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Abstract. In this paper, we propose to apply an NA-tree in the Chord
system to encode spatial region data in the data key part used in the
hash function to data search. That is, we combine the NA–tree with the
Chord system to solve the overlapping problem which the P2PR–tree can
not deal with. From our simulation results, we show that the number of
visited peers in our approach is less than that in the P2PR–tree.

Keywords: Chord system, exact match query, P2P, searching, spatial
data.

1 Introduction

Spatial data occurs in several important and diverse applications in P2P systems,
for example, P2P virtual cities, GIS, development planning, etc. For the problem
of answering exact queries for spatial region data in the P2P environment, an R–
tree based structure probably is a good choice. Since a peer system is dynamic,
the global update characteristics of data insertion/delection in an R–tree can
not work well in a P2P system. Moreover, the problem of overlaps in an R–tree
results in large number of the disk accesses (which will be considered as large
number of messages in P2P systems). Although the P2PR–tree [1]can achieve the
goal of the local update for data insertion/deletion, the overlapping phenomenon
is still hard to solve.

Recently, for region data access, an NA–tree [2] has been proposed which
outperforms R–tree–like data structures. It does not have the problem of overlaps
which may occur in an R–tree. On the other hand, the Chord system [3] is a well–
known P2P system. Since the Chord system is a hash approach, it is easy to deal
with data insertion/delection with only local update. Therefore, in this paper, we
propose to apply an NA-tree in the Chord system to encode spatial region data
in the data key part used in the hash function to data search. Thus, we combine
the NA–tree with the Chord system to solve the overlapping problem which the
P2PR–tree can not deal with. From our simulation results, we show that the
number of visited peers in our approach is less than that in the P2PR–tree.

The rest of the paper is organized as follows. In Section 2, we introduce the
P2PR–tree. In Section 3, we present the proposed NA–tree approach. In Section
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4, we compare the performance of our approach with the P2PR–tree. Finally,
we give a summary.

2 P2PR-Tree

Yilifu et al. proposed P2PR–tree strategy for object indexing in 2D–space [1]
which will have only local update to the proposed index structure when data
insertion/delection occurs. In their strategy, a MBR represents the region infor-
mation that a peer own. In Fig. 1–(a), the MBR P1 represents that peer 1 owns
the information of this region. As shown in Fig. 1–(b) and Fig. 2), when data
P13 is inserted, only one path needs to be updated. Therefore, the P2PR–tree
does not need global update for data insertion/deletion like the R–tree.

Although the P2PR–tree can achieve the goal of the local update for data
insertion/ deletion, the overlapping phenomenon is still hard to solve. Take Fig.
1 as an example. If peer 9 wants to find the spatial region at P12, it needs to
traverse the P2PR–tree for three branches. Because the region of P12 has the
overlapping phenomenon, peer 9 has to search the branches which are related to
the spatial region data until the spatial region data is found. Here, peer 9 needs
to search the first, second, and fourth branches in the R–tree. Therefore, when
the overlapping phenomenon occurs very often, it will cost much time to search
the data.

3 An NA–Tree Approach

In this Section, we present how to answer spatial exact match queries in P2P
systems. First, we describes the details of our structure. Next, we present our
proposed algorithm for performing insertion operations. Then, we use an example
to illustrate the process of the exact match.
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Fig. 1. An example: (a) spatial region data; (b) the P2PR-tree
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Fig. 2. An example of the P2PR–tree of a new addition data

3.1 Data Structure

In our method, we apply the NA–tree structure [2] to be as a spatial data index
in P2P systems. By using the index of an NA–tree, we can assign an object to
a peer in Chord. That is, we use an NA–tree approach in P2P systems. In an
NA–tree, an internal node can have nine, four, or two children, and a leaf node is
a terminal node. Data can be stored in an internal or a leaf node. An NA–tree is
a structure based on data location and organized by the spatial numbers. First,
the whole spatial region is decomposed into four regions. We let regionI be the
bucket numbers between 0 to 1

4 (Max bucket + 1) − 1, regionII be the bucket
numbers between 1

4 (Max bucket + 1) to 1
2 (Max bucket + 1) − 1, regionIII

be the bucket numbers between 1
2 (Max bucket + 1) to 3

4 (Max bucket + 1)
− 1, and regionIV be the bucket numbers between 3

4 (Max bucket + 1) to
Max bucket, as shown in Fig. 3–(a). Based on this decomposition, we find that
when an object is lying on the space, only nine cases are possible ( as shown in
Fig. 3–(b)).

Nodes in an NA–tree contain index objects entries of the form (entry number,
data[1..bucket capacity]), where entry number refers to the number of ob-
jects in this node, data[1..bucket bucket] is an array to store object data, and
bucket capacity denotes the maximum number of entries which can be stored in
the node.

Region I

Region IV

Region III

Region II

(a)

Root

1st_child 2nd_child 9th_child8th_child7th_child6th_child5th_child4th_child3rd_child

(b)

Fig. 3. The basic structure of an NA–tree: (a) four regions; (b) nine cases
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procedure Insertion begin

l:= The lower left coordinate of the spatial number of an object;

u:= The upper right coordinate of the spatial number of an object;

Find the node(nine cases) to which this object belongs at the first level

according to the spatial number (l, u);

Calculate the central point of the child node;

Insert the object into a node in the NA--tree;

if (node overflows = true)

begin

Split the node;

Dispatch objects into the next level nodes in the NA--tree;

Re-calculate the central point;

key := Key_Method_2(p, bp);

end

else

key := Key_Method_1(p, bp);

Assign the object to the peer or peers in Chord according to the key value;

end;

Fig. 4. Procedure Insertion

3.2 The Insertion Algorithm

In this section, we describe our algorithm for inserting spatial data objects into
peers in Chord. Procedure Insertion is shown in Fig. 4. Basically, we insert a
new rectangle into a peer in Chord according the key value which is generated
by the NA–tree.

Insert the Object into a node in the NA-tree. In procedure Insertion,
the first step in inserting an object, O(L, U), is to compute its spatial number,
i.e., the two bucket numbers of L and U . A bucket is numbered as a binary
string of 0’s and 1’s, the so–called DZ expression. The relationship between the
space decomposition process and the DZ expression is as follows [4]:

1. Symbols ’0’ and ’1’ in a DZ expression correspond to lower and upper half
regions, respectively, for each binary division along the y–axis. When a space
is divided on the x–axis, ’0’ indicates the left half, and ’1’ indicates right half
sub–areas.

2. The leftmost bit corresponds to the first binary division, and the nth bit
corresponds to the nth binary division of the area made by the (n−1)th
division.

We use two points, L(Xl, Yb) and U(Xr, Yt), to record the region of a spatial
object. Next, we calculate the corresponding bucket number of L(Xl, Yb) and
U(Xr, Yt), respectively. Here, we have to convert the bucket numbers from bi-
nary to decimal form. The resulting pair of the bucket number is noted as spatial
number. That is, we can use the spatial number to record an object. For conve-
nience, we use O(l, u) to denote the spatial number, where l is the bucket number
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Fig. 5. An example of the bucket numbering scheme, O(l, u) = (3, 14)
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Fig. 6. An example: (a) central points of nine cases; (b) central points in the NA-tree

of L(Xl, Yb) and u is the bucket number of U(Xr, Yt). According to the spatial
number (l, u), we will find the node (nine cases) to which this object belongs at
the first level. For example, in Fig. 5, the spatial number of the object O is (3,
14). Since l ∈ Region I and u ∈ Region IV, this object belongs to 9th child.

Then, we need to calculate the central point of the region that this object
belongs to. That is, our spatial region is decomposed into four regions. Based on
this composition, when an object is lying on the space, only nine cases possible.
Each case (or region) has its own central point. In other words, each node in the
NA–tree can be represented by its central point. Take Fig. 6–(a) as an example.
The range of x–axis is from 0 to 12. The range of y–axis is from 0 to 12. The
6th region’s central point is (6, 3). Hence, the 6th child in the NA–tree records
the cental point (6, 3). The other eight children in the NA–tree can get their
own central points in the same way as shown in Fig. 6–(b).

Next, this object is inserted into this node. In our NA–tree, an object is always
inserted into the node at the first level. However, when a node overflows, this
overflowing node is split. Then, all objects are dispatched into the next level.
Thus, an object can be stored in internal or leaf nodes. After inserting the object
into an NA–tree, we have to generate the key value to assign this object to an
appropriate peer in Chord. We have two methods to generate the key value of
an object. Basically, in both methods, first, we decide the first three bits of
a data key. Next, we generate the key value of the remaining bits. Finally, we
concatenate the first three and the remaining bits to get the key values of objects.

Function Key Method 1. When an object is inserted into the first level of
an NA–tree, function Key Method 1 that has three steps is called. First, we
use three bits to represent eight cases, because the Chord ring can be split into
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Fig. 7. An example: (a) eight partitions in the Chord ring; (b) the bit–expression in
each region

just eight partitions as shown in Fig. 7–(a). Each region in the NA–tree can
be expressed by using three bits as shown in Fig. 7–(b). In particular, when the
case of the 9th child occurs, we do not use additional bit–expression to represent
it. We still use the eight expression forms described above. We decide to which
case the object of 9th child should belong by the following steps: Each object
of 9th child has its own central point, and the first eight cases (or regions) have
their own central point (Cx, Cy). We calculate the distance between the central
point of the object and the central points of regions. Then, there will be eight
results. The smallest one is our candidate. And, we can decide which case the
object belong to according to the shortest distance. If there are more than one
candidate, the object belongs to all of them.

Second, we generate the remaining bits by adding (bp − 3) 0’s. Finally, we
concatenate two bit strings which are calculated by the first two steps. We know
that each object must be stored in the first peer of each partition in the Chord
ring, because the remaining bits are generated by adding 0’s.

Function Key Method 2. To avoid too many data to be stored in the same
peer, from the second level of the NA-tree, we call function Key Method 2
to calculate the key value of this object. There are three steps in function
Key Method 2. First, the first three bits of the key value are inherited from
the node’s parent. Next, we generate the remaining (bp−3) bits by taking the
central point of each region into consideration. Finally, we concatenate the first
three and the remaining bits to get the key value of an object.

In this second step that generates the remaining (bp−3) bits, we convert the
decimal numbers (Cx, Cy) into binary forms, where (Cx, Cy) is the central point
of each region. Next, the binary form of Cx shifts left one bit. Then, we apply
the exclusive–OR operation to Cx and Cy. We can get a new binary string and
choose the last (bp−3) bits to be our remaining bit string.

Assign the Object to the peer. When an object is assigned to a peer in
Chord, there are two buckets in each peer to store objects. One is to store
objects which are owned by the peer now. The other one is to store objects
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Fig. 8. An example: (a) objects’ distribution; (b) the NA–tree structure

which were owned by the peer before. The latter always happens when a node
in the NA–tree splits and all objects are re–assigned to peers.

Now, we use one example to describe how the insertion is processed. The
spatial distribution of objects is shown in Fig. 8–(a). Objects are inserted into
an NA–tree in an alphabetical order. The NA–tree structure is shown in Fig.
8–(b). In our NA–tree, objects can be inserted into the internal or the leaf nodes.
Because the capacity of each node is 2, the 4th and the 5th nodes need to be
split. Each node has a central point’s coordinate. Objects at the first level of
the NA–tree use function Key Method 1 to calculate their key values. Other
objects use function Key Method 2.

Let’s explain the case of object M in details. Object M belongs to the node
whose central point is (10, 14). First, we change the decimal numbers 10 and
14 to binary. We get that the binary forms of 10 and 14 are 1010 and 1110,
respectively. Next, the binary form of 10 shifts left one bit resulting in 10100.
Then, we will apply the exclusive–OR operation to strings 1010 (10) and 1110
(14). Finally, we can get a new binary sting, 11010, and choose the last two bits,
10, to be our remaining bit string. Finally, a key value of object M is generated
by concatenating two binary strings 011 and 10 resulting in 01110. According
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Fig. 9. An example: objects in Chord
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to each object’s key value, each object can be assign to an appropriate peer in
Chord. Fig. 9 shows that objects are assigned to peers in Chord according to
their own key values.

3.3 Answering the Spatial Exact Match Query

When we want to search a spatial object in P2P systems, first, we calculate
which region this object belongs to. Then, the key value is generated by function
Key Method 1 which is described above. By using this key value, we can find
a peer in the Chord ring. There are two buckets to store objects in each peer.
One is to store objects it has now. The other is to record objects it had before.
When we search a peer, there will be three cases:

1. The searching object is in the first bucket.
2. The searching object is in the second one.
3. The searching object is neither in the first bucket nor in the second one.

Case 1 means that we find the object and return the result, while Case 3 means
that we find nothing and stop searching. In Case 2, it means that the object
may be stored in some other peer in Chord. Therefore, we split the region and
generate the new key value following function Key Method 2. According to the
new key value, we search the object again until we cannot find the object in two
buckets of the peer.

For example, we want to find object B in Fig. 9. We get that object B belongs
to the 1st child in the NA–tree. Then, we use function Key Method 1 to generate
the key value, 00000. According to this key value, we search the peer, 00000, in
Chord. We can find object B in the first bucket of this peer.

If we want to find object M in Fig. 9. We get that object M belongs to the
4th child (i.e., 011) in the NA–tree. Then, we use function Key Method 1 to
generate the key value, 01100. According to this key value, we search the peer,
01100, in Chord. But we can not find object M in the first bucket of this peer.
However, we find object M in the second bucket of this peer. Therefore, we split
the region 4 and re–calculate the key value by function Key Method 2. Because
the object belongs to the 4th region, the first three bits are 011. Further, the
central point of the region is (10, 14). A new key value, 01110, is generated.
According to this key value, we search the peer, 01110, in Chord. We can find
object M in this peer’s bucket one.

4 Simulation Results

In this section, we compare our approach with the P2PR–tree. Here, we define
that the search cost in P2P systems is the number of visited peers [5]. Given
that the data space is 1000*1000, we took measurements for six different values
of the parameter P equal to 5, 6, 7, 8, 9, and 10, respectively. That is, there are
25, 26, 27, 28, 29, and 210 peers in our measurements. The data objects with the
average sizes 0.0025% and 0.0001% are uniformly distributed (without overlap)
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Fig. 10. A comparison of the search cost for processing a exact match query: (a)
avg size = 0.0025%; (b) avg size = 0.0001%

on the whole data space. Bucket capacity was assigned to be 10. For each spatial
data file, we create 100 rectangles randomly to do exact match queries, and then
calculate the average search cost of them.

Figure 10 shows the average search cost (in terms of the number of visited
peers) of our approach and the P2PR–tree. In the P2PR–tree, a MBR is a
region data as well as a peer. Hence, when the number of peers increases, the
number of objects increases and causes the overlapping problem. As the number
of peers increases, the search cost increases. In our approach, a MBR represents
an object in the space and peers are distributed in Chord. When the number of
peers increases, the objects are assigned to other peers in Chord. Therefore, as
the number of peers increases, the search cost increases. From Fig. 10 we observe
that our approach needs lower search cost than the P2PR–tree.

5 Conclusion

In this paper, based on the NA–tree, we have presented an approach to deal with
the spatial region data in the Chord system. The Chord ring is divided into eight
partitions. We use three bits to represent it. For remaining bits of a key value, we
have proposed two methods to generate it by adding 0’s in method 1 or taking
the central point of each region into consideration in method 2. The first method
is simple and applicable to the case that there are few objects in the P2P system.
The second method is applicable to the case that there are too many objects
in the P2P system. Then, we can get the key value by concatenating these two
bit strings. According to this key value, we can assign data objects to peers in
Chord. Our approach can support exact match queries in 2D space and reduce
the overlapping problem. From our simulation results, we have shown that the
number of visited peers in our approach is less than that in the P2PR–tree.
Hence, our approach by using the NA–tree in the Chord system has lower search
cost than the P2PR–tree.
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