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Abstract

Data broadcast is an efficient way to disseminate information to a large number of mobile
clients on the wireless environment. Adding an index data organization to the broadcast file
can save client power consumption with little increase in client waiting time. The existing
index technologies only consider equal access probabilities of data items. However, in real-
life applications, some data items may be more popular than others; that is, access patterns
of clients are skewed. In this paper, we propose a skewed distributed indexing, SDI, which
considers the access probabilities of data items and the replication of index nodes. The
proposed algorithm traverses an index tree to determine whether an index node should
be replicated by considering the access probability of its child node. In our experimental
results, we have shown that our proposed algorithm outperforms the variant-fanout index
tree and the distributed indexing.
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wireless network.)
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1 Introduction

In recent years, wireless communications have become very popular. The emergence of
powerful portable computers, along with advances in wireless communication technologies,
has made mobile computing a reality [3]. Although a wireless network with mobile clients
is essentially a distributed system, there are some characteristic features that make the
system unique and a fertile area of research [7], including asymmetry in communications,
frequent disconnections, power limitations and screen size. Each of these features has an
impact on how data can be effectively managed in a system with mobile clients [3].

For example, because of asymmetry in communications, there has been considerable
interest in delivering information to distributed mobile clients via wireless broadcast [16],
including wireless applications using palmtops to access airline schedules, stock activities,
traffic conditions and weather information on the road. In the wireless environments, the
communication bandwidth from servers to clients is much higher than that from clients
to servers. Under such environments, with the limited bandwidth of the wireless channel,
using the broadcast technique can serve with large numbers of mobile clients. That is, it
is independent of the number of clients tuning to the channel, i.e., scalability [4, 5, 25]. By
broadcasting the file periodically, mobile clients can specify predefined condition to filter
out the data they wanted [1, 2, 27]. Microsoft’s smart personal objects technology (SPOT),
for example, utilizes the broadcast technique to provide wireless data services [30]. With
a wide-area network based on the FM subcarrier technology, SPOT-based devices, e.g.,
watches, can continuously retrieve timely information such as news, weather, sports, and
stocks.

Because of power limits, power conservation is a key issue for the portable units (e.g.,
palmtops). When a palmtop is listening to the channel, its CPU must be in the active
mode to examine data packets. This is a waste of energy, since on average, only a very few
data packets are of interest to the particular unit. It is definitely beneficial if the palmtop
can slip into the doze mode most of the time and wake up only when the data of interest
is expected to arrive [12, 13]. This method is called selective tuning. As a consequence,
it is advantageous to use some special data organizations, such as tree-based, hash-based

and signature-based data organizations, to broadcast data over the wireless channel. In



this way, those mobile units can be guided to the data of interest efficiently and only
need to be actively listening to the broadcasting channel when the relevant information is
present. As a result, those mobile units can save a lot of power energy while retrieving
the relevant information, and lengthen their operating time without recharging. For a file
being broadcast on a channel, the following two parameters are of concern [9, 10]: (1)
Access time: The average time elapsed from the moment a client wants a record identified
by a primary key, to the point when the required record is downloaded by the client. (2)
Tuning time: The amount of time spent by a client listening to the channel. This will
determine the power consumed by the client to retrieve the required data.

Over the past few years, there have been many strategies for reducing power consump-
tion. For the uniform broadcast in which the same data item appears once in a broadcast
cycle, the flexible indexing [13], the hashing-based schemes [13], the tree-based indexing
[6, 8, 12], signature schemes [17, 18, 19, 20], the mixture of the index tree and the signa-
ture scheme [11], and the method using hashing and index tree techniques [31] have been
proposed. A skewed index tree based on data popularity patterns was considered in [7]. In
[14], the nonclustered index and multiple indexes were addressed. For energy efficient fil-
tering of nonuniform broadcast in which data records are broadcast according to the access
frequency, the studies in [25, 26, 28, 32| proposed indexing schemes. The above schemes
considered that there is only one broadcast channel. However, data can be broadcast over
multiple channels; therefore, [24] studied allocating index, [21] discussed arranging data,
and [15, 23] focused on index and data allocation. The work in [21, 22, 25] concerned on
the issue of fault tolerance. The research work on [33, 34] concerned on spatial indexes for
supporting spatial queries on the wireless data broadcast.

Since on the wireless broadcast, the access time is affected by the size of the broadcast file,
adding the index increases the access time, reducing the tuning time. If the size of the index
is too large, the whole broadcast file increases largely, resulting in the increase of the access
time. Moreover, if clients miss the corresponding index information to the requested data,
the clients have to wait for the next cycle to follow index probes, even though the requested
data is not being broadcast yet, i.e., a directory miss. In a directory miss, the client cannot

get the requested data in one broadcast cycle. Among the strategies for selective tuning,



Chen et al.’s variant-fanout ( VF') index tree [7] takes the access probabilities of data items
into consideration. More popular data may be frequently accessed by the clients than
less popular ones, i.e., skewed data access. For example, the weather conditions of hot
attractions may be more frequently accessed than those of cold ones.

However, VF assumes that data items are sorted according to access probabilities, and
an index tree is constructed according to this sorted order. In real-life applications, the
index tree should be constructed according to key values of the data items, not according to
access probabilities. Then, clients can efficiently traverse the index tree to get the requested
data according to its key value. Moreover, VF does not consider the replication issue of
index nodes. That means that clients always have to wait for the next cycle to traverse
the index tree to get the requested data, resulting in the increase of the access time. In
[12], Imielinski et al. proposed the distributed indexing (DI) considering the replication of
index nodes. However, DI does not consider the access probability of each data item in a
broadcast cycle and always replicates the index nodes of the fixed level. Therefore, in this
paper, we propose a skewed distributed indexing, SDI, considering the access probability of
each data item and the replication of index nodes to reduce the probability of the directory
miss of popular data.

The rest of this paper is organized as follows. In Section 2, we give a brief description
of the VF index tree and the distributed indexing. In Section 3, we present our proposed
skewed distributed indexing. In Section 4, we study the performance of the proposed
algorithm, and make a comparison with the distributed indexing by simulation. Finally, a

conclusion is presented in Section 5.

2 Background

In the wireless environments, a broadcast cycle consists of a collection of data items, which
are cyclically broadcast on the wireless channel. Mobile clients listen to the wireless channel
to retrieve the data item of interest. In this section, we first briefly describe the VF index

tree [7], and then the distributed indexing [12], over the broadcast cycle.
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Figure 1: An example of a VF index tree: (a) the original tree; (b) the final VF tree; (c)
the corresponding broadcast cycle.

2.1 The VF Index Tree

In [7], Chen et al. proposed the variant-fanout (VF) index tree for skewed access patterns
over the wireless broadcast. Figure 1 illustrates the VF index tree of four data items. VF
assumes that the broadcast data items (i) are sorted according to the descending order
of their access probabilities (Pr(i)), 1 < i < 4, }_, Pr(i) = 1. VF first attaches all
data items to the root node, R, as shown in Figure 1-(a). After some evaluation, VF
groups nodes with small access probabilities and moves them down to the next level. The
evaluation function is y(k) = (m—k —1) S5, Pr(i) — 3", Pr(i), 1 <k < m—2, where
k is the position of the child node and m is the degree of the root node. VF finds the
maximal value of y(k). If this value is less than or equal to zero, this grouping process is
terminated. Otherwise, data items from k£ + 1 to m are attached to a new index node, and
their access probabilities are aggregated to this node. In Figure 1-(a), the maximal value

of y(k), 1 <k <2 isy(l)=(4—1-1) x0.53 - (0.23+0.14 4+ 0.1) = 0.59. Therefore,
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Figure 2: Distributed indexing: (a) an index tree ; (b) the corresponding broadcast cycle.

data items 2-4 are attached to new index node al. Then, the same grouping process is
proceeded on the tree rooted by al. Finally, index node al is attached to the root node
R according to descending order of Pr(i), 1 < i < (k+ 1) = 2, and the same grouping
process is proceeded on the root node R. Figure 1-(b) shows the final VF tree of Figure
1-(a). The corresponding broadcast cycle of the VF tree is generated by traversing it in

preorder, as shown in Figure 1-(c).

2.2 The Distributed Indexing

Now, we describe Imielinski et al.’s distributed indexing, DI [12]. Figure 2 illustrates the
distributed indexing. An index tree for four data items is shown in Figure 2-(a). The
algorithm divides the index tree into two parts: the replicated part and the non-replicated
part. The algorithm replicates only the replicated part (R), and the number of times each
node appears in that part equals the number of its children. Moreover, each index node in
the replicated part has the control index used to direct clients to a proper branch (a higher-
level index node) in the index tree. On the other hand, each node in the non-replicated part
will appear only once in front of the set of data nodes it indexes. The distributed indexing
traverses the index tree and allocates the index nodes and the data nodes to buckets in a
broadcast cycle. The broadcast cycle of the distributed indexing according to Figure 2-(a)
is shown in Figure 2-(b). Index node R is broadcast first. Next, the subtree rooted by index
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node al is traversed in preorder, resulting in < al,1,2 >. After that, since the root node
R is in the replicated part, this node is broadcast again. Furthermore, traversal sequence
< a2,3,4 > of the subtree rooted by index node a2 is appended to the broadcast cycle.

Each data bucket contains the offset to the nearest-replicated index bucket.

3 Skewed Distributed Indexing

The VF index tree does not consider the replication of index nodes, resulting in the direc-
tory miss when clients tune into the broadcast channel to retrieve data. This will increase
the access time. The distributed indexing always determines the replicated part of an index
tree by the fixed level. However, when some data nodes are more popular than the others,
i.e., data nodes with different access probabilities, the access time may be improved if we
replicate the index nodes different times according to their different access probabilities.
In this section, we first state the assumptions of our proposed algorithm, and then present

the proposed algorithm, the skewed distributed indexing, SDI.

3.1 Assumptions

This paper focuses on the wireless environment. Some assumptions should be restricted in

order to make our work feasible [5]. These assumptions include:
1. Data appears once in the whole broadcast file, i.e., the uniform broadcast.
2. Data is read-only; there are no updates either by the clients or at the servers.

3. A bucket is a logical transmission unit on a broadcast channel. An index node can
be put into a bucket, the index bucket, and a data node can be put into one or more

buckets, the data bucket.

4. Clients make no use of their upstream communications capability; that is, they pro-

vide no feedback to servers.

5. When a client switches to the public channel, it can retrieve buckets immediately.
The delay for hardware and software preparation to begin monitoring the broadcast

channel is short.



6. The server broadcasts buckets over a single channel. All clients retrieve buckets from

this single channel.

7. The wireless channel is reliable; that is, clients receive correct data and do not miss

their data.

3.2 The Proposed Algorithm

Now, we present our proposed algorithm, the skewed distributed indexing, which replicates
the index nodes by considering the access probabilities of data nodes. Assume that the root
node is of level zero, its children are of level one, and so on. In the proposed algorithm,

the following variables are used:
1. n: the total number of data items in a broadcast cycle.

2. Pr(i): the access probability of each data node i, 1 <i<n, >, Pr(i) = 1.

w

. d: the degree of an index node.
4. h: the depth of an index tree.
5. l: the level of an index tree, 0 <[ < h.

1
6. py: the threshold for each level [, i.e., py = —

d’
The proposed algorithm is processed as follows.

1. Accumulate the access probabilities of the child nodes to their parent nodes in an

index tree in a bottom up manner.
2. Set the root node of the index tree to be replicated.
3. Traverse the index tree in preorder.

(a) If the access probability of an index node or a data node is greater than py, set

the parent node of the current node to be replicated.

4. Call procedure Mapping(the root node), as shown in Figure 3.



1. procedure Mapping(v)

2 if the parent node of v is set to be replicated then

3 Put the corresponding control index into the parent node of v
4: if the last broadcast node is not the same as the parent node of v then
5: Broadcast the parent node of v

6 end if

7 end if

8 Broadcast v

9: for all ¢ € the children of v do

10: Call procedure Mapping(c)

11: end for

12: end procedure

Figure 3: Procedure Mapping

Take Figure 4 for example. The access probability (Pr(i)) of each data node i is labeled
under it, and the sum of the access probabilities of all of data nodes could be normalized
to equal 1. In Step 1, the access probabilities of the child nodes are accumulated to the
corresponding parent nodes, as shown in Figure 4-(a). (Node that Figure 4-(b) also lists
the access probability of each node.) When a directory miss of the root node (R) occurs,
the client has to wait for the next cycle to traverse the index buckets. If the root node is
replicated, the probability of the directory miss in this cycle could be reduced. Therefore,
in Step 2, the root node in the index tree is set to be replicated. The dotted line under
the root node in Figure 4-(a) represents that the root node is in the replicated part; that
is, index node R will appear just before index nodes al and a2 in a broadcast cycle.

In Step 3, the algorithm traverses the index tree in preorder to determine the replicated
index node. Since the access probability (= 0.956) of index node a2 is greater than gy
(=1/2' = 0.5), the parent node (R) of index node a2 is set to be replicated before it. But
in this case, index node R has already been set to be replicated in Step 2. When index
node b3 is traversed, the parent node (a2) of index node b3 is set to be replicated before it,
since the access probability (= 0.932) of b3 is greater than puy (= 1/2? = 0.25). The dotted
line between index nodes a2 and b3 in Figure 4-(a) depicts this replicated information. The
final result of Step 3 is shown in Figure 4-(a). (Note that Figure 4-(b) lists 1, po, 13 and

py4 for the index tree shown in Figure 4-(a).)
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* prob.: the access probability
* 1st: the first level

* 2nd: the second level

* 3rd: the third level

* 4th: the fourth level
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Figure 4: Skewed distributed indexing: (a) an index tree; (b) the access probability of each
node and the threshold of each level; (¢) the corresponding broadcast cycle.
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Figure 5: Tuples in each index node

After setting the replicated information, the algorithm calls procedure Mapping, as
shown in Figure 3, with the parameter, the root node R, to generate the broadcast cycle.
In procedure Mapping, the nodes of an index tree are allocated in preorder. When the
node is allocated, if its parent node is set to be replicated and not the same as the last
broadcast node, the parent node will be allocated before this node. Note that, in [7], Chen
et al. mentioned that, every index node is always broadcast immediately before its child
nodes so that the extra access time of other nodes, which is incurred due to the presence of
this index node, is minimized. Therefore, procedure Mapping follows this principle. The
broadcast cycle corresponding to the index tree in Figure 4-(a) is shown in Figure 4-(c),
tuples in each index node are shown in Figure 5. Each tuple of index nodes is of form
< K,ptr >, where K is a key value and ptr is an offset to the next index or data node. If
the key value K of the requested data item is greater than or equal to the key value of the
current tuple and less than the key value of the following tuple, clients should follow the

ptr of the current tuple.
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Figure 6: The control indexes in the replicated index nodes

3.3 Control Index

Each non-replicated index node and each data node have an address to its nearest replicated
index node of the following broadcast [12]. This helps clients traverse a sequence of index
probes. Each replicated index node has the control index, which can direct clients to go
to the proper index node. Moreover, in the replicated index node, tuples of the control
index are allocated first, and then the original index tuples. The first tuple in the control
index contains key S of the latest broadcast data item. That is, if the value of key K of
the requested data item is greater than that of S (K > S), the requested data item was
already broadcast and the client has to wait for the beginning of the next broadcast cycle.
The remaining tuples contain the largest key L that is covered by the current index node.
If the value of key K of the requested data item is greater than that of L, the client will
be directed to the higher level index node. If the value of key K of the requested data
item is less than that of L and greater than that of S, the client will follow the entry of
the current index node. The control indexes of the replicated index nodes in Figure 4 are

shown in Figure 6, where R,.,;; denotes the root index node in the next cycle.

3.4 Access Protocol

We now present the access protocol of the proposed algorithm. Assume that a data item

with key K is requested. The access protocol is as follows [12].

1. Tune in to the broadcast channel receiving the current bucket.
2. Read the current bucket to get the offset of the nearest replicated index node which
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contains the control index, and go into the doze mode.
3. Tune in to the broadcast channel receiving the nearest replicated index node.

(a) If the control index indicates that the data item with key K was broadcast, go

into the doze mode until the beginning of the next broadcast cycle.

(b) If the control index does not have information about the data item with key K,

go to the higher level index node that contains the control index.

(c) If the control index indicates that the current index node can direct clients to

get the data item with key K, proceed as in Step 4.
4. Follow the sequence of index probes to obtain the data items with key K.

Consider the broadcast cycle as shown in Figure 4-(c) for example. When tuning in at
the beginning of data bucket 9, a client wants to retrieve data bucket 12. From data bucket
9, the client gets the offset to the nearest index bucket that has the control index, i.e.,
index bucket b3'. After retrieving index bucket b3, the client knows that data bucket 12 is
covered by the current index bucket through the second tuple (as shown in Figure 6) of the
control index. (Note that if an index node does not contain the control index to indicate
the index range, it cannot direct clients to follow the remaining index probes.) Therefore,
the client then gets the offset to index bucket ¢6, and finally retrieves data bucket 12. The
traversal sequence of this example in our skewed distributed indexing is < 9,53, ¢6,12 >.
The result of the distributed indexing for the same example is shown in Figure 7, and
the traversal sequence in the distributed indexing is < 9, R,eq, a2, b3, ¢6,12 >. Since the
access probability of data bucket 12 is high, reducing its probability of the directory miss
will decrease the average access time and tuning time. In this case, the proposed algorithm
can retrieve the data of a high access probability in the same cycle, shortening the access

time and tuning time.

4 Performance

In this section, we study the performance of the proposed algorithm. We first compare

our proposed algorithm with VF [7]. The three variations of the distributed indexing [8]
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Figure 7: Distributed indexing: (a) an index tree; (b) the corresponding broadcast cycle.

have a little improvement on the tuning time, and the access time is the same as that
in the original distributed indexing. Therefore, in the experimental results, we have only

compared our proposed algorithm with the distributed indexing [12].

4.1 The System Model

The parameters used in our performance model are shown in Table 1. Given n, the to-
tal number of data items, we generate n data items with the access probability, Pr(i),
1 < i < n, based on the Zipf distribution. The Zipf distribution is typically used to

model nonuniform access patterns. The Zipf distribution can be expressed as Pr(i) =

1/i)?
%, 1 < i < n, where # is a parameter named access skew coefficient or Zipf
j=1\1/]

factor. Different values of 6 yield the different Zipf distribution. When 6 = 0, we have

the uniform distribution. When the value of 6 increases, the access probabilities become
6

increasingly skewed [7]. For example, when § = 1 and n = 3, we have Pr(1) = e

2

S

Since the size of an index node is smaller than that of the data page, parameter Rp;

Pr(2) = %, and Pr(3)

represents the ratio of the size of the data page to that of the index node. That is, if the

size of an index node is 1, that of the data page is Rp;. In our simulations, we collect the
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Table 1: Parameters

Parameter Description

n The total number of data items
Rpr The ratio of the size of the data page to that of the index node
6 The Zipf factor

experimental results for 100 executions.

4.2 Analysis of Access Time and Tuning Time

For simplicity, we assume that a full index tree is built and that the clients tune in at the
beginning of each bucket. Since the size of an index node is smaller than that of a data
node, we assume that the ratio of the index node to the data node is 1 : Rp;. That is, if
the index node occupies one bucket in the broadcast cycle, the data node will occupy Rp;
contiguous buckets. Each data bucket of Rp; contiguous buckets contains the offset to the
nearest-replicated index node that is not broadcast yet. Therefore, if the initial probe of
the clients is in the data bucket, they do not need to retrieve all Rp; contiguous buckets
to get the offset to the nearest-replicated index node; that is, they retrieve only one data
bucket. In the following discussion, we measure the access time and the tuning time in
terms of buckets.

The control index in the replicated index nodes can direct the clients to reach the data
node that does not pass over. If the clients miss the corresponding replicated index node,
they have to wait for the next cycle to get the data bucket of interest. For the analysis
of the access time, there are two cases: (1) The clients tune in before the corresponding
nearest-replicated index node to the wanted data node; (2) the clients tune in after the
corresponding nearest-replicated index node. In the first case, the clients can retrieve the
data node of interest in the same cycle; in the second case, the clients have to wait for the
next cycle to retrieve that data node.

Assume that Distance(i, j) means the distance from the beginning of node i to the end
of node j. For Case 1, the access time, AT;,, from the initial probe bucket, ¢, to the

wanted data node, w, is Distance(t,w), as shown in Figure 8. For Case 2, the access

14



|l«——Distance (t, w)——
t

rt y Ci,,, nry, w
E : the initial probe bucket Ry,

I : the relevent index bucket

@ : the wanted data node (data buckets)

Figure 8: Case 1: The client tunes in before the corresponding nearest-replicated index
node, nr,, to the wanted data node, w.

time, AT}, is Distance(t,e) + Distance(b, w), where b represents the beginning bucket

in a broadcast cycle, and e represents the end bucket, as shown in Figure 9. Since an

index node occupies one bucket and a data node occupies Rp; contiguous buckets, the

probabilities of the initial probes in the index node and the data node are different. If the

initial probe is in the index node, the fraction of the average access time, fAT,,,, for the
1

wanted data node, w, is AT} ,, % 5O where B(C'is the size of the broadcast cycle; otherwise,

R

B—DCI" Assuming that rIndex is the total number of the replicated index
h—1 _

nodes, we have BC = rIndex + -1

node and A is the depth of an index tree. The second term represents the total number

fATt,u) = ATt,w X

+dh 1 x Rpr, where d is the degree of an index

of index nodes (buckets) in the original index tree, and the third term represents the total
number of data buckets. Let S,, represent the set of the initial probes that do not exceed
the corresponding nearest-replicated index node, nr,, to the wanted data node, w, and
T, represent the set of the initial probes that exceed it. The average access time, AAT,,

for the wanted data node, w, is Z FAT, ,, + Z fAT,,,. Let D represent the set of all

t€Sw t€Tw
data nodes in the broadcast cycle. The average access time for the whole broadcast cycle

is Y Pr(w)x AAT,.

YweD

Assume that Path(i, j) means the set of index nodes from node i to node j in an index
tree, not including the data node. Let r¢ be the root node in the index tree, and nr, be

the nearest-replicated index node to the wanted data node, w. We have the set, U, of
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Figure 9: Case 2: The client tunes in after the corresponding nearest-replicated index node,
nry, to the wanted data node, w.

the index nodes from the root node, rt, to the nearest-replicated index node, nr,, to the
wanted data node, w, i.e., U = Path(rt,nry). Let ci., be the closest-replicated index
node in U that is not passed over in the broadcast cycle, from the initial probe bucket, t,
to the wanted data node, w. Figure 8 depicts these defined variables. For the analysis of
the tuning time, similar to the analysis of the access time, there are two cases. For Case
1, the tuning time, T'T},,, from the initial probe bucket, ¢, to the wanted data node, w,
is 1 + |Path(city, w)| + Rpr. For Case 2, the tuning time, 7T}, from the initial probe
bucket, ¢, to the wanted data node, w, is 1 + h + Rpy.

If the initial probe is in the index bucket, the fraction of the tuning time, f77;,, for

1 R
the wanted data node, w, is TT},, X B—C’; otherwise, fTT},, =TT}, X B—DCI" The average
tuning time, ATT,,, for the wanted data node, w, is Z fTT, .+ Z fTT,,. Therefore, the
tes teT
average tuning time for the whole broadcast cycle is Z Pr(w) x ATT,,.
YweD

Assume that an index node and a data node are allocated to one bucket, respectively.
Following the analysis of the access time and tuning time mentioned above, Table 2 summa-
rizes the average access time and the average tuning time for the whole broadcast cycle in
Figures 7-(b) and 4-(c). In Table 2, the percentage in parentheses represents the improve-
ment percentage of the corresponding algorithm as the distributed indexing is the baseline.
It is clear that our proposed skewed distributed indexing could provide the better perfor-

mance on the average access time and the average tuning time for the whole broadcast
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Table 2: Comparison of the average access time and the average tuning time

Algorithm  Average access time Average tuning time

DI 28.357 5.97
SDI 20.383 (28%) 5.428 (9%)

* DI: the distributed indexing
* SDI: the skewed distributed indexing

cycle than the distributed indexing.

4.3 Simulation Results: SDI vs. VF

Since the data items for VF should be arranged in the descending order of access prob-
abilities, we generate n data items with their access probabilities of the descending order
based on the Zipf distribution. For our proposed algorithm, we build an index tree of at
most degree d for these n data items. Our proposed algorithm then traverses the index tree
to determine which index node should be replicated according to access probabilities of its
child nodes. For VF, it dynamically adjusts an index tree according to access probabilities
of index or data nodes.

To provide a fairly statistic basis for performance comparison between our proposed
algorithm and the compared one, we present confidence intervals for our experimental
results. A confidence interval for a population mean is an interval of values that is likely
to contain the true value of the population mean [29]. The 95% confidence interval for the
population mean provides a good balance between precision and reliability. Therefore, we
present the 95% confidence interval for our experimental results. A 95% confidence interval
for the population mean is given by (Z —1.96 x \/%, T+ 1.96 x \/%), where T is the sample
mean, s is the sample standard deviation, and ns is the number of the samples [29]. The
first term is called the lower confidence limit and the second is called the upper confidence
limit. If the upper confidence limit of the experimental results for our proposed SDI is less
than the lower confidence limit of these for the compared algorithm, we can conclude that
SDI has a statistically significant better performance than the compared algorithm.

Furthermore, to prove statistically significant differences of the experimental results
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Figure 10: A comparison of SDI and VF with increasing the number of data items: (a) the
average access time; (b) the average tuning time.

between our proposed algorithm and the compared one, we present an analysis of variance
(ANOVA). ANOVA is a method of testing the equality of population means by analyzing
sample variances [29]. If sample means that are close in value result in an F' test statistic
that is close to 1, we conclude that there is no significant difference among the sample means.
On the other hand, if the value of F' is excessively large, then we reject the clam of equal
means. In our experimental results, we use a 5% significant level; that is, the corresponding
critical value of F', Fygs, is 3.84 [29]. If the observed value of F' is greater than the value
of Fyo5, we conclude that there is sufficient evidence to reject the clam of equal means of
our proposed algorithm and the compared one. That is, there is a significant difference
between the mean of our proposed algorithm and that of the compared one. Otherwise, we
fail to reject the clam.

For the first experiment, we increase the total number of data items, n, from 200 to
1200 under d = 4 and Rp;y = 5. Moreover, for each fixed value of n, we randomly pick
100 samples under 6 = [0.8..1]; that is, the experimental result is an average of these 100
samples. Figure 10-(a) shows the experimental result of the average access time, and Table
3 lists its corresponding details of the figures. In Figure 10-(a), the x-axis represents the
number of data items in one broadcast cycle, and the y-axis represents the average access

time in terms of buckets. In Figure 10-(a), SDI_L and SDI_U represent the lower confidence
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Table 3: The average access time for the cases of increasing the number of data items

n SDI_L SDI SDI.U VF_L VF VE_U

200 557.416  557.745  558.073 1059.342 1074.641 1089.941
400 1187.448 1189.519 1191.589 2148.377 2188.314 2228.25
600 1674.432 1677.7 1680.969 3138.693 3171.228 3203.764
800 2226.986 2230.329 2233.672 4176.4 4236.891 4297.381
1000 2732.492 2737.169 2741.847 5187.916 5228.216 5268.517
1200 3644.478 3655.89  3667.303 6153.217 6231.154 6309.09

Table 4: The values of F' of the average access time for the cases of increasing the number
of data items

n 200 400 600 800 1000 1200
F4382.951 2396.352 8014.341 4214.206 14482.474 4106.362

limit and the upper confidence limit for SDI under the 95% confidence level, respectively.
That is, the values of SDI_L and SDI_U indicate the confidence intervals of the values
of SDI. VF_L and VF_U represent the lower confidence limit and the upper confidence
limit for VF under the 95% confidence level, respectively. That is, the values of VF_L and
VF_U indicate the confidence intervals of the values of VF. As the value of n increases,
the average access time of both our proposed SDI and VF increases. We can observe
that our proposed SDI outperforms VF in terms of the average access time under all of
the cases. This is because VF does not replicate index nodes resulting in the directory
miss. Moreover, the values of SDI_U are always less than those of VF_L. Furthermore, all
the corresponding values of F' shown in Table 4 are extremely greater than the value of
Fo05(= 3.84). Therefore, we can conclude that SDI has a statistically significant shorter
access time than VF.

Figure 10-(b) shows the experimental result of the average tuning time, and Table 5 lists
its corresponding details of the figures. In Figure 10-(b), the z-axis represents the number
of data items in one broadcast cycle, and the y-axis represents the average tuning time in
terms of buckets. We can observe that the average tuning time of our proposed algorithm is

shorter than that of VF. Moreover, the values of SDI_U are always less than those of VF_L.
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Table 5: The average tuning time for the cases of increasing the number of data items

n SDILL SDI SDI.U VF.L VF VE_.U

200 8.851 8.874  8.897 10.812 10.852 10.892
400 10.306 10.325 10.344 11.495 11.544 11.594
600 10.012 10.048 10.084 11.869 11.92 11.971
800 9.942 9974 10.006 12.187 12.237 12.287
1000 10.065 10.096 10.126 12.372 12.426 12.48

1200 11.652 11.662 11.673 12.53  12.589 12.647

Table 6: The values of F' of the average tuning time for the cases of increasing the number
of data items

n 200 400 600 800 1000 1200
F7033.342 2037.391 3407.423 5548.328 5409.219 932.173

Furthermore, all the corresponding values of F' shown in Table 6 are extremely greater
than the value of Fjo5(= 3.84). Therefore, we can conclude that SDI has a statistically
significant shorter tuning time than VF.

For the second experiment, we increase the Zipf factor # from 0.6 to 0.9 under d = 4 and
Rpr = 5. For each fixed value of f, we randomly pick 100 samples under n = [1000..1100];
that is, the experimental result is an average of these 100 samples. As the value of ¢
increases, access patterns become more skewed. Figure 11-(a) shows the experimental
result of the average access time, and Table 7 lists its corresponding details of the figures. In
Figure 11-(a), the z-axis represents the value of the Zipf factor 6, and the y-axis represents
the average access time. We can observe that the average access time of our proposed
algorithm is shorter than that of VF. Moreover, the values of SDI_U are always less than
those of VF_L under the 95% confidence level. Furthermore, all the corresponding values
of F' shown in Table 8 are extremely greater than the value of Fj o5(= 3.84). Therefore, we
can conclude that SDI has a statistically significant shorter access time than VF.

Figure 11-(b) shows the corresponding average tuning time, and Table 9 lists its details
of the figures. In Figure 11-(b), the z-axis represents the value of the Zipf factor , and

the y-axis represents the average tuning time. We can observe that the average tuning

20



—*— SDI_L

e —A— sDI

7000 | {1 sblu
VF_L
—/— VF
—@— VF U
¥

3000
T T T T T T

[
d
3

[
w
o

o2}
=}
s}
o

-

N

3

-
N
o

Y
o
o
o
Average tuning time

Average access time
2]
o
o

-
=
3

-
=
[=}

Figure 11: A comparison of SDI and VF with increasing the value of §: (a) the average
access time; (b) the average tuning time.

Table 7: The average access time for the cases of increasing the value of

6 SDI_L SDI SDI.U VF_L VF VF_U

0.6 3363.575 3440.777 3517.979 7158.904 7197.816 7236.728
0.65 3297.607 3374.157 3450.707 7287.141 7330.658 7374.175
0.7 3238.029 3308.802 3379.574 7354.934 7393.653 7432.372
0.75 3198.392 3264.053 3329.715 7160.913 7201.639 7242.365
0.8  3206.383 3262.205 3318.026 5650.65 5680.901 5711.153
0.85 3147.798 3201.831 3255.864 5568.705 5601.166 5633.627
0.9 3070.17  3121.827 3173.484 5467.566 ©5497.455 5527.344

Table 8: The values of F' of the average access time for the cases of increasing the value of
0

0 0.6 0.65 0.7 0.75 0.8 0.85 0.9
F 7254973 7755.937 9849.723 9976.879 5574.966 5566.040 6086.928
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Table 9: The average tuning time for the cases of increasing the value of ¢

¢ SDILL SDI SDI.U VF.L VF VF_.U

0.6 11.077 11.279 11.481 13.815 13.824 13.832
0.65 11.03 11.23 11.43  13.632 13.64 13.647
0.7 11.008 11.207 11.406 13.394 13.4 13.407
0.75 11.063 11.253 11.443 13.12 13.127 13.134
0.8 11.226 11.395 11.564 13.003 13.007 13.012
0.85 11.205 11.371 11.537 12.729 12.739 12.748
0.9 11.138 11.305 11.472 12.485 1249 12.494

Table 10: The values of F' of the average tuning time for the cases of increasing the value
of #

6 0.6 0.65 0.7 0.75 0.8 0.85 0.9
F 606.838 556.844 466.452 373.748 350.674 259.078 193.273

time of our proposed algorithm is shorter than that of VF under = 0.6-0.9. Moreover,
the values of SDI_U are always less than those of VF_L under the 95% confidence level.
Furthermore, all the corresponding values of F' shown in Table 10 are extremely greater
than the value of Fjo5(= 3.84). Therefore, we can conclude that SDI has a statistically
significant shorter tuning time than VF under 6 = 0.6-0.9.

4.4 Simulation Results: SDI vs. DI

After generating n data items with the access probability Pr(i), 1 < i < n, based on the
Zipf distribution, we randomly pick a permutation of these data items, and build an index
tree of at most degree d for them. The access probability of each index node in this index
tree is equal to the sum of the access probabilities of its child nodes. For our proposed
algorithm, the replicated index nodes are determined according to the access probabilities
of their child nodes by traversing the index tree. For the distributed indexing, the replicated
index nodes are determined by the replicated level in the index tree. Therefore, parameter
r is used to determine the replicated level in an index tree in the distributed indexing. The

1
optimum value of r for achieving the best access time is defined as r = |= X logg(n X (d —
2
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According to [13], the tuning time of such tree-based indexes depends on the level of an

index tree, and is bounded by [loggn]+2+ Rp;. Therefore, there is a limited improvement
on the tuning time among the tree-based indexes, and in our simulation results, we will
not show the comparison of the tuning time.

For the first simulation experiment, we increase the value of 6, the Zipf factor, from
1.5 to 3.0 under d = 6, n = 1000 and Rp; = 5. Figure 12 shows the experimental results
of the average access time. In Figure 12, the z-axis represents the value of the Zipf
factor 6, and the y-axis represents the average access time. As the value of  increases,
the access patterns become very skewed. We can observe that the average access time of
our proposed algorithm is shorter than that of DI. This is because our proposed algorithm
replicates the index nodes with a higher access probability, instead of always replicating
the index nodes with the fixed level. In this way, our proposed algorithm increases the
probability of accessing data items with a higher access probability in one broadcast cycle,
reducing the average access time. Moreover, the values of SDI_U are always less than those
of DI_L under the 95% confidence level. Furthermore, all the corresponding values of F
shown in Table 11 are greater than the value of Fy5(= 3.84). Therefore, we can conclude

that SDI has a statistically significant shorter access time than DI.
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Table 11: The values of F' of the average access time for the cases of increasing the value
of #

6 1.5 2.0 2.5 3.0
F 41252 40.664 34.059 29.375
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Figure 13: A comparison of the average access time of SDI and DI with increasing the
value of n.

For the second simulation experiment, we vary the number of data items, n, from 400
to 1200 under d = 6, Rp; = 5, and 6 = 3. Figure 13 shows the experimental results of the
average access time. In Figure 13, the x-axis represents the number of data items, n, and
the y-axis represents the average access time. Table 12 lists its corresponding details of the
figures. As the value of n increases, the average time of both algorithms increases. We can
observe that the average access time of our proposed algorithm is shorter than that of DI
The reason is the same as mentioned before. Moreover, the values of SDI_U are always
less than those of DI_L under the 95% confidence level. Furthermore, all the corresponding
values of F' shown in Table 13 are greater than the value of Fjo5(= 3.84). Therefore, we

can conclude that SDI has a statistically significant shorter access time than DI
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Table 12: The average access time for the cases of increasing the value of n

n SDI_L SDI SDI.U DI L DI DI.U

400 876.974  888.549  900.124  921.329  933.52 945.712
600 1309.834 1329.838 1349.841 1391.753 1413.155 1434.558
800 1720.864 1747.377 1773.889 1830.106 1858.266 1886.425
1000 2153.898 2184.653 2215.408 2291.697 2324.698 2357.699
1200 2605.614 2642.7 2679.785 2769.944 2809.572 2849.201

Table 13: The values of F' of the average access time for the cases of increasing the value
of n

n 400 600 800 1000 1200
F 27491 31.073 31.579 37.026 36.315

5 Conclusion

In this paper, we proposed the skewed distributed indexing for data broadcast with skewed
access patterns over the single channel on wireless environments. Our proposed algorithm
takes the access probability of each data item into consideration. Our proposed algorithm
replicates the index nodes with a higher access probability, instead of always replicating the
index nodes with the fixed level as in the distributed indexing. From our simulation results,
we have shown that the proposed algorithm needs the shorter average access time than VF
and the distributed indexing in many cases. How to investigate the index structure for

data with skewed access patterns over multiple channels is the possible future work.
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