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1 Introdu
tionIn re
ent years, wireless 
ommuni
ations have be
ome very popular. The emergen
e ofpowerful portable 
omputers, along with advan
es in wireless 
ommuni
ation te
hnologies,has made mobile 
omputing a reality [3℄. Although a wireless network with mobile 
lientsis essentially a distributed system, there are some 
hara
teristi
 features that make thesystem unique and a fertile area of resear
h [7℄, in
luding asymmetry in 
ommuni
ations,frequent dis
onne
tions, power limitations and s
reen size. Ea
h of these features has animpa
t on how data 
an be e�e
tively managed in a system with mobile 
lients [3℄.For example, be
ause of asymmetry in 
ommuni
ations, there has been 
onsiderableinterest in delivering information to distributed mobile 
lients via wireless broad
ast [16℄,in
luding wireless appli
ations using palmtops to a

ess airline s
hedules, sto
k a
tivities,traÆ
 
onditions and weather information on the road. In the wireless environments, the
ommuni
ation bandwidth from servers to 
lients is mu
h higher than that from 
lientsto servers. Under su
h environments, with the limited bandwidth of the wireless 
hannel,using the broad
ast te
hnique 
an serve with large numbers of mobile 
lients. That is, itis independent of the number of 
lients tuning to the 
hannel, i.e., s
alability [4, 5, 25℄. Bybroad
asting the �le periodi
ally, mobile 
lients 
an spe
ify prede�ned 
ondition to �lterout the data they wanted [1, 2, 27℄. Mi
rosoft's smart personal obje
ts te
hnology (SPOT),for example, utilizes the broad
ast te
hnique to provide wireless data servi
es [30℄. Witha wide-area network based on the FM sub
arrier te
hnology, SPOT-based devi
es, e.g.,wat
hes, 
an 
ontinuously retrieve timely information su
h as news, weather, sports, andsto
ks.Be
ause of power limits, power 
onservation is a key issue for the portable units (e.g.,palmtops). When a palmtop is listening to the 
hannel, its CPU must be in the a
tivemode to examine data pa
kets. This is a waste of energy, sin
e on average, only a very fewdata pa
kets are of interest to the parti
ular unit. It is de�nitely bene�
ial if the palmtop
an slip into the doze mode most of the time and wake up only when the data of interestis expe
ted to arrive [12, 13℄. This method is 
alled sele
tive tuning. As a 
onsequen
e,it is advantageous to use some spe
ial data organizations, su
h as tree-based, hash-basedand signature-based data organizations, to broad
ast data over the wireless 
hannel. In1



this way, those mobile units 
an be guided to the data of interest eÆ
iently and onlyneed to be a
tively listening to the broad
asting 
hannel when the relevant information ispresent. As a result, those mobile units 
an save a lot of power energy while retrievingthe relevant information, and lengthen their operating time without re
harging. For a �lebeing broad
ast on a 
hannel, the following two parameters are of 
on
ern [9, 10℄: (1)A

ess time: The average time elapsed from the moment a 
lient wants a re
ord identi�edby a primary key, to the point when the required re
ord is downloaded by the 
lient. (2)Tuning time: The amount of time spent by a 
lient listening to the 
hannel. This willdetermine the power 
onsumed by the 
lient to retrieve the required data.Over the past few years, there have been many strategies for redu
ing power 
onsump-tion. For the uniform broad
ast in whi
h the same data item appears on
e in a broad
ast
y
le, the 
exible indexing [13℄, the hashing-based s
hemes [13℄, the tree-based indexing[6, 8, 12℄, signature s
hemes [17, 18, 19, 20℄, the mixture of the index tree and the signa-ture s
heme [11℄, and the method using hashing and index tree te
hniques [31℄ have beenproposed. A skewed index tree based on data popularity patterns was 
onsidered in [7℄. In[14℄, the non
lustered index and multiple indexes were addressed. For energy eÆ
ient �l-tering of nonuniform broad
ast in whi
h data re
ords are broad
ast a

ording to the a

essfrequen
y, the studies in [25, 26, 28, 32℄ proposed indexing s
hemes. The above s
hemes
onsidered that there is only one broad
ast 
hannel. However, data 
an be broad
ast overmultiple 
hannels; therefore, [24℄ studied allo
ating index, [21℄ dis
ussed arranging data,and [15, 23℄ fo
used on index and data allo
ation. The work in [21, 22, 25℄ 
on
erned onthe issue of fault toleran
e. The resear
h work on [33, 34℄ 
on
erned on spatial indexes forsupporting spatial queries on the wireless data broad
ast.Sin
e on the wireless broad
ast, the a

ess time is a�e
ted by the size of the broad
ast �le,adding the index in
reases the a

ess time, redu
ing the tuning time. If the size of the indexis too large, the whole broad
ast �le in
reases largely, resulting in the in
rease of the a

esstime. Moreover, if 
lients miss the 
orresponding index information to the requested data,the 
lients have to wait for the next 
y
le to follow index probes, even though the requesteddata is not being broad
ast yet, i.e., a dire
tory miss. In a dire
tory miss, the 
lient 
annotget the requested data in one broad
ast 
y
le. Among the strategies for sele
tive tuning,2



Chen et al.'s variant-fanout (VF ) index tree [7℄ takes the a

ess probabilities of data itemsinto 
onsideration. More popular data may be frequently a

essed by the 
lients thanless popular ones, i.e., skewed data a

ess. For example, the weather 
onditions of hotattra
tions may be more frequently a

essed than those of 
old ones.However, VF assumes that data items are sorted a

ording to a

ess probabilities, andan index tree is 
onstru
ted a

ording to this sorted order. In real-life appli
ations, theindex tree should be 
onstru
ted a

ording to key values of the data items, not a

ording toa

ess probabilities. Then, 
lients 
an eÆ
iently traverse the index tree to get the requesteddata a

ording to its key value. Moreover, VF does not 
onsider the repli
ation issue ofindex nodes. That means that 
lients always have to wait for the next 
y
le to traversethe index tree to get the requested data, resulting in the in
rease of the a

ess time. In[12℄, Imielinski et al. proposed the distributed indexing (DI ) 
onsidering the repli
ation ofindex nodes. However, DI does not 
onsider the a

ess probability of ea
h data item in abroad
ast 
y
le and always repli
ates the index nodes of the �xed level. Therefore, in thispaper, we propose a skewed distributed indexing, SDI, 
onsidering the a

ess probability ofea
h data item and the repli
ation of index nodes to redu
e the probability of the dire
torymiss of popular data.The rest of this paper is organized as follows. In Se
tion 2, we give a brief des
riptionof the VF index tree and the distributed indexing. In Se
tion 3, we present our proposedskewed distributed indexing. In Se
tion 4, we study the performan
e of the proposedalgorithm, and make a 
omparison with the distributed indexing by simulation. Finally, a
on
lusion is presented in Se
tion 5.2 Ba
kgroundIn the wireless environments, a broad
ast 
y
le 
onsists of a 
olle
tion of data items, whi
hare 
y
li
ally broad
ast on the wireless 
hannel. Mobile 
lients listen to the wireless 
hannelto retrieve the data item of interest. In this se
tion, we �rst brie
y des
ribe the VF indextree [7℄, and then the distributed indexing [12℄, over the broad
ast 
y
le.
3
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)Figure 1: An example of a VF index tree: (a) the original tree; (b) the �nal VF tree; (
)the 
orresponding broad
ast 
y
le.2.1 The VF Index TreeIn [7℄, Chen et al. proposed the variant-fanout (VF ) index tree for skewed a

ess patternsover the wireless broad
ast. Figure 1 illustrates the VF index tree of four data items. VFassumes that the broad
ast data items (i) are sorted a

ording to the des
ending orderof their a

ess probabilities (Pr(i)), 1 � i � 4, P4i=1 Pr(i) = 1. VF �rst atta
hes alldata items to the root node, R, as shown in Figure 1-(a). After some evaluation, VFgroups nodes with small a

ess probabilities and moves them down to the next level. Theevaluation fun
tion is y(k) = (m� k� 1)Pki=1 Pr(i)�Pmi=k+1 Pr(i), 1 � k � m� 2, wherek is the position of the 
hild node and m is the degree of the root node. VF �nds themaximal value of y(k). If this value is less than or equal to zero, this grouping pro
ess isterminated. Otherwise, data items from k+1 to m are atta
hed to a new index node, andtheir a

ess probabilities are aggregated to this node. In Figure 1-(a), the maximal valueof y(k), 1 � k � 2, is y(1) = (4 � 1 � 1) � 0:53 � (0:23 + 0:14 + 0:1) = 0:59. Therefore,4
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orresponding broad
ast 
y
le.data items 2-4 are atta
hed to new index node a1. Then, the same grouping pro
ess ispro
eeded on the tree rooted by a1. Finally, index node a1 is atta
hed to the root nodeR a

ording to des
ending order of Pr(i), 1 � i � (k + 1) = 2, and the same groupingpro
ess is pro
eeded on the root node R. Figure 1-(b) shows the �nal VF tree of Figure1-(a). The 
orresponding broad
ast 
y
le of the VF tree is generated by traversing it inpreorder, as shown in Figure 1-(
).2.2 The Distributed IndexingNow, we des
ribe Imielinski et al.'s distributed indexing, DI [12℄. Figure 2 illustrates thedistributed indexing. An index tree for four data items is shown in Figure 2-(a). Thealgorithm divides the index tree into two parts: the repli
ated part and the non-repli
atedpart. The algorithm repli
ates only the repli
ated part (R), and the number of times ea
hnode appears in that part equals the number of its 
hildren. Moreover, ea
h index node inthe repli
ated part has the 
ontrol index used to dire
t 
lients to a proper bran
h (a higher-level index node) in the index tree. On the other hand, ea
h node in the non-repli
ated partwill appear only on
e in front of the set of data nodes it indexes. The distributed indexingtraverses the index tree and allo
ates the index nodes and the data nodes to bu
kets in abroad
ast 
y
le. The broad
ast 
y
le of the distributed indexing a

ording to Figure 2-(a)is shown in Figure 2-(b). Index node R is broad
ast �rst. Next, the subtree rooted by index5



node a1 is traversed in preorder, resulting in < a1; 1; 2 >. After that, sin
e the root nodeR is in the repli
ated part, this node is broad
ast again. Furthermore, traversal sequen
e< a2; 3; 4 > of the subtree rooted by index node a2 is appended to the broad
ast 
y
le.Ea
h data bu
ket 
ontains the o�set to the nearest-repli
ated index bu
ket.3 Skewed Distributed IndexingThe VF index tree does not 
onsider the repli
ation of index nodes, resulting in the dire
-tory miss when 
lients tune into the broad
ast 
hannel to retrieve data. This will in
reasethe a

ess time. The distributed indexing always determines the repli
ated part of an indextree by the �xed level. However, when some data nodes are more popular than the others,i.e., data nodes with di�erent a

ess probabilities, the a

ess time may be improved if werepli
ate the index nodes di�erent times a

ording to their di�erent a

ess probabilities.In this se
tion, we �rst state the assumptions of our proposed algorithm, and then presentthe proposed algorithm, the skewed distributed indexing, SDI.3.1 AssumptionsThis paper fo
uses on the wireless environment. Some assumptions should be restri
ted inorder to make our work feasible [5℄. These assumptions in
lude:1. Data appears on
e in the whole broad
ast �le, i.e., the uniform broad
ast.2. Data is read-only; there are no updates either by the 
lients or at the servers.3. A bu
ket is a logi
al transmission unit on a broad
ast 
hannel. An index node 
anbe put into a bu
ket, the index bu
ket, and a data node 
an be put into one or morebu
kets, the data bu
ket.4. Clients make no use of their upstream 
ommuni
ations 
apability; that is, they pro-vide no feedba
k to servers.5. When a 
lient swit
hes to the publi
 
hannel, it 
an retrieve bu
kets immediately.The delay for hardware and software preparation to begin monitoring the broad
ast
hannel is short. 6



6. The server broad
asts bu
kets over a single 
hannel. All 
lients retrieve bu
kets fromthis single 
hannel.7. The wireless 
hannel is reliable; that is, 
lients re
eive 
orre
t data and do not misstheir data.3.2 The Proposed AlgorithmNow, we present our proposed algorithm, the skewed distributed indexing, whi
h repli
atesthe index nodes by 
onsidering the a

ess probabilities of data nodes. Assume that the rootnode is of level zero, its 
hildren are of level one, and so on. In the proposed algorithm,the following variables are used:1. n: the total number of data items in a broad
ast 
y
le.2. Pr(i): the a

ess probability of ea
h data node i, 1 � i � n, Pni=1 Pr(i) = 1.3. d: the degree of an index node.4. h: the depth of an index tree.5. l: the level of an index tree, 0 � l < h.6. �l: the threshold for ea
h level l, i.e., �l = 1dl .The proposed algorithm is pro
essed as follows.1. A

umulate the a

ess probabilities of the 
hild nodes to their parent nodes in anindex tree in a bottom up manner.2. Set the root node of the index tree to be repli
ated.3. Traverse the index tree in preorder.(a) If the a

ess probability of an index node or a data node is greater than �l, setthe parent node of the 
urrent node to be repli
ated.4. Call pro
edure Mapping(the root node), as shown in Figure 3.7



1: pro
edure Mapping(v)2: if the parent node of v is set to be repli
ated then3: Put the 
orresponding 
ontrol index into the parent node of v4: if the last broad
ast node is not the same as the parent node of v then5: Broad
ast the parent node of v6: end if7: end if8: Broad
ast v9: for all 
 2 the 
hildren of v do10: Call pro
edure Mapping(
)11: end for12: end pro
edure Figure 3: Pro
edure MappingTake Figure 4 for example. The a

ess probability (Pr(i)) of ea
h data node i is labeledunder it, and the sum of the a

ess probabilities of all of data nodes 
ould be normalizedto equal 1. In Step 1, the a

ess probabilities of the 
hild nodes are a

umulated to the
orresponding parent nodes, as shown in Figure 4-(a). (Node that Figure 4-(b) also liststhe a

ess probability of ea
h node.) When a dire
tory miss of the root node (R) o

urs,the 
lient has to wait for the next 
y
le to traverse the index bu
kets. If the root node isrepli
ated, the probability of the dire
tory miss in this 
y
le 
ould be redu
ed. Therefore,in Step 2, the root node in the index tree is set to be repli
ated. The dotted line underthe root node in Figure 4-(a) represents that the root node is in the repli
ated part; thatis, index node R will appear just before index nodes a1 and a2 in a broad
ast 
y
le.In Step 3, the algorithm traverses the index tree in preorder to determine the repli
atedindex node. Sin
e the a

ess probability (= 0:956) of index node a2 is greater than �1(= 1=21 = 0:5), the parent node (R) of index node a2 is set to be repli
ated before it. Butin this 
ase, index node R has already been set to be repli
ated in Step 2. When indexnode b3 is traversed, the parent node (a2) of index node b3 is set to be repli
ated before it,sin
e the a

ess probability (= 0:932) of b3 is greater than �2 (= 1=22 = 0:25). The dottedline between index nodes a2 and b3 in Figure 4-(a) depi
ts this repli
ated information. The�nal result of Step 3 is shown in Figure 4-(a). (Note that Figure 4-(b) lists �1; �2; �3 and�4 for the index tree shown in Figure 4-(a).)8
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To data buckets
 Figure 5: Tuples in ea
h index nodeAfter setting the repli
ated information, the algorithm 
alls pro
edure Mapping, asshown in Figure 3, with the parameter, the root node R, to generate the broad
ast 
y
le.In pro
edure Mapping, the nodes of an index tree are allo
ated in preorder. When thenode is allo
ated, if its parent node is set to be repli
ated and not the same as the lastbroad
ast node, the parent node will be allo
ated before this node. Note that, in [7℄, Chenet al. mentioned that, every index node is always broad
ast immediately before its 
hildnodes so that the extra a

ess time of other nodes, whi
h is in
urred due to the presen
e ofthis index node, is minimized. Therefore, pro
edure Mapping follows this prin
iple. Thebroad
ast 
y
le 
orresponding to the index tree in Figure 4-(a) is shown in Figure 4-(
),tuples in ea
h index node are shown in Figure 5. Ea
h tuple of index nodes is of form< K; ptr >, where K is a key value and ptr is an o�set to the next index or data node. Ifthe key value K of the requested data item is greater than or equal to the key value of the
urrent tuple and less than the key value of the following tuple, 
lients should follow theptr of the 
urrent tuple.
10
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Figure 6: The 
ontrol indexes in the repli
ated index nodes3.3 Control IndexEa
h non-repli
ated index node and ea
h data node have an address to its nearest repli
atedindex node of the following broad
ast [12℄. This helps 
lients traverse a sequen
e of indexprobes. Ea
h repli
ated index node has the 
ontrol index, whi
h 
an dire
t 
lients to goto the proper index node. Moreover, in the repli
ated index node, tuples of the 
ontrolindex are allo
ated �rst, and then the original index tuples. The �rst tuple in the 
ontrolindex 
ontains key S of the latest broad
ast data item. That is, if the value of key K ofthe requested data item is greater than that of S (K > S), the requested data item wasalready broad
ast and the 
lient has to wait for the beginning of the next broad
ast 
y
le.The remaining tuples 
ontain the largest key L that is 
overed by the 
urrent index node.If the value of key K of the requested data item is greater than that of L, the 
lient willbe dire
ted to the higher level index node. If the value of key K of the requested dataitem is less than that of L and greater than that of S, the 
lient will follow the entry ofthe 
urrent index node. The 
ontrol indexes of the repli
ated index nodes in Figure 4 areshown in Figure 6, where Rnext denotes the root index node in the next 
y
le.3.4 A

ess Proto
olWe now present the a

ess proto
ol of the proposed algorithm. Assume that a data itemwith key K is requested. The a

ess proto
ol is as follows [12℄.1. Tune in to the broad
ast 
hannel re
eiving the 
urrent bu
ket.2. Read the 
urrent bu
ket to get the o�set of the nearest repli
ated index node whi
h11




ontains the 
ontrol index, and go into the doze mode.3. Tune in to the broad
ast 
hannel re
eiving the nearest repli
ated index node.(a) If the 
ontrol index indi
ates that the data item with key K was broad
ast, gointo the doze mode until the beginning of the next broad
ast 
y
le.(b) If the 
ontrol index does not have information about the data item with key K,go to the higher level index node that 
ontains the 
ontrol index.(
) If the 
ontrol index indi
ates that the 
urrent index node 
an dire
t 
lients toget the data item with key K, pro
eed as in Step 4.4. Follow the sequen
e of index probes to obtain the data items with key K.Consider the broad
ast 
y
le as shown in Figure 4-(
) for example. When tuning in atthe beginning of data bu
ket 9, a 
lient wants to retrieve data bu
ket 12. From data bu
ket9, the 
lient gets the o�set to the nearest index bu
ket that has the 
ontrol index, i.e.,index bu
ket b30. After retrieving index bu
ket b30, the 
lient knows that data bu
ket 12 is
overed by the 
urrent index bu
ket through the se
ond tuple (as shown in Figure 6) of the
ontrol index. (Note that if an index node does not 
ontain the 
ontrol index to indi
atethe index range, it 
annot dire
t 
lients to follow the remaining index probes.) Therefore,the 
lient then gets the o�set to index bu
ket 
6, and �nally retrieves data bu
ket 12. Thetraversal sequen
e of this example in our skewed distributed indexing is < 9; b30; 
6; 12 >.The result of the distributed indexing for the same example is shown in Figure 7, andthe traversal sequen
e in the distributed indexing is < 9; Rnext; a2; b3; 
6; 12 >. Sin
e thea

ess probability of data bu
ket 12 is high, redu
ing its probability of the dire
tory misswill de
rease the average a

ess time and tuning time. In this 
ase, the proposed algorithm
an retrieve the data of a high a

ess probability in the same 
y
le, shortening the a

esstime and tuning time.4 Performan
eIn this se
tion, we study the performan
e of the proposed algorithm. We �rst 
ompareour proposed algorithm with VF [7℄. The three variations of the distributed indexing [8℄12
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orresponding broad
ast 
y
le.have a little improvement on the tuning time, and the a

ess time is the same as thatin the original distributed indexing. Therefore, in the experimental results, we have only
ompared our proposed algorithm with the distributed indexing [12℄.4.1 The System ModelThe parameters used in our performan
e model are shown in Table 1. Given n, the to-tal number of data items, we generate n data items with the a

ess probability, Pr(i),1 � i � n, based on the Zipf distribution. The Zipf distribution is typi
ally used tomodel nonuniform a

ess patterns. The Zipf distribution 
an be expressed as Pr(i) =(1=i)�Pnj=1(1=j)� , 1 � i � n, where � is a parameter named a

ess skew 
oeÆ
ient or Zipffa
tor. Di�erent values of � yield the di�erent Zipf distribution. When � = 0, we havethe uniform distribution. When the value of � in
reases, the a

ess probabilities be
omein
reasingly skewed [7℄. For example, when � = 1 and n = 3, we have Pr(1) = 611,Pr(2) = 311, and Pr(3) = 211.Sin
e the size of an index node is smaller than that of the data page, parameter RDIrepresents the ratio of the size of the data page to that of the index node. That is, if thesize of an index node is 1, that of the data page is RDI . In our simulations, we 
olle
t the13



Table 1: ParametersParameter Des
riptionn The total number of data itemsRDI The ratio of the size of the data page to that of the index node� The Zipf fa
torexperimental results for 100 exe
utions.4.2 Analysis of A

ess Time and Tuning TimeFor simpli
ity, we assume that a full index tree is built and that the 
lients tune in at thebeginning of ea
h bu
ket. Sin
e the size of an index node is smaller than that of a datanode, we assume that the ratio of the index node to the data node is 1 : RDI . That is, ifthe index node o

upies one bu
ket in the broad
ast 
y
le, the data node will o

upy RDI
ontiguous bu
kets. Ea
h data bu
ket of RDI 
ontiguous bu
kets 
ontains the o�set to thenearest-repli
ated index node that is not broad
ast yet. Therefore, if the initial probe ofthe 
lients is in the data bu
ket, they do not need to retrieve all RDI 
ontiguous bu
ketsto get the o�set to the nearest-repli
ated index node; that is, they retrieve only one databu
ket. In the following dis
ussion, we measure the a

ess time and the tuning time interms of bu
kets.The 
ontrol index in the repli
ated index nodes 
an dire
t the 
lients to rea
h the datanode that does not pass over. If the 
lients miss the 
orresponding repli
ated index node,they have to wait for the next 
y
le to get the data bu
ket of interest. For the analysisof the a

ess time, there are two 
ases: (1) The 
lients tune in before the 
orrespondingnearest-repli
ated index node to the wanted data node; (2) the 
lients tune in after the
orresponding nearest-repli
ated index node. In the �rst 
ase, the 
lients 
an retrieve thedata node of interest in the same 
y
le; in the se
ond 
ase, the 
lients have to wait for thenext 
y
le to retrieve that data node.Assume that Distan
e(i; j) means the distan
e from the beginning of node i to the endof node j. For Case 1, the a

ess time, ATt;w, from the initial probe bu
ket, t, to thewanted data node, w, is Distan
e(t; w), as shown in Figure 8. For Case 2, the a

ess14
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Figure 8: Case 1: The 
lient tunes in before the 
orresponding nearest-repli
ated indexnode, nrw, to the wanted data node, w.time, ATt;w, is Distan
e(t; e) + Distan
e(b; w), where b represents the beginning bu
ketin a broad
ast 
y
le, and e represents the end bu
ket, as shown in Figure 9. Sin
e anindex node o

upies one bu
ket and a data node o

upies RDI 
ontiguous bu
kets, theprobabilities of the initial probes in the index node and the data node are di�erent. If theinitial probe is in the index node, the fra
tion of the average a

ess time, fATt;w, for thewanted data node, w, is ATt;w� 1BC , where BC is the size of the broad
ast 
y
le; otherwise,fATt;w = ATt;w � RDIBC . Assuming that rIndex is the total number of the repli
ated indexnodes, we have BC = rIndex + dh�1 � 1d� 1 + dh�1 � RDI , where d is the degree of an indexnode and h is the depth of an index tree. The se
ond term represents the total numberof index nodes (bu
kets) in the original index tree, and the third term represents the totalnumber of data bu
kets. Let Sw represent the set of the initial probes that do not ex
eedthe 
orresponding nearest-repli
ated index node, nrw; to the wanted data node, w, andTw represent the set of the initial probes that ex
eed it. The average a

ess time, AATw,for the wanted data node, w, is Xt2Sw fATt;w + Xt2Tw fATt;w. Let D represent the set of alldata nodes in the broad
ast 
y
le. The average a

ess time for the whole broad
ast 
y
leis X8w2DPr(w)� AATw.Assume that Path(i; j) means the set of index nodes from node i to node j in an indextree, not in
luding the data node. Let rt be the root node in the index tree, and nrw bethe nearest-repli
ated index node to the wanted data node, w. We have the set, U , of15
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Figure 9: Case 2: The 
lient tunes in after the 
orresponding nearest-repli
ated index node,nrw, to the wanted data node, w.the index nodes from the root node, rt, to the nearest-repli
ated index node, nrw, to thewanted data node, w, i:e:, U = Path(rt; nrw). Let 
it;w be the 
losest-repli
ated indexnode in U that is not passed over in the broad
ast 
y
le, from the initial probe bu
ket, t,to the wanted data node, w. Figure 8 depi
ts these de�ned variables. For the analysis ofthe tuning time, similar to the analysis of the a

ess time, there are two 
ases. For Case1, the tuning time, TTt;w, from the initial probe bu
ket, t, to the wanted data node, w,is 1 + jPath(
it;w; w)j + RDI . For Case 2, the tuning time, TTt;w, from the initial probebu
ket, t, to the wanted data node, w, is 1 + h+RDI .If the initial probe is in the index bu
ket, the fra
tion of the tuning time, fTTt;w, forthe wanted data node, w, is TTt;w � 1BC ; otherwise, fTTt;w = TTt;w � RDIBC . The averagetuning time, ATTw, for the wanted data node, w, isXt2S fTTt;w+Xt2T fTTt;w. Therefore, theaverage tuning time for the whole broad
ast 
y
le is X8w2DPr(w)� ATTw.Assume that an index node and a data node are allo
ated to one bu
ket, respe
tively.Following the analysis of the a

ess time and tuning time mentioned above, Table 2 summa-rizes the average a

ess time and the average tuning time for the whole broad
ast 
y
le inFigures 7-(b) and 4-(
). In Table 2, the per
entage in parentheses represents the improve-ment per
entage of the 
orresponding algorithm as the distributed indexing is the baseline.It is 
lear that our proposed skewed distributed indexing 
ould provide the better perfor-man
e on the average a

ess time and the average tuning time for the whole broad
ast16



Table 2: Comparison of the average a

ess time and the average tuning timeAlgorithm Average a

ess time Average tuning timeDI 28:357 5:97SDI 20:383 (28%) 5:428 (9%)* DI : the distributed indexing* SDI : the skewed distributed indexing
y
le than the distributed indexing.4.3 Simulation Results: SDI vs. VFSin
e the data items for VF should be arranged in the des
ending order of a

ess prob-abilities, we generate n data items with their a

ess probabilities of the des
ending orderbased on the Zipf distribution. For our proposed algorithm, we build an index tree of atmost degree d for these n data items. Our proposed algorithm then traverses the index treeto determine whi
h index node should be repli
ated a

ording to a

ess probabilities of its
hild nodes. For VF, it dynami
ally adjusts an index tree a

ording to a

ess probabilitiesof index or data nodes.To provide a fairly statisti
 basis for performan
e 
omparison between our proposedalgorithm and the 
ompared one, we present 
on�den
e intervals for our experimentalresults. A 
on�den
e interval for a population mean is an interval of values that is likelyto 
ontain the true value of the population mean [29℄. The 95% 
on�den
e interval for thepopulation mean provides a good balan
e between pre
ision and reliability. Therefore, wepresent the 95% 
on�den
e interval for our experimental results. A 95% 
on�den
e intervalfor the population mean is given by (x�1:96� spns; x+1:96� spns), where x is the samplemean, s is the sample standard deviation, and ns is the number of the samples [29℄. The�rst term is 
alled the lower 
on�den
e limit and the se
ond is 
alled the upper 
on�den
elimit. If the upper 
on�den
e limit of the experimental results for our proposed SDI is lessthan the lower 
on�den
e limit of these for the 
ompared algorithm, we 
an 
on
lude thatSDI has a statisti
ally signi�
ant better performan
e than the 
ompared algorithm.Furthermore, to prove statisti
ally signi�
ant di�eren
es of the experimental results17
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(a) (b)Figure 10: A 
omparison of SDI and VF with in
reasing the number of data items: (a) theaverage a

ess time; (b) the average tuning time.between our proposed algorithm and the 
ompared one, we present an analysis of varian
e(ANOVA). ANOVA is a method of testing the equality of population means by analyzingsample varian
es [29℄. If sample means that are 
lose in value result in an F test statisti
that is 
lose to 1, we 
on
lude that there is no signi�
ant di�eren
e among the sample means.On the other hand, if the value of F is ex
essively large, then we reje
t the 
lam of equalmeans. In our experimental results, we use a 5% signi�
ant level; that is, the 
orresponding
riti
al value of F , F0:05, is 3.84 [29℄. If the observed value of F is greater than the valueof F0:05, we 
on
lude that there is suÆ
ient eviden
e to reje
t the 
lam of equal means ofour proposed algorithm and the 
ompared one. That is, there is a signi�
ant di�eren
ebetween the mean of our proposed algorithm and that of the 
ompared one. Otherwise, wefail to reje
t the 
lam.For the �rst experiment, we in
rease the total number of data items, n, from 200 to1200 under d = 4 and RDI = 5. Moreover, for ea
h �xed value of n, we randomly pi
k100 samples under � = [0:8::1℄; that is, the experimental result is an average of these 100samples. Figure 10-(a) shows the experimental result of the average a

ess time, and Table3 lists its 
orresponding details of the �gures. In Figure 10-(a), the x-axis represents thenumber of data items in one broad
ast 
y
le, and the y-axis represents the average a

esstime in terms of bu
kets. In Figure 10-(a), SDI L and SDI U represent the lower 
on�den
e18



Table 3: The average a

ess time for the 
ases of in
reasing the number of data itemsn SDI L SDI SDI U VF L VF VF U200 557:416 557:745 558:073 1059:342 1074:641 1089:941400 1187:448 1189:519 1191:589 2148:377 2188:314 2228:25600 1674:432 1677:7 1680:969 3138:693 3171:228 3203:764800 2226:986 2230:329 2233:672 4176:4 4236:891 4297:3811000 2732:492 2737:169 2741:847 5187:916 5228:216 5268:5171200 3644:478 3655:89 3667:303 6153:217 6231:154 6309:09Table 4: The values of F of the average a

ess time for the 
ases of in
reasing the numberof data itemsn 200 400 600 800 1000 1200F 4382.951 2396.352 8014.341 4214.206 14482.474 4106.362limit and the upper 
on�den
e limit for SDI under the 95% 
on�den
e level, respe
tively.That is, the values of SDI L and SDI U indi
ate the 
on�den
e intervals of the valuesof SDI. VF L and VF U represent the lower 
on�den
e limit and the upper 
on�den
elimit for VF under the 95% 
on�den
e level, respe
tively. That is, the values of VF L andVF U indi
ate the 
on�den
e intervals of the values of VF. As the value of n in
reases,the average a

ess time of both our proposed SDI and VF in
reases. We 
an observethat our proposed SDI outperforms VF in terms of the average a

ess time under all ofthe 
ases. This is be
ause VF does not repli
ate index nodes resulting in the dire
torymiss. Moreover, the values of SDI U are always less than those of VF L. Furthermore, allthe 
orresponding values of F shown in Table 4 are extremely greater than the value ofF0:05(= 3:84). Therefore, we 
an 
on
lude that SDI has a statisti
ally signi�
ant shortera

ess time than VF.Figure 10-(b) shows the experimental result of the average tuning time, and Table 5 listsits 
orresponding details of the �gures. In Figure 10-(b), the x-axis represents the numberof data items in one broad
ast 
y
le, and the y-axis represents the average tuning time interms of bu
kets. We 
an observe that the average tuning time of our proposed algorithm isshorter than that of VF. Moreover, the values of SDI U are always less than those of VF L.19



Table 5: The average tuning time for the 
ases of in
reasing the number of data itemsn SDI L SDI SDI U VF L VF VF U200 8:851 8:874 8:897 10:812 10:852 10:892400 10:306 10:325 10:344 11:495 11:544 11:594600 10:012 10:048 10:084 11:869 11:92 11:971800 9:942 9:974 10:006 12:187 12:237 12:2871000 10:065 10:096 10:126 12:372 12:426 12:481200 11:652 11:662 11:673 12:53 12:589 12:647Table 6: The values of F of the average tuning time for the 
ases of in
reasing the numberof data itemsn 200 400 600 800 1000 1200F 7033.342 2037.391 3407.423 5548.328 5409.219 932.173Furthermore, all the 
orresponding values of F shown in Table 6 are extremely greaterthan the value of F0:05(= 3:84). Therefore, we 
an 
on
lude that SDI has a statisti
allysigni�
ant shorter tuning time than VF.For the se
ond experiment, we in
rease the Zipf fa
tor � from 0.6 to 0.9 under d = 4 andRDI = 5. For ea
h �xed value of �, we randomly pi
k 100 samples under n = [1000::1100℄;that is, the experimental result is an average of these 100 samples. As the value of �in
reases, a

ess patterns be
ome more skewed. Figure 11-(a) shows the experimentalresult of the average a

ess time, and Table 7 lists its 
orresponding details of the �gures. InFigure 11-(a), the x-axis represents the value of the Zipf fa
tor �, and the y-axis representsthe average a

ess time. We 
an observe that the average a

ess time of our proposedalgorithm is shorter than that of VF. Moreover, the values of SDI U are always less thanthose of VF L under the 95% 
on�den
e level. Furthermore, all the 
orresponding valuesof F shown in Table 8 are extremely greater than the value of F0:05(= 3:84). Therefore, we
an 
on
lude that SDI has a statisti
ally signi�
ant shorter a

ess time than VF.Figure 11-(b) shows the 
orresponding average tuning time, and Table 9 lists its detailsof the �gures. In Figure 11-(b), the x-axis represents the value of the Zipf fa
tor �, andthe y-axis represents the average tuning time. We 
an observe that the average tuning20
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(a) (b)Figure 11: A 
omparison of SDI and VF with in
reasing the value of �: (a) the averagea

ess time; (b) the average tuning time.
Table 7: The average a

ess time for the 
ases of in
reasing the value of �� SDI L SDI SDI U VF L VF VF U0:6 3363:575 3440:777 3517:979 7158:904 7197:816 7236:7280:65 3297:607 3374:157 3450:707 7287:141 7330:658 7374:1750:7 3238:029 3308:802 3379:574 7354:934 7393:653 7432:3720:75 3198:392 3264:053 3329:715 7160:913 7201:639 7242:3650:8 3206:383 3262:205 3318:026 5650:65 5680:901 5711:1530:85 3147:798 3201:831 3255:864 5568:705 5601:166 5633:6270:9 3070:17 3121:827 3173:484 5467:566 5497:455 5527:344

Table 8: The values of F of the average a

ess time for the 
ases of in
reasing the value of� � 0:6 0:65 0:7 0:75 0:8 0:85 0:9F 7254.973 7755.937 9849.723 9976.879 5574.966 5566.040 6086.92821



Table 9: The average tuning time for the 
ases of in
reasing the value of �� SDI L SDI SDI U VF L VF VF U0:6 11:077 11:279 11:481 13:815 13:824 13:8320:65 11:03 11:23 11:43 13:632 13:64 13:6470:7 11:008 11:207 11:406 13:394 13:4 13:4070:75 11:063 11:253 11:443 13:12 13:127 13:1340:8 11:226 11:395 11:564 13:003 13:007 13:0120:85 11:205 11:371 11:537 12:729 12:739 12:7480:9 11:138 11:305 11:472 12:485 12:49 12:494Table 10: The values of F of the average tuning time for the 
ases of in
reasing the valueof � � 0:6 0:65 0:7 0:75 0:8 0:85 0:9F 606.838 556.844 466.452 373.748 350.674 259.078 193.273time of our proposed algorithm is shorter than that of VF under � = 0:6{0:9. Moreover,the values of SDI U are always less than those of VF L under the 95% 
on�den
e level.Furthermore, all the 
orresponding values of F shown in Table 10 are extremely greaterthan the value of F0:05(= 3:84). Therefore, we 
an 
on
lude that SDI has a statisti
allysigni�
ant shorter tuning time than VF under � = 0:6{0:9.4.4 Simulation Results: SDI vs. DIAfter generating n data items with the a

ess probability Pr(i), 1 � i � n, based on theZipf distribution, we randomly pi
k a permutation of these data items, and build an indextree of at most degree d for them. The a

ess probability of ea
h index node in this indextree is equal to the sum of the a

ess probabilities of its 
hild nodes. For our proposedalgorithm, the repli
ated index nodes are determined a

ording to the a

ess probabilitiesof their 
hild nodes by traversing the index tree. For the distributed indexing, the repli
atedindex nodes are determined by the repli
ated level in the index tree. Therefore, parameterr is used to determine the repli
ated level in an index tree in the distributed indexing. Theoptimum value of r for a
hieving the best a

ess time is de�ned as r = b12 � logd(n� (d�22



1.5 2.0 2.5 3.0 3.5

θ

2120

2170

2220

2270

2320

2370

A
ve

ra
ge

 a
cc

es
s 

tim
e

SDI_L
SDI
SDI_U
DI_L
DI
DI_U

Figure 12: A 
omparison of the average a

ess time of SDI and DI with in
reasing thevalue of �.1) + dh+1d� 1)� 1)
+ 1 [12℄.A

ording to [13℄, the tuning time of su
h tree-based indexes depends on the level of anindex tree, and is bounded by dlogdne+2+RDI . Therefore, there is a limited improvementon the tuning time among the tree-based indexes, and in our simulation results, we willnot show the 
omparison of the tuning time.For the �rst simulation experiment, we in
rease the value of �, the Zipf fa
tor, from1:5 to 3:0 under d = 6, n = 1000 and RDI = 5. Figure 12 shows the experimental resultsof the average a

ess time. In Figure 12, the x-axis represents the value of the Zipffa
tor �, and the y-axis represents the average a

ess time. As the value of � in
reases,the a

ess patterns be
ome very skewed. We 
an observe that the average a

ess time ofour proposed algorithm is shorter than that of DI. This is be
ause our proposed algorithmrepli
ates the index nodes with a higher a

ess probability, instead of always repli
atingthe index nodes with the �xed level. In this way, our proposed algorithm in
reases theprobability of a

essing data items with a higher a

ess probability in one broad
ast 
y
le,redu
ing the average a

ess time. Moreover, the values of SDI U are always less than thoseof DI L under the 95% 
on�den
e level. Furthermore, all the 
orresponding values of Fshown in Table 11 are greater than the value of F0:05(= 3:84). Therefore, we 
an 
on
ludethat SDI has a statisti
ally signi�
ant shorter a

ess time than DI.23



Table 11: The values of F of the average a

ess time for the 
ases of in
reasing the valueof � � 1:5 2:0 2:5 3:0F 41.252 40.664 34.059 29.375
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Figure 13: A 
omparison of the average a

ess time of SDI and DI with in
reasing thevalue of n.For the se
ond simulation experiment, we vary the number of data items, n, from 400to 1200 under d = 6, RDI = 5, and � = 3. Figure 13 shows the experimental results of theaverage a

ess time. In Figure 13, the x-axis represents the number of data items, n, andthe y-axis represents the average a

ess time. Table 12 lists its 
orresponding details of the�gures. As the value of n in
reases, the average time of both algorithms in
reases. We 
anobserve that the average a

ess time of our proposed algorithm is shorter than that of DI.The reason is the same as mentioned before. Moreover, the values of SDI U are alwaysless than those of DI L under the 95% 
on�den
e level. Furthermore, all the 
orrespondingvalues of F shown in Table 13 are greater than the value of F0:05(= 3:84). Therefore, we
an 
on
lude that SDI has a statisti
ally signi�
ant shorter a

ess time than DI.
24



Table 12: The average a

ess time for the 
ases of in
reasing the value of nn SDI L SDI SDI U DI L DI DI U400 876:974 888:549 900:124 921:329 933:52 945:712600 1309:834 1329:838 1349:841 1391:753 1413:155 1434:558800 1720:864 1747:377 1773:889 1830:106 1858:266 1886:4251000 2153:898 2184:653 2215:408 2291:697 2324:698 2357:6991200 2605:614 2642:7 2679:785 2769:944 2809:572 2849:201Table 13: The values of F of the average a

ess time for the 
ases of in
reasing the valueof n n 400 600 800 1000 1200F 27.491 31.073 31.579 37.026 36.3155 Con
lusionIn this paper, we proposed the skewed distributed indexing for data broad
ast with skeweda

ess patterns over the single 
hannel on wireless environments. Our proposed algorithmtakes the a

ess probability of ea
h data item into 
onsideration. Our proposed algorithmrepli
ates the index nodes with a higher a

ess probability, instead of always repli
ating theindex nodes with the �xed level as in the distributed indexing. From our simulation results,we have shown that the proposed algorithm needs the shorter average a

ess time than VFand the distributed indexing in many 
ases. How to investigate the index stru
ture fordata with skewed a

ess patterns over multiple 
hannels is the possible future work.Referen
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