b) after the right reflection; (c) after the
90◦-clockwise-rotation.

12(3)�

13(3)� 14(3)�

15(3)�

left-reflection�

90-degree-�
anticlockwise-rotation�

12(3)�

13(3)�14(3)�
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14(3)� 15(3)�
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N2(N1): N1 is the sequence number of the block in the curve of order 1,
and N2 is the sequence number of the block in the curve of order 2.

Figure 17: The process of reflection and rotation on block (3) in the Hilbert curve of order
2 in Figure 15: (a) before the left reflection; (b) after the left reflection; (c) after the
90◦-anticlockwise-rotation.

Table 1: The relationship between the sequence numbers in the Peano curve and those in
the Hilbert curve

Peano curve Hilbert curve
0 0
1 1
2 3
3 2
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Procedure PHTransformation(m);
/* Transformation between the Peano curve and the Hilbert curve */
/* m is an array to store the decimal values. */
begin

for each i := 1 to |m| do
begin

if (m[i] = 2) then m[i] := 3
else if (m[i] = 3) then m[i] := 2;

end;
end;

Figure 18: Procedure PHTransformation

(a)�

0�

1� 2�

3� 0�

1�

2�

3�

(b)�

Figure 19: Curves of order 1: (a) the Hilbert curve; (b) the Peano curve.

Step 6: We divide the code (100111)z2 into pairs of bits from left to right and store the

corresponding decimal value for each pair of bits in array c. These are c0 = (10)2 = 2,

c1 = (01)2 = 1, and c2(11) = 3. We represent array c as (2 1 3)zp, which represents

the code of sequence numbers in the Peano curve.

Step 7: In this step, based on the similar reason as Step 3, we change the position of

sequence numbers 2 and 3 in the basic Peano curve of order 1 to those in the basic

Hilbert curve of order 1. We transform the code of (c0c1c2)zp = (2 1 3)zp into the

corresponding hp code in the basic Hilbert curve of order 1 according to Table 1 by

using procedure PHTransformation in Figure 18. At this point, we have the resulting

array c as (3* 1 2*)hp, which represents the code of sequence numbers in the basic

Hilbert curve of order 1.

Step 8: In this step, with a reason similar to Step 2, we should generate the Hilbert curve

of order p (p > 1) from the basic Hilbert curve of order 1. For each element in array c,

we consider the value of ci to decide which case to follow in procedure Rotate Reflect

(Figure 14). Note that since all reflections and rotations in the Hilbert curve of order
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p, p > 1 are relative to the previously obtained curve of order p−1, the array c is not

only the input, which represents the sense of order p − 1, but also the output, which

represents the sense of order p. First, we process the first value of the input, i.e., c0

(= 3). Since it is 3, which is Case 2, we change only the third value of the output

(c2) from 2 to 0. Since there is no other 0 or 2 in the second value c1 (= 1) and the

remaining cj , j > i, we do not do any other update to the output for the input c0.

Next, we process the second value of the input, i.e., c1 (= 1). Since it is 1, we do not

update the output. Up to this point, we have finished the process of all elements of

the input, and the resulting output is (3 1 0)hp, which represents the code of sequence

numbers in the Hilbert curve of order p (p > 1).

Step 9: We transform each number of (c0c1c2)hp = (3 1 0)hp into the corresponding pair

of bits. Then, we concatenate them to form (11 01 00)h2. Finally, we obtain block

(52)h10 = (110100)h2 as the west neighbor next to block (51)h10 as shown in Figure

8-(c). Note that block (52)r10 also locates at (NX, NY )c10 = (5, 3)c10, which is the

same answer as the previous example in Figure 8-(a).

4 Performance

In this section, we compare the performance of nearest neighbor-finding strategies based

on three space filling curves. Our experiments were performed on a Pentium III 733 MHz,

128 MB RAM, 7200 rpm IBM Hard Disk (model name: IC35L040AVVN07-0), and running

Windows 2000.

4.1 The Performance Model

In the conventional approach as mentioned in Section 3, it requires the time to traverse

the disk blocks by following the sequence numbers in the preceding and succeeding order

of the query block in the 1D-space to find the neighboring blocks. The number of these

traversed neighboring blocks are unpredictable and may be greater than 8 blocks, since

some unrelated disk blocks in the 1D-space may be accessed. Take the query block 13

in Figure 6-(c) based on the Hilbert curve as an example, it will access 11 blocks in the
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1D-space to find one neighboring block 2, which is one block away from the query block

13 in the 2D-space. As compared to the conventional approach, our approach does not

need to access unrelated disk blocks in the 1D-space. In our approach, first, we compute

the sequence numbers of the neighboring blocks next to the query block in 8 directions. It

takes the CPU-time to compute these sequence numbers based on the space-filling curve.

Next, once the sequence numbers of the 8 neighboring blocks are obtained, we can fetch

the corresponding blocks in the disk directly according to the sequence numbers. Then,

we can find the nearest point to the query point only in these 8 neighboring blocks in the

2D-space, which speeds up the search operation.

The I/O time, which means the time to access a block, consists of two parts: positioning

time (PT ) and transfer time (TT ) [17]. The positioning time is the time to move to the right

position in the disk, which includes the seek time and rotational delays. The transfer time

is simply the time to transfer the requested block from the disk into main memory. Since

it is more efficient to fetch a set of consecutive disk blocks than a randomly scattered set,

in order to reduce additional positioning time, we can make use of the clustering property

of the space filling curve to replace several exact match queries with one continuous range

query to reduce the positioning time. The clustering property means that the locality

between objects in the 2D-space can be preserved in the 1D-space. In our approach, since

the adjacent blocks on the disk can be accessed with a single range query, we can combine

8 exact match queries into some range queries to reduce the positioning time.

Take Figure 8 as an example. In the case of the Peano curve as shown in Figure 8-(a),

let’s let the query block be block 45. The sequence numbers of the neighboring blocks in 8

directions are blocks 56, 58, 47, 46, 44, 38, 39, and 50. Then, we can combine these 8 exact

match queries into 6 range queries, including 38 to 39, 44, 46 to 47, 50, 56, and 58. The

positioning time for 6 range queries is 6 ∗ PT . The transfer time to transfer these 8 blocks

from the disk is 8 ∗ TT . So, the total I/O time to access these 8 disk blocks based on the

Peano curve is (6 ∗ PT + 8 ∗ TT ). (Note that in this case, the number of blocks which the

conventional approach has to access, is up to 21 (from 38 to 58) blocks in the worst case.

Moreover, in the conventional approach, the higher the order of the space-filling curve is,

the large the number of blocks accessed [4, 9, 11, 12].)
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In the case of the RBG curve as shown in Figure 8-(b), let’s let query block be block 59.

The sequence numbers of the neighboring blocks in 8 directions are blocks 36, 39, 56, 57,

58, 53, 52, and 43. Then, we can combine these 8 exact match queries into 5 range queries,

including 36, 39, 43, 52 to 53, and 56 to 58. So, the total I/O time to access these 8 disk

blocks based on the RBG curve is (5 ∗ PT + 8 ∗ TT ).

In the case of the Hilbert curve as shown in Figure 8-(c), let’s let the query block be

block 51. The sequence numbers of the neighboring blocks in 8 directions are blocks 46,

47, 48, 49, 50, 52, 55, and 33. Then, we can combine these 8 exact match queries into 4

range queries, including 33, 46 to 50, 52, and 55. So, the total I/O time to access these 8

disk blocks based on the Hilbert curve is (4 ∗PT + 8 ∗ TT ). Therefore, as compared to the

conventional approach, our approach can reduce the I/O time in accessing the unrelated

blocks by directly accessing the 8 related blocks. Moreover, in this example, among three

space-filling curves, our strategy based on the Hilbert curve needs the least I/O time because

the Hilbert curve provides the best clustering property [4, 6, 7, 8, 12].

In this comparison, we considered the CPU-time and the I/O time as our performance

measures. We focused on the point data. The experimental analysis was carried out on

six distinct spatial datasets. Figure 20 shows these six cases of data distribution which are

described as follows [16]:

(a) Uniform Distribution: The data objects are uniformly distributed in the overall

data space.

(b) Centralized Distribution: Most of the data objects are centralized in a small region.

(c) Diagonal Distribution: The data objects follow a uniform distribution along the

main diagonal.

(d) X-parallel Distribution: Most of the data objects are located on a line which is

parallel to the X-axis.

(e) Sine Distribution: The data objects follow a sine curve.

(f) Real map: This is the point map of the population estimate in Taipei, Taiwan. There

are 26376 data points on this map. One point represents 100 people. This statistical

25



information is retrieved from http://www.taiwandm.com.tw/c1-1.htm.

Each dataset contains 10000 data points in the 2D-space which is 1000×1000. First, the

data points were assigned to the corresponding disk block based on the space-filling curve.

The points in the same disk block are linked. The capacity of each disk block, denoted as

block capacity, was assigned to be 10. Because of the limitation of block capacity, a space-

filling curve of different order p (p > 1) was required for the different datasets. Next, for

each dataset in Figures 20-(a) to (f), 5000 query points were randomly generated to make

the nearest neighbor queries. Finally, we took the average of the CPU-time and the I/O

time required to answer the nearest neighbor queries for each of the dataset as shown in

Figures 20-(a) to (f).

4.2 Simulation Results

Table 2 shows that different orders for the space-filling curve, which were required for

the different datasets to satisfy the limitation of block capacity (= 10), since they have

different data distribution. For example, for the uniform data distribution in Figure 20-(a),

the space-filling curve of order 5 was required to order 10000 data points. This is because

there are 1024 (= 25 × 25) disk blocks which are used to store these points and each

disk block contains 10 points on the average. For the centralization, diagonal, X-parallel,

and sine data distributions in Figures 20-(b), (c), (d), and (e), respectively, most of their

data points are distributed in the certain region or near the certain line. Because of the

limitation of block capacity, the space-filling curve of order (5 or 6 or 7) was required for

each of these datasets. For the real map shown in Figure 20, the space filling curve of order

6 was required to organize these data points.

First, we discuss the results of the comparison of the CPU-time of our strategies, as

shown in Table 3. For all datasets, the CPU-time of the strategy based on the Peano

curve is always less than that of the other two strategies. The main reason for this is as

follows. For the strategy based on the Peano curve, it takes the CPU-time in function

Peano NN as shown in Figure 7. In contrast, for the strategy based on the RBG curve, in

addition to the CPU-time taken in function Peano NN, it also takes the CPU-time in the

transformation between the Peano curve and itself (Figure 10). For the strategy based on
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(a)� (d)�

(b)� (e)�

(c)� (f)�

Figure 20: Six cases of data distribution: (a) uniform; (b) centralized; (c) diagonal; (d)
X-parallel; (e) sine; (f) the real map.
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Table 2: Different orders for the space-filling curve to organize different datasets

Data distribution Uniform Centralization Diagonal X-Parallel Sine Real Map
order 5 6 7 5 7 6

the Hilbert curve, in addition to the CPU-time taken in function Peano NN, it also takes

the CPU-time in the transformation between the Peano curve and itself (Figure 12). Thus,

the strategy based on the Peano curve will take less CPU-time than the strategies based

on the other two curves. Therefore, for the performance measure of the CPU-time, the

strategy based on the Peano curve provides better result than the strategies based on the

other two curves.

Next, we discuss the effect of different datasets to the needed CPU-time. For the strategy

based on the Peano curve, the CPU-time is the same among the first five different datasets.

This is because the strategy based on the Peano curve uses the bit shuffling directly on

the coordinates and the z-value to find the neighboring blocks, even though the order is

greater than 1. For the real map shown in Figure 20-(f), since the data points are uniform

distributed, it takes the CPU-time for the uniform distribution, which is organized by the

space filling curve of order 6.

However, for the strategy based on the RBG curve (or the Hilbert curve), the higher

the order of the space-filling curve is, the longer the needed CPU-time is. It takes more

CPU-time and becomes more complex than the strategy based on the Peano curve in com-

puting the sequence numbers of the neighboring blocks next to the query block, especially

when the order is increased for the different datasets. For example, since the sine data

distribution requires the curve of order 7, which is larger than the curve of order 6 required

by the centralized distribution, the sine data distribution takes more CPU-time than the

centralized distribution does.

Next, we discuss the performance of the I/O time among our strategies. The average

positioning time for each of our three strategies on the different datasets is shown in Ta-

ble 4. The transfer time for our strategies is the same, i.e., 8 ∗ TT . So, the average I/O

time for the strategies based on the Peano curve, the RBG curve, and the Hilbert curve are

(5.3∗PT +8∗TT ), (5∗PT +8∗TT ), and (4∗PT +8∗TT ), respectively. In our simulation en-
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Table 3: Comparison of the CPU-time (microseconds) on different datasets

Data distribution Uniform Centralized Diagonal X-Parallel Sine Real Map
Peano 42.0 48.0 54.0 42.2 54.0 50.2
RBG 70.0 84.2 94.2 72.0 96.0 84.2

Hilbert 98.2 114.0 128.2 100.2 130.2 112.2

Table 4: Comparison of the average positioning time of I/O time for our strategies

Data distribution Uniform Centralization Diagonal X-Parallel Sine Real Map
Peano 5 ∗ PT 5 ∗ PT 6 ∗ PT 5 ∗ PT 6 ∗ PT 5 ∗ PT
RBG 5 ∗ PT 5 ∗ PT 5 ∗ PT 5 ∗ PT 5 ∗ PT 5 ∗ PT

Hilbert 4 ∗ PT 4 ∗ PT 4 ∗ PT 4 ∗ PT 4 ∗ PT 4 ∗ PT

vironment, one unit of the positioning time is average 8.8 ms (milliseconds), which is much

longer than the CPU-time. (Note that this information is retrived from http://www.digit-

life.com/articles/digests/hddreview-0602-ibm.html.) For the performance of the I/O time,

our strategy based on the Hilbert curve requires less time than the strategies based on the

other two curves, because the Hilbert curve can provide the better clustering property than

the other two curves [4, 6, 12]. But for the performance of the CPU time, our strategy

based on the Hilbert curve requires more time than the strategies based on the other two

curves because of the complicated transformation rules between the Peano curve and the

Hilbert curve. Since the I/O time is generally several orders of magnitude longer than the

CPU time, our strategy based on the Hilbert curve can provide better performance (the

CPU-time + the I/O time) than the strategies based on the Peano curve and the RBG

curve for processing nearest neighbor queries.

Consequently, our strategy based on the Peano curve requires less CPU-time than the

strategy based on the RBG curve (or the Hilbert curve) by using the bit shuffling property of

the Peano curve. When the data is linearly ordered by the RBG curve (or the Hilbert curve),

it takes most of the CPU-time in using the complicated transformation rules between the

Peano curve and the RBG curve (or the Hilbert curve) to compute the sequence numbers of

the 8 neighboring blocks next to the query block in the 2D-space. Moreover, the strategy

based on the Hilbert curve requires the least total time (the CPU-time + the I/O time) in
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the nearest neighbor-finding, since the Hilbert curve provides the best clustering property

among three space-filling curves.

5 Conclusion

In this paper, we have shown that the property of the Peano curve, bit shuffling directly

on the coordinates in base 2, is useful in directly computing the sequence number of the 8

neighboring blocks next to the query block in the 2D-space. Then, we have presented the

transformation rules between the Peano curve and the RBG curve (or between the Peano

curve and the Hilbert curve), which can be used when the data is linearly ordered by the

RBG curve (or the Hilbert curve). Finally, we have compared the CPU-time and the I/O

time among different nearest neighbor strategies. From our simulation, among our three

strategies, we have shown that the strategy based on the Peano curve requires the least

CPU-time in computing the sequence number of the 8 neighboring blocks next to the query

block, and the strategy based on the Hilbert curve requires the least I/O time to access 8

neighboring blocks next to the query block because of its good clustering property. Since

the I/O time is much longer than the CPU-time, the strategy based on the Hilbert curve

requires the least total time (the CPU-time + the I/O time) to process the nearest neighbor

query among our three strategies.
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Appendix A
The source codes of the transformation rules (Procedure HilbertToPeano and Proce-

dure PeanoToHilbert) between the Peano curve and the Hilbert curve are shown in Figure

21 and Figure 22, respectively.
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Procedure HilbertT oPeano(IH);
/* Convert h-value to z-value */
/* IH is a bits array that represents the binary form of the h-value. That is, hi, 0 ≤ i ≤ 2n − 1.*/
/* IB is a bits array that represents the binary form of the z-value. That is, bi, 0 ≤ i ≤ 2n − 1.*/
/* ID is an integer array that represents the decimal form of 2 bits from left to right in IH. */
/* That is dj , for 0 ≤ j ≤ n − 1, for each 2-bit hihi+1 as sj , obtained according to the related table. */
/* IE is a temporary array that is the same array as ID. */

begin
/* Step 1: Bit Division */
j = 0;
while j <= (n − 1) do

begin
ID[j] := 2 ∗ IH [j ∗ 2] + IH [j ∗ 2 + 1];
IE[j] := ID[j];
j := j + 1;

end;
/* Step 2: Rotate Reflect */
j := 0;
while j < (n − 1) do

begin
if (ID[j] = 0) then
/* Remove the right-reflection and 90◦-clockwise rotation */
/* on the bottom-left part of the higher order curve */

begin
k := j + 1;
while k <= (n − 1) do

begin
if (IE[k] = 1) then IE[k] := 3
else if (IE[k] = 3) then IE[k] := 1;
k := k + 1;

end;
end

else
if (ID[j] = 3) then

/* Remove the left-reflection and 90◦-anti-clockwise rotation */
/* on the bottom-right part of the higher order curve */

begin
k := j + 1;
while k <= (n − 1) do

begin
if (IE[k] = 0) then IE[k] := 2
else if (IE[k] = 2) then IE[k] := 0;
k := k + 1;

end;
end;

j := j + 1;
end;

/* Step 3: PHTransformation */
/* Change the h-value in the Hilbert curve to the z-value in the Peano curve.*/
j := 0;
while j <= (n − 1) do

begin
if (IE[j] = 3) then IE[j] := 2
else if (IE[j] = 2) then IE[j] := 3;
IB[2 ∗ j] := IE[j] div 2;
IB[2 ∗ j + 1] := IE[j] mod 2;
j := j + 1;

end;
/* Step 4: Bit Concatenation */
(The result is IB.)

end;

Figure 21: Procedure HilbertToPeano
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Procedure PeanoToHilbert(IB);
/* Convert z-value to h-value */
/* IB is a bits array that represents the binary form of the z-value. That is, bi, 0 ≤ i ≤ 2n − 1. */
/* IH is a bits array that represents the binary form of the h-value. That is, hi, 0 ≤ i ≤ 2n − 1.*/
/* IC is an integer array that represents the decimal form of 2 bits from left to right in the IB. */
/* That is, cj, for 0 ≤ j ≤ n − 1, for each 2-bit bibi+1 as tj , obtained according to the related table. */

begin
/* Step 6: Bit Division */
j = 0;
while j <= (n − 1) do

begin
ID′[j] := 2 ∗ IB[j ∗ 2] + IB[j ∗ 2 + 1];
j := j + 1;

end;
/* Change the z-value in the Peano curve to the h-value in the Hilbert curve. */
/* Step 7: PHTransformation */
j := 0;
while j <= (n − 1)do

begin
if (IC[j] = 3) then IC[j] := 2
else if (IC[j] = 2) then IC[j] := 3;
j := j + 1;

end;
j := 0;
while j < (n − 1) do

begin
if (IC[j] = 0) then

/* Make the right-reflection and 90◦-clockwise rotation of the lower order curve */
/* to form the bottom-left part of the higher order curve */

begin
k := j + 1;
while k <= (n − 1) do

begin
if (IC[k] = 1) then IC[k] := 3
else if (IC[k] = 3) then IC[k] := 1;
k := k + 1;

end;
end

else
if (IC[j] = 3) then

/* Make the left-reflection and 90◦-anti-clockwise rotation of the lower order curve */
/* to form the bottom-right part of the higher order curve */

begin
k := j + 1;
while k <= (n − 1) do

begin
if (IC[k] = 0) then IC[k] := 2
else if (IC[k] = 2) then IC[k] := 0;
k := k + 1;

end;
end;

j := j + 1;
end;

/* Step 8: Rotate Reflect */
j := 0;
while j <= (n − 1) do

begin
IH [2 ∗ j] := IC[j] div 2;
IH [2 ∗ j + 1] := IC[j] mod 2;
j := j + 1;

end;
/* Step 9: Bit Concatenation */
(The result is IH .)

end;

Figure 22: Procedure PeanoToHilbert
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