
A Sliding�Window Approach to Supporting
On�Line Interactive Display for Continuous Media �

Chien�I Leey� Ye�In Changz and Wei�Pang Yangy

yDept� of Computer and Information Science zDept� of Applied Mathematics
National Chiao Tung University National Sun Yat�Sen University

Hsinchu� Taiwan Kaohsiung� Taiwan
Republic of China Republic of China

fE�mail� leeci�dbsun��cis�nctu�edu�twg fE�mail� changyi�math�nsysu�edu�twg
fTel� ����	�
������ ext�
�����g fTel� ������
�
���� ext� 	����g

fFax� ����	�
������g fFax� ������
�
	���g

Abstract

To e�ciently support continuous display for continuous media� many approaches based
on the striping strategy that is implemented on a multi�disk drive have been proposed�
However� the striping strategy can only support simultaneous display of continuous media
which are predetermined before they are stored in the multi�disk drive� For an interactive
display application� a system must support users to make any choice of objects for display
even when display has started� Although Shahabi et� al� have proposed the replication
and prefetching strategies for interactive display of continuous media� the combination of
objects for display and the branch points for choices both have to be predetermined� Based
on their strategies� they have to consider all the possible cases according to the given the
combination of objects and the branch points of choices� it will require a lot of additional
overhead of space and time� To reduce the overhead� in this paper� we will propose a sliding
window approach to supporting interactive display for continuous media� in which we only
record a little necessary information of retrieval of the following subobjects for display
in a sliding window� For the way of interactive display described above� in which the
combination of objects for display and the branch points for choices are predetermined� we
call it off �line interactive display� As opposed to off �line� an on�line interactive display is
the one� in which the combination of objects for display and the branch points for choices
are dynamically determined� To support on�line interactive display� we will extend the
sliding window approach to the dynamic sliding window approach� In this dynamic
sliding window approach� the size of the sliding window can be changed according to the
future requirements of data for display�

Key Words� data placement strategies� digital continuous media� interactive display� multi�

disk drive� real�time database systems� striping�

�This research was supported in part by the National Science Council of Republic of China under Grant
No� NSC���������E�������	�

� Introduction

Some media such as audio and video� are classi�ed as continuous because they consist

of separate media quanta such as audio samples or video frames�� which convey meaning

only when presented in time� Several multimedia types� video� in particular require high

bandwidths and large storage space� For example� one hour and a half of video based

on HDTV High De�nition Television� quality images has approximately 	� Gbits of data

and requires approximately a ��� Mbps bandwidth while a current typical magnetic disk

drive has only an �� Gbit capacity and approximately a �� Mbps bandwidth� In general�

conventional �le systems are unable to guarantee that clients can access continuous media

in a way that permits delivery deadlines to be met under normal bu�ering conditions�

Therefore� �nding a way to support continuous retrieval of multimedia data at the required

bandwidth and a way to store the multimedia data are challenging tasks ���
� �� �	� ��� ����

In this paper� for convenience� we use an object to denote an object of digital continuous

media�

Previous approaches to supporting real�time applications of digital continuous media

can be classi�ed into three directions� continuous retrieval� random access and interactive

browsing� To support continuous retrieval� some strategies clustered the data on a single

disk to reduce the cost of disk head movement ��� ��� ��� ��� ��� �	�� and some strategies

tended to increase the bandwidth of disk device by using parallelism� which combines

the bandwidths of multiple disks to provide a high data bandwidth requirement ��� �� ����

To support random access� like editing operations� since there is a trade�o� between the

�exible placement and the overhead of disk head movement in a disk drive� a straightforward

idea is to �nd a compromise between them� which restricts a group of consecutive data to be

stored consecutively in each cylinder on the disk while such a group of data can be randomly

stored on any cylinder ����� To support interactive browsing such as fast forward and

fast backward� some strategies used the scalable compression algorithms to generate the

multiresolution data ����� and some strategies supported browsing at any desired display

speed by a predetermined sampling procedure ����

Since future demands for high storage capacity and high bandwidth are expected� to

e�ciently support these three di�erent directions for real�time applications� the striping

strategy ��� ��� implemented on a multi�disk drive has been proposed� Basically� in the

striping strategy ��� ���� the object is split up into subobjects and placed in various locations

on the disks� Moreover� in the simple striping strategy ���� the striped subobjects are

stored among the multi�disk drive in a predetermined sequence and must be read in this

�

predetermined sequence to guarantee continuous retrieval� Furthermore� Berson et al� ���

further generalized the simple striping called staggered striping� to support a database

that consists of a combination of objects� each with a di�erent bandwidth requirement�

Note that the striping strategy can only support simultaneous display of objects

which are predetermined before they are stored in the multi�disk drive� For an interactive

display application� a system must support users to make any choice even when display has

started� Although in �	� ���� they have proposed the replication and prefetching strate�

gies for interactive display� the combination of objects for display and the branch points for

choices both have to be predetermined� Based on their strategies� they have to resolve all

the possible conflicts before display starts� where a conflict means that a pair of two sub�

objects which are stored in the same disk must be retrieved simultaneously� Consequently�

their strategies will require a lot of additional overhead of space and time� Moreover� display

may be interrupted by the users at any time� When this current display is interrupted and

is no longer needed� e�orts for prefetching or replication are wasted because the following

subobjects for display do not need to be retrieved� Therefore� to reduce the overhead� in

this paper� we will propose a sliding window approach to supporting interactive display

for continuous media� in which we only record a little necessary information of retrieval of

the following subobjects for display in a sliding window and resolve the possible con�icts

within the sliding window� From the simulation results� we �nd that the larger the size

of a sliding window is� the larger the waste of time and space once display is interrupted�

Therefore� we prefer a sliding window with a smaller size� However� a hiccup can occur

when the size of the sliding window is not large enough� where a hiccup means that the

subobjects for being displayed has not been retrieved and will be ready in the next time

interval� Therefore� we have to select a proper sliding window size for a predetermined

interactive display� A mathematical analysis will be studied to speed up the selection of

the value of a sliding window size�

Furthermore� for the way of interactive display described above� in which the com�

bination of objects for display and the branch points for choices are predetermined� we

call it off �line interactive display� As opposed to off �line� an on�line interactive dis�

play is the one� in which the combination of objects for display and the branch points for

choices are dynamically determined� To support on�line interactive display� we will extend

the sliding window approach to the dynamic sliding window approach� In this dynamic

sliding window approach� the size of the sliding window can be changed according to the

future requirements of data for display� Since the subobjects for future display are not

predictable� we use some information of previous retrieval to guess the possible subobjects

�

for future display� From the simulation results� we �nd that the probability of hiccup is

decreased as the amount of information of previous retrieval is increased�

Basically� our proposed approach can be applied not only to the multi�disk drives� but

also to the parallel database management systems� such as� parallel multimedia systems

based on the share�nothing architecture ���� A share�nothing architecture consists of a

number of processors interconnected by a high speed communication network� Processors

do not share disk drives or random access memory and can only communicate with one

another by sending messages using an interconnection network� In this case� we assume

that the bandwidth of both the network and the network device driver exceeds the band�

width requirement of an object� The rest of the paper is organized as follows� Section �

brie�y describes the striping strategy that is applied in our approach� Section 	 presents

the proposed sliding�window approach� Section � presents the simulation results of the

proposed approach� In Section
� we will present a mathematical analysis of the sliding

window approach� In Section �� we will extend the sliding window approach to support

on�line interactive display� Section � contains a conclusion�

� The Striping Strategy

In our approach� we apply the striping strategy ��� to arrange the objects on a multi�disk

drive� Suppose the bandwidth of both the network and the network device driver exceeds

the bandwidth requirement of an object� Assume that there are N disks which operate

independently� called a multi�disk drive and each disk has a �xed bandwidth d� a worst

seek time WS� and a worst latency time WL� The simple striping strategy uses the

aggregate bandwidth of several disk drives by striping an object across multiple disks ����

For example� an object X with bandwidth requirement CX at least requires the aggregate

bandwidth of MX � dCX
d
e disk drives to support continuous retrieval of X� Note that

the maximum aggregate bandwidth of a multi�disk drive with N disks is N � d� which

must not be smaller than CX�� Moreover� object X is organized as a sequence of equi�sized

subobjects X�� X�� X�� ����� where the size of a subobject is sX Mbits� Each subobject

Xi represents a contiguous portion of X and is stored randomly in the disks� For the load

balance for each disk� the subobjects of X are assigned to the N disks in a round�robin

manner and the N disks are divided into R � b N

MX

c� disk clusters� where each cluster

is assigned to an object for retrieval of the MX consecutive subobjects to guarantee the

real�time transfer� The duration of retrieval of a subobject is �xed for all subobjects and

is in terms of a time interval I� According to ����� concurrent pipelining of retrieval and

	

 1 2 4 5 7 8

0 1 2 3 5 6 7 84 9

 9

11 12 13 14 15 16 17 18

20

30

21

31

22

32
23

33
24

34

25

35

26

36
27

37

28

38

 0 3 6

 19

 29
 39

 10

Cluster 0 Cluster 1

disk

Figure �� An example of object X striped on a multi�disk drive�

display of an object requires prefetching and at least two bu�ers with size MX subobjects�

One bu�er is for retrieval of the next MX consecutive subobjects while the other one is

to store the previous retrieved MX consecutive subobjects which are currently displayed�

The real�time retrieval i�e�� continuous retrieval� can be achieved by satisfying following

equations�

MX � d CX
d

e�

MX � N �

R � b N
MX

c�

I � sX
CX

MX

�

WS � WL � sX
d
� sX

CX

MX

�

Hence� display of X employs only a single cluster at a time in a round�robin manner�

In each cluster� consecutive subobjects of object X are stored on these MX disks in a

liner order� Figure � shows an example of simple striping for an object X with bandwidth

requirement CX � �� Mbps� where N � ��� d � �� Mbps� WS � 	� ms ms � ����

seconds�� WL � �� ms and the value i denotes subobject Xi inside a disk� Suppose MX �

 � ��
��
�� then sX �

�WS�WL��d�
CX

MX

d�
CX

MX

� � 	�� Mbits Mbits � ��	 bits�� I � ��� seconds and

R � �� Note that display of X �rst employs cluster � to read the subobjects X�� X�� X��

X� and X
 from disks �� �� �� 	 and �� respectively� into a bu�er in the �rst time interval�

In the second time interval� subobjects X�� X	� X�� X� and X are read into the other

bu�er from cluster �� At the same time� subobjects X�� X�� X�� X� and X
 are displayed�

Then� alternatively� the subsequent subobjects of X are read from cluster � or cluster �

into two bu�ers and then are displayed�

Moreover� when the database consists of a combination of objects each with a di�erent

�

0 1 2 3 5 6 7 84 9disk

 Y1 Y2 Y3 Z0 Z1

X3

 X2

X5 Y4 Y5 Y6 Y7 Z2 Z3

X7 X8 Y8 Y9 Y10 Y11 Z4Z5

X9 X10 X11 Y12 Y13 Y14 Y15Z6 Z7

 X0 X1
X4

X6

 Y0

Figure �� An example for staggered striping with a combination of 	 di�erent objects�

bandwidth requirement� the design of simple striping is extended to minimize the percent�

age of wasted disk bandwidth by constructing the disk clusters based on the media type

that has the highest bandwidth requirement� The percentage of waste disk bandwidth can

be large� Therefore� Berson et al� ��� proposed a generalization of simple striping� called

staggered striping� which constructs the disk clusters logically instead of physically�� It

assigns the subobjects such that the disk containing subobject Xi�MX
is g disks modulo

the total number of disks� apart from the disk drive that contains subobject Xi� The ob�

jects with di�erent bandwidth requirements are assigned to disk drives independently but

all with the same value of k� Figure � illustrates the assignment of objects X� Y and Z�

where g � �� MX � 	� MY � �� MZ � � and N � ���

� The Sliding�Window Approach

In this section� we will describe the basic idea of the proposed sliding�window and the

retrieval algorithm for the proposed approach�

��� Basic Idea

Suppose the desired subobjects of these 	 striped objects for display are changed to those

shown in Figure 	� Obviously� two con�icts will occur� One con�ict occurs between sub�

objects Z� and Y�� and the other one occurs between subobjects Z� and X��� To resolve

these con�icts� a straightforward method is to reorganize these 	 objects according to the

striping strategy� However� it requires a lot of overhead� A better solution as the one in

�	� ��� is to prefetch the con�icting subobjects� For example� subobjects Z� and Z� are

prefetched to resolve the con�icts in Figure 	�

Recall that based on the striping strategy� the duration in terms of a time interval

I� of retrieval of a subobject is �xed in each disk of the multi�disk drive� Logically� we can

1

2

3

 0 1 2 3 4 5 6 7 8 9

 X0 X1 X2 Y0 Y1 Y2 Y3 Z0 Z1

 X3 X4 X5 Y4 Y5 Y7 Z2 Z3/Y15

 Z5/X30 X7 X8 Y8 Y9 Y10 Y11 Z4

time-interval

 disk

Figure 	� An example of display�

0 1 2 3 4 5 6 7 8 9

 disk

1

2

3

1 1 1 1 1 1 1 1 1 0

2 0 0 1 1 1 1 1 1 1

0 1 1 1 1 1 0 1 1 2

time-interval

Figure �� The time table of retrieval of Figure 	�

use a time table of retrieval to record the retrieved subobjects for each time interval� For

example� the logical time table of retrieval TT � of the display in Figure 	 is shown in

Figure �� where the value of each entry TTij denotes the number of subobjects that have

to be retrieved from disk j in time interval i� For an entry TTij which value is greater than

�� a con�ict will occur due to more than one subobjects that have to be retrieved in the

same time interval i from disk j� To resolve the con�ict� we have to prefetch TTij � ��

subobjects of these TTij con�icting subobjects from disk j before time interval i� Logically�

such prefetching operations can be viewed as a series of replacement operations� each of

which is to �nd an entry TTkj with value � � for such an entry TTij and then� TTkj is

set to � and TTij is decreased by one� where k is the maximum value such that � � k �

i� This replacement operation will be repeated until TTij is reduced to �� Therefore� to

guarantee continuous retrieval� we have to �nd TTij � �� entries with value � � for each

such an entry TTij which value is greater than ��

Let us consider another example� where the time table of retrieval is shown in Figure

� The total length of this display Len� is �� time intervals� For each TTij which value

is greater than �� we perform the replacement operation� For example� one of these �

con�icting subobjects in entry TT
� has to be prefetched in entry TT��� As shown in

Figure
� continuous display can be guaranteed after all the con�icts are resolved by a

�

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

1 1 1 0 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 2 1 1 1 1 0 1 0 1

2 0 1 0 1 2 1 1 0 1

1 1 1 1 1 1 1 0 1 1

Stop

Display

1 0 1 1 2 1 1 0 1 1

1 1 1 2 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 1

0 2 0 0 1 0 1 3 1 1

buffer

9

 disk

time-interval

 19

20

20

1 1 1 1 0 0 1 1 2 1 20

Figure
� An example in the prefetching approach�

series of replacement operations� However� for an interactive display� users may stop this

display at any time� In this example� suppose display is interrupted in time interval
� That

is� these retrieved subobjects in entry TTij for display after time interval
 are no longer

needed� where � � i � �� and � � j � �� In this case� there are one con�icting subobject

of TT�
 and one of TT� which have been prefetched in time interval
 and time interval

�� respectively� The disk bandwidths and bu�ers for retrieving these two subobjects are

wasted� The corresponding sizes of the bu�er in terms of the number of subobjects� in

each time interval for storing these retrieved subobjects are also shown in Figure
�

To avoid the waste of time to prefetch and the waste of bu�er space to store these

unnecessary prefetched subobjects as the example shown in Figure
� in this paper� we

propose a sliding window approach� The basic concept of a sliding window in our proposed

approach is to record a little necessary information of retrieval of the following subobjects

for display in a sliding window� In this proposed approach� �rst� we use a window with

size � SW � �� time intervals to record the �rst SW consecutive entries for each disk

in the time table of retrieval� i�e� time intervals �� �� ���� SW � Second� we only perform

the replacement operations within the sliding window� Note that when SW � �� no

replacement operation can be done for any entry with value � �� Therefore� the minimun

size of SW is ��� After the possible con�icts within the sliding window have been resolved

by a series of replacement operations� these subobjects in time interval � are ready to

be retrieved for display and the window is slid forward by including time interval SW

�

� �� and excluding time interval �� Third� we resolve the con�icts within the sliding

window again and then� slide the window forward� At the same time� these subobjects in

time interval � are ready for retrieval� These replacement and sliding operations will be

repeated until display is �nished or interrupted�

For illustrative purpose� let us consider a simple example shown in Figures �� where

the objects for display are the same as the ones in Figure
 and SW is assumed to be

�� Note that we use SW a�b� to denote that the current sliding window includes time

intervals a and b�� As shown in Figure ��a�� �rst� no replacement operation is needed

since all the entries in the sliding window � �� Second� we slide the window forward as

shown in Figure ��b�� At the same time� these subobjects in time interval � are ready to

be retrieved and no replacement operation is needed within the current sliding window�

Third� we slide the window again and perform a replacement operation for entry TT
� by

setting TT�� and TT
� to be � as shown in Figure ��c�� At the same time� these subobjects

in time interval � are being retrieved and these subobjects that have been retrieved in time

interval � are being displayed� Forth� we set TT�� and TT
� to be � for TT�� � � after the

sliding window is slid again� When the sliding window has been slid forward to include

time intervals � and � as shown in Figure ��d�� suppose display is interrupted� In this case�

we set TT	� and TT�� to be � for TT�� � �� Since the current time interval for retrieval

is time interval
� this prefetching subobject for TT�� in TT	� has not be retrieved yet�

Moreover� the waste of time and space to prefetch the con�icting subobjects for TT�
 and

TT� in Figure
 can be avoided�

From the above example� we observe that continuous retrieval can also be guaranteed

by using the sliding window approach with SW � �� Obviously� the larger the window

size SW is� the longer the waste of time and the higher the bu�er space to prefetch the

unnecessary subobjects once display is interrupted� However� a hiccup can occur in the

proposed sliding window approach when the window size SW is not large enough� where

a hiccup means that the subobjects for being displayed has not been retrieved and will

be ready in the next time interval� Therefore� from the view of users� display will not be

continuous when a hiccup occurs�

Such an example is shown in Figure �� where SW � �� From Figure ��a�� we observe

that we can not �nd an entry TTi� � � for TT
� to resolve the con�ict within the sliding

window� Note that even though TT�� � �� we can not set TT�� � �� to be � to prefetch

one con�icting subobjects for TT
� in time interval � because that these subobjects in time

interval � are being retrieved� Therefore� TT
� is still � after the replacement operation�

Then� a con�ict will occur such that one of these � con�icting subobjects for retrieval in

�

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10 2 0 1 0 1 2 1 1 0 1

1 1 1 2 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 1
SW = 2

1 1 1 1 1 1 1 0 1 1

1 0 1 1 1 1 1 1 1 1

1 2 1 1 1 1 0 1 0 1

1 1 1 0 1 1 1 1 1 1

 disk

time-interval

1 1 1 1 0 0 1 1 2 1

1 0 1 1 2 1 1 0 1 1

0 2 0 0 1 0 1 3 1 1

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10 2 0 1 0 1 2 1 1 0 1

1 1 1 2 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1

1 0 1 1 1 1 1 1 1 1

1 2 1 1 1 1 0 1 0 1

1 1 1 0 1 1 1 1 1 1

SW = 2

retrieve buffer

 9

 disk

time-interval

1 1 1 1 0 0 1 1 2 1

1 0 1 1 2 1 1 0 1 1

0 2 0 0 1 0 1 3 1 1

a� b�

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10 2 0 1 0 1 2 1 1 0 1

1 1 1 2 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1

1 0 1 1 1 1 1 1 1 1

1 2 1 1 1 1 0 1 0 1

1 1 1 0 1 1 1 1 1 1

SW = 2

retrieve

buffer

9

18

 disk

time-interval

1 1 1 1 0 0 1 1 2 1

1 0 1 1 2 1 1 0 1 1

0 2 0 0 1 0 1 3 1 1

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10 2 0 1 0 1 2 1 1 0 1

Stop

1 1 1 2 1 0 0 1 1 1

1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 0 1 1

1 1 1 0 1 1 1 1 1 1
SW = 2

retrieve

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 1 1 1

buffer

9

18

19

19

time-interval

 disk

171 1 1 1 0 0 1 1 1 1

1 0 1 1 2 1 1 0 1 1

0 2 0 0 1 0 1 3 1 1

c� d�

Figure �� An example in the sliding window approach with SW � �� a� SW ����� b�
SW ��	�� c� SW 	���� d� SW �����

�

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10 2 0 1 0 1 2 1 1 0 1

1 1 1 1 0 1 1 1 1 1

1 2 1 1 1 1 0 1 0 1

1 1 0 1 0 0 1 1 2 1

1 1 1 0 1 1 1 1 1 1

1 0 1 1 2 1 1 0 1 1

SW = 2

retrieve

buffer

9

18

1 1 1 1 1 0 1 1 1 1

1 0 1 1 1 1 1 0 1 1

1 1 1 2 0 1 0 1 1 1

0 2 0 1 1 0 1 2 1 1

 disk

time-interval

0 1 2 3 4 5 6 7 8 9

1

2

3

1 1 1 1 0 1 1 1 1 1

buffer

9

18

1 1 1 1 1 0 1 1 1 1

1 0 1 1 1 1 1 0 1 1

2 0 1 0 1 2 1 1 0 1

0 2 0 1 1 0 1 2 1 1

1 0 1 1 2 1 1 0 1 1

1 1 1 2 0 1 0 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 0 1 0 0 1 1 2 1

1 2 1 1 1 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0

4

5

6

7

8

9

10

SW = 2

retrieve
18

3’

time-interval

 disk

a hiccup

a� b�

0 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10 2 0 1 0 1 2 1 1 0 1

1 1 1 1 0 1 1 1 1 1

1 1 0 1 0 0 1 1 2 1

1 1 1 0 1 1 1 1 1 1

1 0 1 1 2 1 1 0 1 1

buffer

9

1 1 1 1 1 0 1 1 1 1

1 1 1 2 0 1 0 1 1 1

0 2 0 1 1 0 1 2 1 1

retrieve

1 2 1 1 1 1 0 1 0 1

1 0 1 1 1 1 1 0 1 1

SW = 3

 disk

time-interval

c�

Figure �� An example in the sliding window approach� a� with SW � �� b� time interval
stealing� c� with SW � 	�

��

entry TT
� will be lost when these subobjects in time interval � are being retrieved� To

resolve this problem� one proposed solution is called time interval stealing� which inserts

a new time interval 	
�

with all TT��j � � � � j � ��� between time intervals 	 and � and

slides the window forward as shown in Figure ��b�� Now� we can set TT��� to be � for

TT
�� However� a hiccup will occur� Another better proposed solution is to select a large

size of the sliding window SW � 	� instead of SW � �� initially� As shown in Figure ��c��

we can set TT�� to be � for TT
�� Moreover� by applying the sliding window approach

with SW � 	� continuous display can be guaranteed� Therefore� to select a proper size of

the sliding window for display is an important task and will be investigated in Sections �

and
�

��� The Algorithm

In this subsection� we present the retrieval algorithm based on the sliding window ap�

proach as shown in Figure �� Suppose the execution time for the replacement process

in each for�loop routine of the retrieval algorithm is negligible compared with the time

interval for retrieval e�g�� ��� seconds in Figure ��� Moreover� the retrieval algorithm is

preemptive� That is� the execution of the retrieval algorithm can be interrupted when�

ever display is interrupted� In the retrieval algorithm� after given the value of the sliding

window size and the time table for display� we logically put the �rst SW time intervals of

the time table into the sliding window and resolve the con�icts within the sliding window�

Then� we slide the window forward by excluding time interval � and including time interval

SW � ��� Let ptr be �� where ptr denotes the identi�cation number of time interval� in

which these subobjects are ready for retrieval� In the for�loop routine� such a resolving�

sliding operation will be repeated until display is �nished or interrupted� For each for�loop

operation� �rst� these subobjects in time interval ptr are ready for retrieval� where time

interval ptr is just removed from the sliding window� In other words� these entries TTptrj

� � j � N� in time interval ptr is no longer to be changed because that time interval ptr

is not included in the sliding window� Second� for each TTij � � in time interval i� we

�nd TTij � �� entries with values � � within the sliding window and set them to be � to

resolve the con�icts� However� there may not exist enough entries with values � � for each

TTij � �� In this case� we have to steal some time intervals� Third� after the con�icts in

time interval i are resolved� we slide the window again�

��

procedure retrieval
SW �TT �Len�N ��
var

N � integer� �� the number of disks in a multi�disk drive��
Len � integer�

�� the length of display in terms of the number of time intervals ��
SW � integer� �� the size of a sliding window��
TT �Len�N � integer� �� the time table of retrieval ��
Buf � a bu�er� �� the bu�er space for storing the retrieved subobjects ��
i�j�k�m�flag�ptr � integer�

begin
resolve any con�ict in the �rst SW time intervals by using the replacement approach�
slide the window forward�
ptr � ��
for
i�SW���i��Len�i��� do

retrieve TT �ptr���� for display�
ptr � ptr � ��
for
j���j�N �j��� do

flag � ��
while

TT �i�j � �� and
flag �� ��� do
begin
for
k�i���k�i�SW �k� �� do

if
TT �k�j �� ��
begin
TT �k�j � ��
TT �i�j � TT �i�j � ��
k � ���

end if�
end for�
if
k �� ��� flag � ��

end while�
end for�

������ steal time intervals to resolve the unresolved con�icts ������
if
flag �� ��
begin
m � max
TT �i�� � ��� �� function max returns the maximun value ��
insert m new time intervals between time intervals
i � �� and i

in the time table of retrieval�
Len � Len � m�
i � i � m � ��

end if�
��������������������������������

slide the window forward�
end for�
for �i�ptr�i��Len�i��	 do retrieve TT �i���� for display�

end�

Figure �� Algorithm retrieval�

��

� Simulation Results

In this section� we will present simulation results for the proposed algorithm based on the

sliding window approach� In this simulation model� we assume that each disk in a multi�

disk drive operates independently� When an I�O request arrives� it may be decomposed

into subrequests� each of which will be serviced independently on a di�erent disk� Objects

are stored on the multi�disk drive by applying the striping strategy and all the subobjects

of each object have the same size� Moreover� the duration of retrieval of a subobject is �xed

for all objects and is in terms of a time interval I� At any time interval i� the required

bandwidth RBi for display should not be larger than the aggregate bandwidth AB of the

multi�disk drive� The required bandwidth RBi can be varied according to the combination

of objects for display� To describe the desired display� we propose a data model� In this

data model� �rst� we use a load factor to denote the average load of a multi�disk drive for

a display with length Len in terms of the number of time intervals� and let load factor

be
P

Len

i��
RBi

AB�Len
� Second� to describe the status of con�icts in a display� we use a series of

probabilities P n
k � � k � n�� each of which is to denote the probability of an entry with

value � k when the desired display is combined with n objects� Consequently�
Pn
k�� P

n
k �

� and
Pn
k�� k � P n

k � � load factor� The performance measure is the average hiccup ratio

ave HR� which is the number of the number of hiccups num HR divided by the length of

display Len� that is� ave HR � num HR
Len

� Another performance measure is the average size

of bu�er ave Buf in terms of the number of subobjects� that is used to store the retrieved

subobjects during the duration of display�

Figures � show the relationship between the size of a sliding window SW � for three

di�erent displays D�� D� and D�� and the average hiccup ratio ave HR�� where N �

��� n � 	 with Len � ���� and load factor is ���� The time tables of retrieval of three

di�erent displays are randomly generated� where P �
� � P

�
� � P

�
� � P

�
� � is ��	
� ���� ���
� ���

����� ����� ���� ����� and ����� ����� ���� ������ respectively� From this �gure� we observe

that ave HR is decreased as the size of sliding window SW is increased� The reason is that

the probability of a hiccup is decreased as SW is increased� Moreover� ave HR is increased

as the number of con�icts is increased i�e�� P �
� and P �

� is increased� while P �
� is decreased��

To support continuous display with hiccup�free i�e�� ave HR � ��� the minimum sizes of

the sliding window for these 	 display D�� D� and D� are ��� �� and
�� respectively�

However� the users may choose a small SW with a tolerable average hiccup ratio to reduce

to overhead once display is interrupted�

Figure �� shows the relationship between the size of a sliding window SW � for three

�	

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

D1 : (0.35, 0.6, 0.05, 0)
D2 : (0.42, 0.47, 0.1, 0.01)
D3 : (0.44, 0.44, 0.1, 0.02)

ave_HR

SW

Figure �� The relationship between the size of a sliding window SW � and the average
hiccup ratio ave HR��

di�erent displays D�� D� and D�� and the average bu�er size ave Buf� used in Figure

�� Obviously� the larger the value of SW is� the larger the value of ave Buf � The reason

is that it requires a larger bu�er space to store these prefetched subobjects within a larger

sliding window than a smaller one within a smaller sliding window� Even though ave Buf

is also increased as load factor is increased� ave Buf is still constant when SW is large

enough such that ave HR is reduced to ��

� Analysis of an Sliding Window Size

In the sliding window approach� we have to select a proper value of SW to support con�

tinuous display� However� such a selection will be made by repeating a series of imitations

of the retrieval algorithm from an initial value of SW � � as described in Figures � and

��� it will waste much time when P n
k � � k � n� is large� For example� it requires to

perform �� times imitations for D�� while it requires to perform
� times imitations for

D� in Figure �� Therefore� to speed up such a process� in this section� we will present the

mathematical analysis of average hiccup ratio ave HR with a given value of SW in the

sliding window approach� Moreover� given a tolerable value of ave HR� we can analyze

the minimumvalue of SW for display of a combination of n objects� Consequently� instead

of SW � �� a good initial value of SW can be obtained from the mathematical analysis in

order to speed up the selection of a proper value of SW �

��

0 10 20 30 40 50 60
12

13

14

15

16

17

18

19

20

D1 : (0.35, 0.6, 0.05, 0)
D2 : (0.42, 0.47, 0.1, 0.01)
D3 : (0.44, 0.44, 0.1, 0.02)

ave_Buf

SW

Figure ��� The relationship between the size of a sliding window SW � and the average
bu�er size ave Buf��

Suppose there is a combination of n striped objects for display by using the sliding

window approach with SW � ��� The values of load factor and the series of P n
k � � k

� n� are given� Assume that the probability of k subobjects that will be retrieved from

any disk j in any time interval i has the same value P n
k � where � � k � n� In other words�

the probabilities of all TTij with value � k are P n
k � The subobjects that will be retrieved

in each time interval are independent� Therefore� there are n � �� cases of the value

of an entry TTij� Since the con�ict�resolution process i�e�� the replacement operation� is

performed from the initial time interval to the last one in the sliding window approach� the

subobjects in time interval e which are ready for retrieval implies that those in time interval

m are also ready for retrieval� where � � m � e� Consequently� the value of each entry in

these time intervals that are ready for retrieval will be either � or �� The probability of

such an entry with value � � is � � load factor�� while the one of such an entry with value

� � is load factor� Therefore� for a time interval i that is in the con�ict�resolution process�

the probabilities for an entry TTij with values � � and � are P n
� and P n

� � respectively� In

these two case� no con�ict and hiccup can occur in entry TTij� When TTij � �� a hiccup

can occur if there does not exist any one entry TTmj � �� where i � SW � �� � m � i

� ��� The probability of such a case is
�
SW��
SW��

�
fSW��� Otherwise� no hiccup can occur�

To simplify the notations� in the following formulas� we use f to denote load factor� The

number of hiccup with TTij � � is obtained as

UHn
� � P n

� � � �
�
SW��
SW��

�
fSW����

�

Similarly� the number of hiccup with TTij � 	 can be obtained as

UHn
� � P n

� � � �
�
SW��
SW��

�
fSW�� � � �

�
SW��
SW��

�
fSW����f���

In general� the number of hiccup with TTij � k can be obtained as

UHn
k � P n

k � k � �� �
�
SW��
SW��

�
fSW�� � k � �� �

�
SW��
SW��

�
fSW����f�

� ��� � � �
�

SW��
SW�k��

�
fSW�k����f�k����

Therefore� the average number of hiccup can be obtained as

ave HR �
Pn
k�� UH

n
k �

� The Dynamic Sliding Window Approach

In the sliding window approach� the combination of objects for display and the branch

points for choices are predetermined� That is� the time table of retrieval has to be prede�

termined� To support on�line interactive display� in this section� we will extend the sliding

window approach to the dynamic sliding window approach� which can support on�line

interactive display for any combination of objects by applying a dynamic window size�

The size of the sliding window is changed according to the future requirements of data for

display� The basic concept is that display can be interrupted or may eventually be changed

to another display by the users at any time� That is� the contents of the time table of

retrieval can be dynamically changed� Therefore� we have to dynamically change the size

of the sliding window according to the current status of subobjects for display in order to

still support continuous retrieval with the a little overhead� Since the subobjects for future

display are not predictable� in the dynamic sliding window approach� we use the PI �

�� pervious time intervals of retrieval to guess the subobjects for future display� Then� the

size of the sliding window SW for the next time interval i is chosen to be the minimum

value of SW for these PI time intervals with num HR � � by applying the sliding window

approach�

The retrieval algorithm based on the dynamic sliding window approach is called the

retrieval� algorithm as shown in Figure ��� This retrieval� algorithm is also preemptive�

The di�erences between the retrieval� algorithm and the retrieval algorithm are printed

in bold font as shown in Figure ��� In the retrieval� algorithm� after given the value of

PI and an initial value of SW � we logically put the �rst SW time intervals of the time

��

if
�f
la
g
�
�
��

b
eg
in

m

�
m
a
x
�T
T
�i
��
��
�
��
	

in
se
rt
m

n
ew
ti
m
e
in
te
r
v
a
ls
b
et
w
ee
n
ti
m
e
in
te
r
v
a
ls
�i
�
��

an
d
i
on
th
e
ti
m
e
ta
bl
e
of
r
e
tr
ie
v
a
l	

L
e
n
�
L
e
n

m
	

i
�
i

m

�
�	

en
d
if
	

P

f
la
g
�
�
�

fo
r
�r
�
�
�r
�
�
P
I
�r
�
�
�
d
o

im
it
a
te
r
e
tr
ie
v
a
l�
r
�W
T
	P
I

	
N

�
�

�
�
pe
rf
o
rm
th
e
r
e
tr
ie
v
a
l
a
lg
o
ri
th
m
w
it
h
o
u
t
th
e
re
tr
ie
va
l
o
pe
ra
ti
o
n
s�

w
e
o
n
ly
w
a
n
t
to
ge
t
th
e
n
u
m
be
r
o
f
h
ic
cu
p
s
a
ft
er

th
e
r
e
tr
ie
v
a
l
a
lg
o
ri
th
m
is
a
p
p
li
ed
o
n
W
T
�
�

if
�t
h
e
n
u
m
b
e
r
o
f
h
ic
c
u
p
s
in
th
e
im
it
a
ti
o
n
is
�
�

b
e
g
in

C
S
W

�

r
�

P

f
la
g
�

�
�

e
n
d
if
�

e
n
d
fo
r�

if
�P
f
la
g
�
�

�
�
C
S
W

�

P
I
�

if
�C
S
W
�
S
W
�

b
e
g
in

fo
r
�j
�
C
S
W
�j
�
S
W
�j
�
�
�
d
o

re
tr
ie
v
e
T
T
	p
tr

	
�

fo
r
d
is
p
la
y
�

p
tr
�

p
tr
�

�
�

e
n
d
fo
r�

S
W

�

C
S
W
�

e
n
d
if
�

if
�C
S
W
�
S
W
�
f
I
f
la
g
�

�
�
S
W

�

S
W

�

�
�g

if
�C
S
W
�
S
W
�
I
f
la
g
�

�
�

sl
id
e
th
e
w
in
d
ow
fo
rw
ar
d
	

en
d
fo
r	

fo
r
�i
�
p
tr
	i
�
�
L
e
n
	i

�
d
o
re
tr
ie
ve
T
T
�i
��
��
fo
r
d
is
p
la
y
	

en
d
	

p
ro
ce
d
u
re
r
e
tr
ie
v
a
l�
�P
I
�T
T
�L
e
n
��
N
��
�

va
r

N
�L
e
n
�P
I
�S
W
�C
S
W

�
in
te
ge
r�

T
T
�L
e
n
��
N
�
�
in
te
ge
r�
�	
th
e
ti
m
e
ta
b
le
of
re
tr
ie
va
l
	�

W
T
�P
I
��
N
�
�
in
te
ge
r�

B
u
f
�
a
b
u

er
�
�	
th
e
b
u

er
sp
ac
e
fo
r
st
or
in
g
th
e
re
tr
ie
ve
d
su
b
ob
je
ct
s
	�

i�
j
�k
�m
�r
�f
la
g
�p
tr
�I
f
la
g
�P
f
la
g
�
in
te
ge
r�

b
eg
in

S
W

�

�
�

W
T
��
��
�
�
�

�
�

re
so
lv
e
an
y
co
n
�
ic
t
in
th
e
�
rs
t
S
W

ti
m
e
in
te
r
v
a
ls
�

sl
id
e
th
e
w
in
d
ow
fo
rw
ar
d
�

fo
r
�r
�
	
�r
�
S
W
�r

�
d
o
W
T
�p
tr
�S
W

r
��
�
�
�

T
T
�r
��
�
��

p
tr

��

fo
r
�i

S
W
�
��
i�

L
e
n
�i
�
�
�
d
o

fo
r
�
r
�
	
�r
�
P
I
�r

�
d
o
W
T
�r
��
�
�
�

W
T
�r

	
��
�
��

W
T
�P
I
��
�
�
�

T
T
�i
��
�
��

if
�I
f
la
g
�
�

�
�

b
e
g
in

re
tr
ie
ve
T
T
�p
tr
��
	�
fo
r
d
is
p
la
y
�

p
tr

p
tr
�
��

e
n
d
if
�

fo
r
�j

��
j
�
N
�j
�
�
�
d
o

f
la
g

��

w
h
il
e
��
T
T
�i
��
j
�
�
��
an
d
�f
la
g

��
�
d
o

b
eg
in

fo
r
�k

i�
��
k
�
i�
S
W
�k
�
��
d
o

if
�T
T
�k
��
j
�

��

b
eg
in

T
T
�k
��
j
�

��

T
T
�i
��
j
�

T
T
�i
��
j
�
�
��

k

��
�

en
d
if
�

en
d
fo
r�

if
�k
�
�
��
�
f
la
g

��

en
d
w
h
il
e�

en
d
fo
r�

Figure ��� Algorithm retrieval��

��

table into the sliding window and resolve the con�icts within the sliding window� Note

that as opposed to the predetermined time table in the retrieval algorithm� the one in the

retrieval� algorithm is dynamically determined�� Then� we slide the window forward� In

the for�loop routine� such a resolving�sliding operation will be repeated until retrieval for

display is �nished or interrupted� For each for�loop operation� �rst� these subobjects in

time interval ptr are ready for retrieval as the case in the retrieval algorithm� Second� we

put the information of retrieval of previous PI time intervals into the working table WT �

Then� for each TTij � � in time interval i� we �nd TTij � �� entries with values � � within

the sliding window and set them to be � to resolve the con�icts� However� there may not

exist enough entries with values � � for each TTij � �� In this case� we have to steal

some time intervals� Third� after the con�icts in time interval i are resolved� we have to

predict a sliding window size CSW for the next time interval by imitating the retrieval

algorithm with WT � In this imitation� we �nd the minimum value of sliding window size

CSW � for WT with hiccup�free� When the new sliding window size CSW is smaller

than SW � we have to retrieve the subobjects in these time intervals ptr� ptr � ��� ���� ptr

� SW � CSW � ��� The reason is that the size of sliding window will be reduced and

these previous time intervals that will be removed from the sliding window are no longer

to be changed� Therefore� the subobjects in these time intervals are ready for retrieval�

On the other hand� when CSW � SW � we have to enlarge the sliding window� In this

case� time intervals ptr � ��� ptr � ��� ���� ptr � CSW � SW � ��� have to be included in

the sliding window� However� since these subobjects in these time intervals before time

interval ptr had been retrieved� we can not change the values of these entries in these time

intervals to resolve any con�ict� Therefore� in this case� the size of the sliding window is

only increased by one� in which time interval ptr is not removed from the sliding window

and time interval i � �� is included in the sliding window� That is� the sliding window

size for the next time interval is SW � ��� I flag is set to � to denote that such a case

occurs and to prohibit the retrieval operation of time interval ptr� Finally� we slide the

window again�

Figures ���a�� ���b� and ���c� show the relationship between the time interval t

and the number of hiccups num HR� where N � ��� n � 	 with Len � ���� and PI is

��� �� and
�� respectively� The load factor and the series of P �
k � � k � 	� are varied

in each time interval� To simulate the unpredetermined subobjects for on�line interactive

display� we use a random function of t to generate the values of the load factor and the

series of P �
k � � k � 	� for each time interval� From these �gures� we observe that

num HR is decreased as PI is increased due to that the more the information of retrieval

��

are considered� the better the value of SW �

Figures �	�a� and �	�b� show the relationship between the time interval t and the

size of bu�er Buf � where the related parameters are the same as those in Figure ��� Since

there are similar results in the other ranges of t� Figures �	�a� and �	�b� only show the

range of t from 	�� to ��� and from ��� to
��� respectively� From Figures �� and �	� we

observe that the size of bu�er Buf is increased as num HR is increased in all these 	 cases�

The larger the value of PI is� the larger the size of bu�er� Moreover� the corresponding

value of SW for each time interval t in Figure �� is also shown in Figures ��� Compared

to Figure ��� we observe that the sliding window is changed according to the retrieval

information of the previous PI time intervals� The larger the value of PI is� the better the

value of SW � However� the overhead to decide a new value of SW is increased as the value

of PI is increased� Therefore� based on the dynamic sliding window approach� users can

choose a proper PI with a tolerable average hiccup ratio and overhead�

� Conclusion

In this paper� we have proposed an e�cient approach� called the sliding window ap�

proach� which can support interactive display for continuous media with a little overhead

of prefetching� From the simulation results� we have observed that the smaller the size of

a sliding window is� the smaller the waste of time and space once display is interrupted�

However� a hiccup can occur when the size of the sliding window is not large enough�

Moreover� we have presented a mathematical analysis of the sliding window approach to

speed up the selection of a sliding window size� To support on�line interactive display�

we have extended the sliding window approach to the dynamic sliding window approach�

From the simulation results� we have observed that the probability of a hiccup is decreased

as the amount of information of previous retrieval is increased� How to support on�line in�

teractive display for continuous media at any desired display speed rate is a future research

direction�

References

��� Berson� Steven� Ghandeharizadeh� Shahram� Muntz� Richard and Ju� Xiangyu� �Staggered
Striping in Multimedia Information Systems�� ACM SIGMOD� pp� �	
	�� �		��

�� Buford� John F� K�� �Multimedia File Systems and Information Models�� Multimedia Sys�

tems� Buford� John F� K�� ed�� Addison
Wesley� �		��

��

0 200 400 600 800 1000
0

1

2

PI = 10

num_HR

t
a�

0 200 400 600 800 1000
0

1

2

PI = 20

num_HR

t
b�

0 200 400 600 800 1000
0

1

2

PI = 50

num_HR

t
c�

Figure ��� The relationship between the time interval t and the number of hiccups
num HR� a� PI � ��� b� PI � ��� c� PI �
��

��

300 320 340 360 380 400 420 440
0

5

10

15

20

25

30

35 PI = 10
PI = 20
PI = 50

Buf

t
a�

440 450 460 470 480 490 500
5

6

7

8

9
PI = 10
PI = 20
PI = 50

Buf

t
b�

Figure �	� The relationship between the time interval t and the size of bu�er Buf � a� t
� 	��� ����� b� t � ����
����

��

0 200 400 600 800 1000
0

10

20

30

40

50

60

70
PI = 10
PI = 20
PI = 50

SW

t

Figure ��� The relationship between the size of the time interval t and the sliding window
SW �

��� Chaudhuri� Surajit� Ghandeharizadeh� Shahram� and Shahabi� Cyrus� �Avoiding Retrieval
Contention for Composite Multimedia Objects�� Proc� of the ��st VLDB Conference� pp�
��
	�� �		��

��� Chen� Ming
Syan� Kandlur� Dilip D� and Yu� Philip S�� �Storage and Retrieval Methods to
Support Fully Interactive Playout in a Disk
Array
Based Video Server�� ACM Multimedia

Systems� Vol� �� pp� ��
���� �		��

��� Christodoulakis� S� and Koveos� L�� �Multimedia Information Systems� Issues and Ap

proaches�� in Modern Database Systems� the Object Model� Interoperability and Beyond�
Kim� W�� Editor� Addison
Wesley� �		��

��� Gemmell� Jim and Christodoulakis� Stavros� �Principles of Delay
Sensitive Multimedia Data
Storage and Retrieval�� ACM Transactions on Information Systems� Vol� ��� No� �� pp ��
	��
Jan� �		�

��� Gemmell� D� James� Vin� Harrick M�� Kandlur� D� D�� Rangan� P� Venkat and Rowe� L� A��
�Multimedia Storage Servers� A Tutorial�� IEEE Computer� pp� ��
�	� May �		��

��� Ghandeharizadeh� Shahram and Dewitt� D�� �A Multiuser Performance Analysis of Alterna

tive Declustering Strategies�� Proc� of IEEE International Conference on Data Engineering�
pp� ���
���� �		��

�	� Ghandeharizadeh� Shahram and Ramos� Luis� �Continuous Retrieval of Multimedia Data
Using Parallelism�� IEEE Transactions on Knowledge and Data Engineering� Vol� �� No� ��
pp� ���
��	� August �		��

���� Keeton� Kimberly� and Katz� Randy H�� �Evaluating Video Layout Strategies for a High

Performance Storage Server�� ACM Multimedia Systems� Vol� �� pp� ��
�� �		��

��

���� Liu� Jonathan C� L�� Du� David H� C� and Schnepf� James A�� �Supporting Random Access
on Real
Time Retrieval of Digital Continuous Media�� Computer Communications� Vol� ���
No� �� pp� ���
��	� March �		��

��� Lougher� P� and Shepherd� D�� �The Design of a Storage Server for Continuous Media�� The

Computer Journal� Vol� ��� No� �� pp� ��
�� �		��

���� Mourad� Antoine N�� �Issues in the Design of a Storage Server for Video
On
Demand�� ACM

Multimedia Systems� Vol� �� pp� ��
��� �		��

���� Ozden� Banu� Rastogi� Rajeev� and Silberschatz� Avi� �On the Design of a Low
Cost Video

On
Demand Storage System�� ACM Multimedia Systems� Vol� �� pp� ��
��� �		��

���� Patterson� D�� Gibson� G� and Katz� R�� �A Case for Redundant Arrays of Inexpensive Disks
�RAID��� ACM SIGMOD� pp� ��	
���� �	���

���� Rangan� P� Venkat� and Vin� Harrick M�� �Designing File Systems for Digital Video and
Audio�� Proc� ��th ACM Symposium on Operating System Principles� pp� ��
	�� �		��

���� Rangan� P� Venkat� Vin� Harrick M� and Ramanathan� Srinivas� �Designing an On
Demand
Multimedia Service�� IEEE Communications Magazine� pp� ��
��� July �		�

���� Rangan� P� Venkat and Vin� Harrick M�� �E�cient Storage Techniques for Digital Continuous
Multimedia�� IEEE Transactions on Knowledge and Data Engineering� Vol� �� No� �� pp�
���
���� August �		��

��	� Salem� K� and Carcia
Molina� H�� �Disk Striping�� Proc� of IEEE International Conference

on Data Engineering� pp� ���
��� �	���

��� Shahabi� Cyrus� and Ghandeharizadeh� Shahram� �Continuous Display of Presentations
Sharing Clips�� ACM Multimedia Systems� Vol� �� pp� ��
	�� �		��

��� Steinmetz� R�� �Multimedia File Systems Survey� Approaches for Continuous Media Disk
Scheduling�� Computer Communications� Vol� ��� No� �� pp� ���
���� March �		��

�� Vin� Harrick M� and Rangan� P� Venkat� �Designing a Multiuser HDTV Storage Server��
IEEE Journal on Selected Areas in Communications� Vol� ��� No� �� pp� ���
���� Jan� �		��

��� Yu� Clement� Sun� Wei� Bitton� Dina� Yang Qi� Bruno� Richard and Tullis� John� �E�cient
Placement of Audio Data on Optimal Disks for Real
Time Applications�� Communications

of ACM� Vol� �� No� �� pp� ��
���� July �	�	�

�	

