
SETM*-MaxK: An Efficient SET-Based
Approach to Find the Largest Itemset

Ye-In Chang and Yu-Ming Hsieh

Dept. of Computer Science and Engineering
National Sun Yat-Sen University

Kaohsiung, Taiwan, Republic of China
Tel: 886-7-5252000 (ext. 4334), Fax: 886-7-5254301

changyi@cse.nsysu.edu.tw

Abstract. In this paper, we propose the SETM*-MaxK algorithm to
find the largest itemset based on a high-level set-based approach, where
a large itemset is a set of items appearing in a sufficient number of
transactions. The advantage of the set-based approach, like the SETM
algorithm, is simple and stable over the range of parameter values. In
the SETM*-MaxK algorithm, we efficiently find the Lk based on Lw,
where Lk denotes the set of large k-itemsets with minimum support,
Lk �= ∅, Lk+1 = ∅ and w = 2�log2k�−1, instead of step by step. From our
simulation, we show that the proposed SETM*-MaxK algorithm requires
shorter time to achieve its goal than the SETM algorithm.

1 Introduction

One of the important data mining tasks, mining association rules in transactional
or relational databases, has recently attracted a lot of attention in database com-
munities [1,2,5]. The task is to discover the important associations among items
such that the presence of some items in a transaction will imply the presence
of other items in the same transaction [3]. Previous approaches to mining as-
sociation rules can be classified into two approaches: low-level and high-level
approaches, where a low-level approach means to retrieve one tuple from the
relational database at a time, and a high-level approach means a set-based ap-
proach. For example, Apriori/AprioriTID [1] and DHP [5] are based on the
low-level approach, while the SETM algorithm [4] is based on the high-level
approach. A set-based approach (i.e., a high-level approach) allows a clear ex-
pression of what needs to be done as opposed to specifying exactly how the
operations are carried out in a low-level approach. The declarative nature of this
approach allows consideration of a variety of ways to optimize the required op-
erations. Eventually, it should be possible to integrate rule discovery completely
with the database system. This would facilitate the use of the large amounts
of data that are currently stored on relational databases. The relational query
optimizer can then determine the most efficient way to obtain the desired re-
sults. Finally, the set-based approach has a small number of well-defined, simple

M.-S. Chen, P.S. Yu, and B. Liu (Eds.): PAKDD 2002, LNAI 2336, pp. 316–321, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

SETM*-MaxK 317

concepts and operations. This allows easy extensibility to handling additional
kinds of mining, e.g. relating association rules to customer classes.

In [4], based on a high-level approach, Houtsma and Swami proposed the
SETM algorithm that uses SQL for generating the frequent itemsets. Algorithm
SETM is simple and stable over the range of parameter values. Moreover, it
is easily parallelized. But the disadvantage of the SETM algorithm is that it
generates too many invalid candidate itemsets. In this paper, we design the
SETM*-MaxK algorithm to find the largest itemset based on a high-level set-
oriented approach. One of the applications to find the largest itemset is that in
a grocery store, we may want to know the maximum set of data items which will
be bought in one transaction by the most of customers. In the SETM*-MaxK
algorithm, we efficiently find the Lk based on Lw, where Lk denotes the set of
large k-itemsets with minimum support, Lk �= ∅, Lk+1 = ∅ and w = 2�log2k�−1,
instead of step by step. From our simulation, we show that the proposed SETM*-
MaxK algorithm needs shorter time to achieve its goal than the SETM algorithm.

2 The SETM*-MaxK Algorithm

Sometimes, we may only want to know the maximum set of data items which
will be bought in one transaction by the most of customers. That is, we only
want to find out the maximum k such that Lk �= ∅ and Lk+1 = ∅. In this Section,
we present the SETM*-MaxK algorithm to achieve such a goal. In the proposed
algorithm, we make use of the ”jump” approach and the binary search approach
to efficiently find the maximum k. We use the ”jump” approach to efficiently
construct Lk based on Lw, until Lk = ∅, where w = k/2.

Table 1. Variables used in the SETM*-MaxK algorithm

R
′
k A database of candidate k-itemsets(i.e., a candidate DB)

Lk Large k-itemsets
Ck Candidate k-itemsets
Rk A database of large k-itemsets(i.e., a filtered DB)

half k Last k processed
eq len Record the length of the same items in the join step

Table 1 shows the variables used in the SETM*-MaxK algorithm. The com-
plete algorithm are shown in Figures 2. In procedure SETM*-MaxK, the first
step (i.e., the forward phase) is to generate R

′
k, Lk, and Rk, except R

′
1, until

Lk = ∅ or Ck = ∅, where k = 2i, i ≥ 0. To generate counts for those patterns in
R

′
k that meet the minimum support constraint, we call procedure gen-Litemset.

Before we go on to generate patterns of length k + 1, we first have to select
the tuples from R

′
k that should be extended; that is, those tuples that meet the

minimum support constraint. We also wish the resulting relation to be sorted

318 Ye-In Chang and Yu-Ming Hsieh

on Rk(trans id, item1, . . . , itemk). This can be done by calling procedure filter-
DB. After L1 and R1 are constructed, we then apply the ”jump” approach. We
repeat calling procedures gen-2k-C, gen-2k-CDB, gen-Litemset and filter-DB to
generate Ck, R

′
k, Lk and Rk, respectively, until Lk = ∅ or Ck = ∅, where k ≥ 2.

In procedure gen-2k-C, we construct Ck based on Lhalf k, where half k = k
div 2. In procedure gen-2k-CDB, we could generate all lexicographically ordered
patterns of length k stored on R

′
k(trans id, item1, . . . , itemk) based on Rhalf k

only. Note that The SETM algorithm constructs R
′
k based on Rk−1 and the

original database SALES. Due to this reason, the SETM algorithm generates
and counts too many candidates itemsets. To reduce the size of the candidate
database R

′
k, we have a new strategy to construct R

′
k in procedure gen-2k-CDB.

Moreover, to avoid unnecessary construction of R
′
k, Lk and Rk, we will first

construct Ck before we construct Lk. That is, R
′
k, Lk and Rk will be generated

only if Ck �= ∅.
In step 2 of procedure SETM*-MaxK, we will keep changing the value of

targetK by considering the range between k and half k (= k/2), until MaxK �=
0. We apply a variant (marked with **) of the binary search, in which when
LtargetK = ∅, in additional to updating HK, we will update LK = LK + 1
and compute R

′
LK , LLK and RLK if CLK �= ∅. In this way, for the next loop,

R
′
targetK can be generated based on a new RLK . For the example as shown in

Figure 1-(a), Figure 1-(b) shows the process of procedure SETM*-MaxK (as
shown in Figure 2), where the minimum support = 3.

1
2
3
4
5
6
7
8
9
10
11
12

A B C D E I
A B C E F
A C D F
A B C D E
B C D H
D E F
A C D G
A B C D E H
B C E G I
E F G H
A G H
B F H

TID Items

L1

Itemset Sup.

A
B
C
D
E
F
G
H

7
7
8
7
7
5
4
5

R1

TID Items

1
2
3
4
5
6
7
8
9

10
11
12

ABCDE
ABCEF
ACDF
ABCDE
BCDH
DEF
ACDG
ABCDEH
BCEG
EFGH
AGH
BFH

R'2

TID Itemsets

1
2
3
4
5
6
7
8

9
10
11
12

AB AC AD AE BC BD BE CD CE DE
AB AC AE AF BC BE BF CE CF EF
AC AD AF CD CF DF
AB AC AD AE BC BD BE CD CE DE
BC BD BH CD CH DH
DE DF EF
AC AD AG CD CG DG
AB AC AD AE AH BC BD BE BH CD
CE CH DE DH EH
BC BE BG CE CG EG
EF EG EH FG FH GH
AG AH GH
BF BH FH

L2

Itemset Sup.

AB
AC
AD
AE
BC
BD
BE
BH
CD
CE
DE
EF

4
6
5
4
6
4
5
3
6
5
4
3

R2

TID Itemsets

1
2
3
4
5
6
7
8

9
10
12

AB AC AD AE BC BD BE CD CE DE
AB AC AE BC BE BF CE EF
AC AD CD
AB AC AD AE BC BD BE CD CE DE
BC BD BH CD
EF
AC AD CD
AB AC AD AE BC BD BE BH CD CE
DE
BC BE CE
EF
BH

R'4

TID Itemsets

1

2
4

8

ABCD ABCE ABDE
ACDE BCDE
ABCE ABEF ACEF BCEF
ABCD ABCE ABDE
ACDE BCDE
ABCD ABCE ABDE
ACDE BCDE

L4

Itemset Sup.

ABCD
ABCE
ABDE
ACDE
BCDE

3
4
3
3
3

R4

TID Itemsets

1

2
4

8

ABCD ABCE ABDE
ACDE BCDE
ABCE
ABCD ABCE ABDE
ACDE BCDE
ABCD ABCE ABDE
ACDE BCDE

R'5

TID Itemsets

1
4
8

ABCDE
ABCDE
ABCDE

L5

Itemset Sup.

ABCDE 3

R5

TID Itemsets

1
4
8

ABCDE
ABCDE
ABCDE

(a) (b)

Fig. 1. (a) An example transaction database ; (b) The process of the SETM*-
MaxK algorithm

SETM*-MaxK 319

procedure SETM*-MaxK;
begin
(* Step 1: Forward Phase *)

k := 1;
L1 := gen-Litemset(Sales, minsup);
R1 := filter-DB(Sales, L1);
repeat

k := 2 ∗ k;
half k := k div 2;
eq len := 0;
Ck := gen-2k-C(Lhalf k, Lhalf k);
if Ck �= ∅ then
begin

R
′
k := gen-2k-CDB(Rhalf k, Rhalf k);

Lk := gen-Litemset(R
′
k, minsup);

Rk := filter-DB(R
′
k, Lk);

end;
until (Lk = ∅ OR Ck = ∅);

(* Step 2: Find MaxK *)
HK := k;
LK := half k;
targetK := �(HK + LK)/2�;
MaxK := 0;
repeat

eq len := 2 ∗ LK − targetK;
CtargetK := gen-2k-C(Lhalf k, Lhalf k);
if CtargetK �= ∅ then
begin

R
′
targetK := gen-2k-CDB(RLK, RLK);

LtargetK := gen-Litemset(R
′
targetK , minsup);

RtargetK := filter-DB(R
′
targetK , LtargetK);

end;
if (LtargetK = ∅) or (CtargetK = ∅) then
begin

HK := targetK;
LK := LK + 1; (**)
eq len := LK − 2; (**)
CLK := gen-2k-C(LLK−1, LLK−1); (**)
if CLK �= ∅ then (**)
begin (**)

R
′
LK := gen-2k-CDB(RLK−1, RLK−1); (**)

LLK := gen-Litemset(R
′
LK, minsup); (**)

RLK := filter-DB(R
′
LK , LLK); (**)

end; (**)
if (LtargetK = ∅) then

MaxK := LK − 1;
end
else

LK := targetK;
if (MaxK = 0) then
begin

targetK := �(HK + LK)/2�;
if (targetK = HK) then
begin

if LtargetK = ∅ then
MaxK := targetK − 1

else
MaxK := targetK;

end;
end;

until MaxK �= 0;
end;

procedure gen-Litemset(R
′
k, minsup);

begin

insert into Lk

select p.item1, . . . , p.itemk, COUNT(*)

from R
′
k p

group by p.item1, . . . , p.itemk

having COUNT(*) ≥ :minsup;

end;

procedure filter-DB(R
′
k, Lk);

begin

insert into Rk

select p.tid, p.item1, . . . , p.itemk

from R
′
k p, Lk q

where p.item1 = q.item1 AND . . .

AND p.itemk = q.itemk;

end;

procedure gen-2k-C(Lhalf k, Lhalf k);

begin

insert into Ck

select p.item1, . . . , p.itemhalf k,

q.itemeq len+1, . . . , q.itemhalf k

from Lhalf k p, Lhalf k q

where p.item1 = q.item1 AND . . .

AND p.itemeq len = q.itemeq len

AND p.itemhalf k < q.itemeq len+1;

end;

procedure gen-2k-CDB(Rhalf k, Rhalf k);

begin

insert into R
′
k

select p.tid, p.item1, . . . , p.itemhalf k,

q.itemeq len+1, . . . , q.itemhalf k

from Rhalf k p, Rhalf k q

where p.tid=q.tid

AND p.item1 = q.item1 AND . . .

AND p.itemeq len = q.itemeq len

AND p.itemhalf k < q.itemeq len+1;

end;

Fig. 2. The SETM*-MaxK procedure

320 Ye-In Chang and Yu-Ming Hsieh

3 Performance

In this Section, we study the performance of the proposed SETM*-MaxK algo-
rithm, and make a comparison with the SETM [4] algorithm by simulation. Our
experiments were performed on a PentiumIII Server with one CPU clock rate
of 450 MHz, 128 MB of main memory, running Windows-NT 2000, and coded
in Delphi. The data resided in the Delphi relational database and was stored
on a local 8G IDE 3.5” drive. Table 2 shows the parameters. The length of an

Table 2. Parameters

|D| Number of transactions
|T | Average size of transactions

|MT | Maximum size of the transactions
|I| Average size of maximal potentially large itemsets

|MI| Maximum size of the potentially large itemsets
|L| Number of maximal potentially large itemsets
N Number of items

itemset in F(potentially maximal large itemsets) is determined according to a
Poisson distribution with mean µ equal to |I|. The size of each potentially large
itemset is between 1 and |MI|. Items in the first itemset are chosen randomly
from the set of items. To model the phenomenon that large itemsets often have
common items, some fraction of items in subsequent itemsets are chosen from
the previous itemset generated. We use an exponentially distributed random
variable with mean equal to the correlation level to decide this fraction for
each itemset. The remaining items are picked at random. In the datasets used
in the experiments, the correlation level was set to 0.5. Each itemset in F has
an associated weight that determines the probability that this itemset will be
picked. The weight is picked from an exponential distribution with mean equal
to 1. The weights are normalized such that the sum of all weights equals 1.
For example, suppose the number of large itemsets is 5. According to the expo-
nential distribution with mean equal to 1, the probabilities for those 5 itemsets
with ID equal to 1, 2, 3, 4 and 5 are 0.43, 0.26, 0.16, 0.1 and 0.05, respectively,
after the normalization process. These probabilities are then accumulated such
that each size falls in a range. For each transaction, we generate a random real
number which is between 0 and 1 to determine the ID of the potentially large
itemset. To model the phenomenon that all the items in a large itemset are
not always bought together, we assign each itemset in F a corruption level c.
When adding an itemset to a transaction, we keep dropping an item from the
itemset as long as a uniformly distributed random number (between 0 and 1)
is less than c. The corruption level for an itemset is fixed and is obtained from
a normal distribution with mean = 0.5 and variance = 0.1. Each transaction is
stored in a file system with the form of <transaction identifier, item>. Let Case
1 denotes |T | = 5, |MT | = 10, |I| = 4, |MI| = 8, |D| = 20K, Size = 1.5MB,
N = 1,000 and |L| = 2,000. When we choose Case 1 the synthetic dataset and
with a minimum support = 0.33%, the detailed information about |R′

k|, |Lk|,

SETM*-MaxK 321

|Rk| and the execution time in these two algorithms are shown in Tables 3-(a),
and 3-(b). From these tables, similarly, we observe that the execution time of
SETM*-MaxK algorithm is shorter than that of the SETM algorithm.

4 Conclusion

Discovery of association rules is an important problem in the area of data mining.
In order to benefit from the experience with relational databases, a set-oriented
approach to mining data is needed. In this paper, to find a large itemset of a
specific size in relational database, we have efficiently found the Lk based on Lw,
where Lk �= ∅, Lk+1 = ∅ and w = 2�log2k�−1, instead of step by step. From our
simulation results, we have shown that the proposed SETM*-MaxK algorithm
requires shorter time to achieve their goals than the SETM algorithm.

Table 3. A comparison of storage space and execution time (Case 1): (a) SETM;
(b) SETM*-MaxK.

L1 L2 L3 L4
R

′
1 L1 R1 R

′
2 L2 R2 R

′
3 L3 R3 R

′
4 L4 R4

SETM 116799 209 - 323149 714 130093 198789 384 50955 49139 121 11068

L5 L6 Total Time

R
′
5 L5 R5 R

′
6 L6 R6 (seconds)

SETM 7938 2 147 10 0 0 62.45

(a)

SETM*-MaxK
L1 L2 L4 L5 Total Time

R
′
1 L1 R1 R

′
2 L2 R2 R

′
4 L4 R4 R

′
5 L5 R5 (seconds)

116799 209 113491 306160 714 130093 96673 121 10068 2464 2 147 46.63
(b)

References

1. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules in Large
Databases,” Proc. 20th Int’l Conf. Very Large Data Bases, pp. 490-501, Sept. 1994.

2. F. Berzal, J. Cubero, N. Marin, and J Serrano, “TBAR: An Efficient Method for
Association Rule Mining in Relational Databases,” Data and Knowledge Engineer-
ing, Vol. 37, No. 1, pp. 47-64, April 2001.

3. M.-S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from a Database
Perspective,” IEEE Trans. on Knowledge and Data Engineering, Vol. 8, No. 5,
pp. 866-882, Dec. 1996.

4. M. Houtsma and A. Swami, “Set-oriented Mining for Association Rules in Rela-
tional Databases,” Proc. 11th IEEE Int’l Conf. Data Engineering, pp. 25-33, 1995.

5. J.-S. Park, M.-S. Chen, and P.S. Yu, ”Using a Hash-Based Method with Trans-
action Trimming for Mining Association Rules,” IEEE Trans. on Knowledge and
Data Engineering, Vol. 9, No. 5, pp. 813-825, Sept. 1997.

6. S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating Association Rule Mining
with Relational Database Systems: Alternatives and Implications,” Proc. 1998
ACM SIGMOD Int’l Conf. Management of Data, pp. 343-354, 1998.

	Introduction
	The SETM*-MaxK Algorithm
	Performance
	Conclusion

