SETM*-MaxK: An Efficient SET-Based
Approach to Find the Largest Itemset

Ye-In Chang and Yu-Ming Hsieh

Dept. of Computer Science and Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, Republic of China
Tel: 886-7-5252000 (ext. 4334), Fax: 886-7-5254301
changyi@cse.nsysu.edu.tw

Abstract. In this paper, we propose the SETM*-MaxK algorithm to
find the largest itemset based on a high-level set-based approach, where
a large itemset is a set of items appearing in a sufficient number of
transactions. The advantage of the set-based approach, like the SETM
algorithm, is simple and stable over the range of parameter values. In
the SETM*-MaxK algorithm, we efficiently find the Ly based on L.,
where Lj denotes the set of large k-itemsets with minimum support,
Li # 0, Lis1 = 0 and w = 2M'°92%1-1 instead of step by step. From our
simulation, we show that the proposed SETM*-MaxK algorithm requires
shorter time to achieve its goal than the SETM algorithm.

1 Introduction

One of the important data mining tasks, mining association rulesin transactional
or relational databases, has recently attracted a lot of attention in database com-
munities [12/5]. The task is to discover the important associations among items
such that the presence of some items in a transaction will imply the presence
of other items in the same transaction [3]. Previous approaches to mining as-
sociation rules can be classified into two approaches: low-level and high-level
approaches, where a low-level approach means to retrieve one tuple from the
relational database at a time, and a high-level approach means a set-based ap-
proach. For example, Apriori/AprioriTID [1] and DHP [5] are based on the
low-level approach, while the SETM algorithm [4] is based on the high-level
approach. A set-based approach (i.e., a high-level approach) allows a clear ex-
pression of what needs to be done as opposed to specifying exactly how the
operations are carried out in a low-level approach. The declarative nature of this
approach allows consideration of a variety of ways to optimize the required op-
erations. Eventually, it should be possible to integrate rule discovery completely
with the database system. This would facilitate the use of the large amounts
of data that are currently stored on relational databases. The relational query
optimizer can then determine the most efficient way to obtain the desired re-
sults. Finally, the set-based approach has a small number of well-defined, simple

M.-S. Chen, P.S. Yu, and B. Liu (Eds.): PAKDD 2002, LNAI 2336, pp. 316-8Z1], 2002.
© Springer-Verlag Berlin Heidelberg 2002



SETM*-MaxK 317

concepts and operations. This allows easy extensibility to handling additional
kinds of mining, e.g. relating association rules to customer classes.

In [4], based on a high-level approach, Houtsma and Swami proposed the
SETM algorithm that uses SQL for generating the frequent itemsets. Algorithm
SETM is simple and stable over the range of parameter values. Moreover, it
is easily parallelized. But the disadvantage of the SETM algorithm is that it
generates too many invalid candidate itemsets. In this paper, we design the
SETM*-MaxK algorithm to find the largest itemset based on a high-level set-
oriented approach. One of the applications to find the largest itemset is that in
a grocery store, we may want to know the maximum set of data items which will
be bought in one transaction by the most of customers. In the SETM*-MaxK
algorithm, we efficiently find the Ly based on L,,, where Lj denotes the set of
large k-itemsets with minimum support, Ly # 0, Lyr1 = 0 and w = 2[teo2k1-1
instead of step by step. From our simulation, we show that the proposed SETM*-
MaxK algorithm needs shorter time to achieve its goal than the SETM algorithm.

2 The SETM*-MaxK Algorithm

Sometimes, we may only want to know the maximum set of data items which
will be bought in one transaction by the most of customers. That is, we only
want to find out the maximum k such that Ly # @ and Ly1 = (0. In this Section,
we present the SETM*-MaxzK algorithm to achieve such a goal. In the proposed
algorithm, we make use of the ”jump” approach and the binary search approach
to efficiently find the maximum k. We use the ”jump” approach to efficiently
construct Ly based on L, until L = @, where w = k/2.

Table 1. Variables used in the SETM*-MazK algorithm

R, |A database of candidate k-itemsets(i.e., a candidate DB)
L |Large k-itemsets
C) |Candidate k-itemsets
Ry |A database of large k-itemsets(i.e., a filtered DB)
hal f_k|Last k processed
eq_len|Record the length of the same items in the join step

Table [l shows the variables used in the SETM*-MaxK algorithm. The com-
plete algorithm are shown in Figures Bl In procedure SETM*-MazK, the first
step (i.e., the forward phase) is to generate R;c, Ly, and Ry, except R/17 until
Ly =0 or C, =0, where k = 2%, i > 0. To generate counts for those patterns in
R;€ that meet the minimum support constraint, we call procedure gen-Litemset.
Before we go on to generate patterns of length k + 1, we first have to select
the tuples from R;c that should be extended; that is, those tuples that meet the
minimum support constraint. We also wish the resulting relation to be sorted



318 Ye-In Chang and Yu-Ming Hsieh

on Ry (trans_id,items, ..., itemy). This can be done by calling procedure filter-
DB. After L; and R; are constructed, we then apply the ”jump” approach. We
repeat calling procedures gen-2k-C, gen-2k-CDB, gen-Litemset and filter-DB to
generate Cy, R;C, Ly and Ry, respectively, until L, = @ or C, = @, where k > 2.
In procedure gen-2k-C, we construct Cj based on Lpgi¢_k, where half k = k
div 2. In procedure gen-2k-CDB, we could generate all lexicographically ordered
patterns of length & stored on R;c (trans_id, itemq, . .., itemy) based on Rpaif_k
only. Note that The SETM algorithm constructs R;c based on Ri_1 and the
original database SALES. Due to this reason, the SETM algorithm generates
and counts too many candidates itemsets. To reduce the size of the candidate
database R;C, we have a new strategy to construct R;C in procedure gen-2k-CDB.
Moreover, to avoid unnecessary construction of R;C, Ly and Ry, we will first
construct Cj, before we construct L. That is, R;C, Lj, and Ry will be generated
only if C # 0.

In step 2 of procedure SETM*-MazK, we will keep changing the value of
target K by considering the range between k and hal f_k (= k/2), until MaxK #
0. We apply a variant (marked with **) of the binary search, in which when
Ligrget = 0, in additional to updating HK, we will update LK = LK + 1
and compute R/LK, Lpx and Rpg if Crix # 0. In this way, for the next loop,
R;M getic can be generated based on a new Rpk. For the example as shown in
Figure [[}(a), Figure [[}(b) shows the process of procedure SETM*-MazK (as
shown in Figure ), where the minimum support = 3.

L1 RL R2 L2 R2
Itemset | Sup. TID | Items TID | Itemsets Itemset | Sup. TID | Itemsets
A 7 1 | ABCDE 3 |aeacapaEBcBDBECDCEDE || 2B | 4 1 | ABACAD AEBC BD BE CD CE DE
B 7 2 | ABCEF > | AB AC AE AF BC BE BF CE CF EF AC | 6 2 | ABACAEBCBE BF CE EF
c 8 3 | AcDF 3 | ACAD AFCD CF DF AD | 5 3 |ACADCD
D 7 4 | ABCDE 4 | ABACADAEBCEDBECD CEDE || AE | 4 4 | ABACAD AE BC BD BE CD CE DE
E 7 5 | BCDH 5 |BCBD BH CD CHDH BC | 6 5 |BCBDBHCD
F 5 6 |DEF s |pEDFEF BD | 4 6 |EF
G | 4 7 | AcbG 7 | ACAD AGCD CGDG BE | 5 7 |AcADCD
H 5 8 [ABCDEH | | g |ABACADAEAHBOBDBEBHCD|| BH | 3 8 | ABACAD AEBCBD BE BH CD CE
9 | BCEG CE CH DEDH EH @ |6 DE
10 | EFGH o |BCBEBGCECGES cE | 5 9 |BCBECE
11 |AGH DE | 4 10 |EF
10 | EFEGEH FGFH GH
TID | Items 12 | BFH 1 |AGAHGH EF | 3 12 |BH
1 |ABCDEI 12 |BFBHFH
2 |ABCEF
3 |ACDF
4 |ABCDE R4 L4 R4 RS L5 R5
5 |BCDH
6 |DEF TID | Itemsets Itemset | Sup. TID | Itemsets TID | Itemsets l Itemset l Sup. ‘ TID | Itemsets
7 lacpbe 1 | ABCD ABCE ABDE ABCD | 3 1 | ABCD ABCE ABDE 1 |aBcoe | | ABCDE| 3 1 | ABCDE
8 |[ABCDEH ACDE BCDE ABCE | 4 ACDE BCDE 4 | ABCDE 4 | ABCDE
s |BcEGI 2 |ABCEABEFACEFBCEF | | ABDE | 3 2 |ABCE s | ABCDE s | ABCDE
4 | ABCD ABCE ABDE ACDE | 3 4 | ABCD ABCE ABDE
10 |[EFGH ACDE BCDE BCDE | 3 ACDE BCDE
11 |[AGH 8 | ABCD ABCE ABDE 8 | ABCD ABCE ABDE
12 |BFH ACDE BCDE ACDE BCDE
(a) (b)

Fig.1. (a) An example transaction database ; (b) The process of the SETM*-
MaxK algorithm



SETM*-MaxK 319

procedure SETM*-MazK;

begin
(* Step 1: Forward Phase *)
k:=1;
L, := gen-Litemset(Sales, minsup);
R, := filter-DB(Sales, L1);
repeat
k:=2xk;
half_k := k div 2;
eq-len := 0;

C = gen-2k-C(Lnaif_ks Lhatf_k);
if C # 0 then

begin
’
R, := gen-2k-CDB(Rhaif_k, Rhatf_k);
U
Ly, := gen-Litemset(R,, minsup);

Ry := filter-DB(R},, Ly);
end;

until (L =0 OR Cy = 0);

(* Step 2: Find MaxK *)

HK :=k;

LK := half_k;

targetK := [(HK + LK)/27;

Maz K := 0;

repeat
eq-len := 2% LK — targetK;
Crargetr = gen-2k-C(Lnaif_ k> Lnatf_k);
if Ctargetx 7 0 then

begin
’
Ryyrgetrc = gen-2k-CDB(RLk, RLK);
. / .
Liargetk 1= gen-Litemset(R,,,.ge1 5, Minsup);
’
Riargetrc = filter-DB(Ry 4, gt x> Ltargeti );
end;
if (Ltargetk = 0) or (Ctargetk = 0) then
begin

HK := targetK;

LK := LK + 1; (**)

eq-len := LK — 2; (*¥)

Cri = gen-2k-C(Lrk—1,Lrx—1); (*%)
if Cp i # 0 then (**)

begin (*¥)
R,LK = gen-2k-CDB(RLKk -1, RLx-1); (**)
Lik := gen—Litemset(R/LK,minsup)§ (**)
Rpx = filter-DB(Ry s, Lri); (*%)

end; (**)

if (Ltargetk = 0) then
MaxK := LK —1;
end
else
LK :=targetK;
if (MaxzK = 0) then
begin
targetK := [(HK + LK)/27;
if (targetK = HK) then
begin
if Ltarge.tK = 0 then
MazxK = targetK — 1
else
Max K := targetK;
end;
end;
until MaxK # 0;
end;

procedure gen-Litemset(R, , minsup);
begin
insert into Ly
select p.itemq, ..., p.itemg, COUNT(*)
from R; P
group by p.itemq, ...
having COUNT(*) > :minsup;

end;

, p.itemy

procedure ﬁlter—DB(R;c, Ly);
begin
insert into Ry
select p.tid, p.itemq, ..., p.itemy
from R; p, Lk q
where p.item; = g.item; AND ...
AND p.itemy = g.itemy;

end;

procedure gen-2k-C(Luaif_ks Lhatf_k);
begin
insert into Cy
select p.itemy, ..., p.itempaif_k,
g.itemeq_ten+1, - -+ g-iteMmparf_k
from Lhatf_k Py Lhatf_k @
where p.item; = g.item; AND ...
AND p.itemeg_ten = g.itemeg_ten
AND p.itemparf_r < q.itemeg_jent1;

end;

procedure gen-2k-CDB(Rpaif_k, Rhatf_k);
begin
insert into R;
select p.tid, p.itemy, ..., p.itempary_k,
g.itemeq_ten+1, - -+ g-ite€Mmparf_k
from Rpaif_k P Rhalf_k q
where p.tid=gq.tid
AND p.item; = g.item; AND ...
AND p.itemeg_jen = ¢.itemeq_jen
AND p.itemparf_r < q.itemeg_jent1;

end;

Fig. 2. The SETM*-MazK procedure



320 Ye-In Chang and Yu-Ming Hsieh

3 Performance

In this Section, we study the performance of the proposed SETM*-MaxK algo-
rithm, and make a comparison with the SETM [4] algorithm by simulation. Our
experiments were performed on a PentiumlIl Server with one CPU clock rate
of 450 MHz, 128 MB of main memory, running Windows-NT 2000, and coded
in Delphi. The data resided in the Delphi relational database and was stored
on a local 8G IDE 3.5” drive. Table 2 shows the parameters. The length of an

Table 2. Parameters

D] [Number of transactions

|T| |Average size of transactions
|[MT||Maximum size of the transactions

|I| |Average size of maximal potentially large itemsets
|MI||Maximum size of the potentially large itemsets

|L| {Number of maximal potentially large itemsets

N |Number of items

itemset in F(potentially maximal large itemsets) is determined according to a
Poisson distribution with mean p equal to |I]. The size of each potentially large
itemset is between 1 and |MI|. Items in the first itemset are chosen randomly
from the set of items. To model the phenomenon that large itemsets often have
common items, some fraction of items in subsequent itemsets are chosen from
the previous itemset generated. We use an exponentially distributed random
variable with mean equal to the correlation level to decide this fraction for
each itemset. The remaining items are picked at random. In the datasets used
in the experiments, the correlation level was set to 0.5. Each itemset in F has
an associated weight that determines the probability that this itemset will be
picked. The weight is picked from an exponential distribution with mean equal
to 1. The weights are normalized such that the sum of all weights equals 1.
For example, suppose the number of large itemsets is 5. According to the expo-
nential distribution with mean equal to 1, the probabilities for those 5 itemsets
with ID equal to 1, 2, 3, 4 and 5 are 0.43, 0.26, 0.16, 0.1 and 0.05, respectively,
after the normalization process. These probabilities are then accumulated such
that each size falls in a range. For each transaction, we generate a random real
number which is between 0 and 1 to determine the ID of the potentially large
itemset. To model the phenomenon that all the items in a large itemset are
not always bought together, we assign each itemset in F a corruption level c.
When adding an itemset to a transaction, we keep dropping an item from the
itemset as long as a uniformly distributed random number (between 0 and 1)
is less than c. The corruption level for an itemset is fixed and is obtained from
a normal distribution with mean = 0.5 and variance = 0.1. Each transaction is
stored in a file system with the form of <transaction identifier, item>. Let Case
1 denotes |T'| = 5,|MT| = 10,|I| = 4,|MI| = 8, |D| = 20K, Size = 1.5MB,
N = 1,000 and |L| = 2,000. When we choose Case 1 the synthetic dataset and
with a minimum support = 0.33%, the detailed information about |R;c|, |Lg|,



SETM*-MaxK 321

|Rj| and the execution time in these two algorithms are shown in Tables Bt (a),
and BH(b). From these tables, similarly, we observe that the execution time of
SETM*-MaxK algorithm is shorter than that of the SETM algorithm.

4

Conclusion

Discovery of association rules is an important problem in the area of data mining.
In order to benefit from the experience with relational databases, a set-oriented
approach to mining data is needed. In this paper, to find a large itemset of a
specific size in relational database, we have efficiently found the L; based on L,,,
where Ly, # 0, Liy1 = 0 and w = 2M*°92F1=1 “instead of step by step. From our
simulation results, we have shown that the proposed SETM*-MaxK algorithm
requires shorter time to achieve their goals than the SETM algorithm.

Table 3. A comparison of storage space and execution time (Case 1): (a) SETM;
(b) SETM*-MaxK.

L Lo Ly Ly
7 7 7 7
R, |L1 Ri| R, |[La| Ro R, |L3z| R3 | R, |L4| Ry
SETM|[116799[209] - |323149]714|130093 198789 |384[50955]49139|121]11068
_Ls L Total Time
R, |L5 Ry R6|L6|R6 (seconds)
SETM|[7938] 2 [147[10[ 0] 0 62.45

(a)

SETM*-MaxK

L Lo L, Ly Total Time
R, [t1] m Ry, |Lo] Ry | By [La| Ra | R [L5]Rs5| (seconds)
116799[209[113491[306160]714|130093|96673[121[10068|2464] 2 [147 46.63

(b)

References

1.

2.

R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large
Databases,” Proc. 20th Int’l Conf. Very Large Data Bases, pp. 490-501, Sept. 1994.
F. Berzal, J. Cubero, N. Marin, and J Serrano, “TBAR: An Efficient Method for
Association Rule Mining in Relational Databases,” Data and Knowledge Engineer-
ing, Vol. 37, No. 1, pp. 47-64, April 2001.

M.-S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from a Database
Perspective,” IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 5,
pp. 866-882, Dec. 1996.

M. Houtsma and A. Swami, “Set-oriented Mining for Association Rules in Rela-
tional Databases,” Proc. 11th IEEE Int’l Conf. Data Engineering, pp. 25-33, 1995.
J.-S. Park, M.-S. Chen, and P.S. Yu, ”Using a Hash-Based Method with Trans-
action Trimming for Mining Association Rules,” IEEE Trans. on Knowledge and
Data Engineering, Vol. 9, No. 5, pp. 813-825, Sept. 1997.

S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications,” Proc. 1998
ACM SIGMOD Int’l Conf. Management of Data, pp. 343-354, 1998.



	Introduction
	The SETM*-MaxK Algorithm
	Performance
	Conclusion

